ECM312018 Oviedo, Spain 22-27 August #ECM310viedo

CRYSTALLOGRAPHY ONLINE: WORKSHOP ON THE USE AND APPLICATIONS OF THE BILBAO CRYSTALLOGRAPHIC SERVER

20-21 August 2018

CRYSTALLOGRAPHY ONLINE: BILBAO CRYSTALLOGRAPHIC SERVER

REPRESENTATIONS OF SPACE GROUPS

DATABASES AND TOOLS OF THE BILBAO CRYSTALLOGRAPHIC SERVER

Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain

Universidad del País Vasco Euskal Herriko Unibertsitatea

SPACE GROUPS

Crystal pattern: infinite, idealized crystal structure (without disorder, dislocations, impurities, etc.)

Space group G: The set of all symmetry operations (isometries) of a crystal pattern

Translation subgroup $T_G \triangleleft G$: The infinite set of all translations that are symmetry operations of the crystal pattern

Point group of the space groups P_G:

The factor group of the space group G with respect to the translation subgroup T: $P_G \cong G/H$

SPACE-GROUP REPRESENTATIONS

Irreducible representations of a group induced from the irreps of one of its normal subgroups

Method: Consider a group G and its normal subgroup $H \triangleleft G$ with its all irreps

I. Construct all irreps of H

2. Distribute the irreps of H into orbits under G and select a representative

3. Determine the little group for each representative

4. Find the small (allowed) irreps of the little group

5. Construct the irreps of G by induction from the the small (allowed) irreps of the little group

Step I. TRANSLATION SUBGROUP IRREPS T_G G

Born-von Karman boundary condition $(\mathbf{I}, \mathbf{t}_i)^{N_i} = (\mathbf{I}, \mathbf{N}_i) = (\mathbf{I}, \mathbf{o})$

$$(\mathbf{I}, \mathbf{N} \mathbf{t}); \quad \mathbf{N} \mathbf{t} = (N_1 t_1, N_2 t_2, N_3 t_3)$$

Irreps of Translation group

Finite Abelian groups { cyclic groups direct product of cyclic groups $\begin{array}{ccc} A & B \\ \{a, a^2, ..., a^s\} & \{b, b^2, ..., b^r\} & A \otimes B \\ & \{(a^m, b^n)\} \atop{n=1, ..., s}; \\ & & \\ \end{array}$ $D^{p}(a^{m}) \otimes D^{q}(b^{n})$ $D_{P}(a^{m}), p=0, I, ..., s-1 \quad D_{q}(b^{n}), q=0, I, ..., r-1$ $exp(-i2\pi m)\frac{p}{s} \quad exp(-i2\pi n)\frac{q}{r}$ $\mathsf{D}_{\mathsf{P},\mathsf{q}}(\mathbf{a}^{\mathsf{m}},\mathbf{b}^{\mathsf{n}}) = exp(-i2\pi m)\frac{p}{s} exp(-i2\pi n)\frac{q}{r}$ p=0,1,...,s-1 q=0,1,...,r-1

Translational subgroup:T

number of irreps:

 $p=0,1,...,N_1-1$ $q=0,1,...,N_2-1$ $r=0,1,...,N_3-1$

dim $D^{p,q,r}(t_1^k, t_2^l, t_3^m) = l$

IRREPS of Translational group
reciprocal space
$$L: a_{1}, a_{2}, a_{3} \xrightarrow{a_{i}, a^{*}_{j} = 2\pi \delta_{ij}} L^{*}: a^{*}_{1}, a^{*}_{2}, a^{*}_{3}$$

$$K = (h_{1}, h_{2}, h_{3}) \begin{vmatrix} a^{*}_{1} \\ a^{*}_{2} \\ a^{*}_{3} \end{vmatrix}$$

$$\Gamma^{(q_{1} q_{2} q_{3})}[(\mathbf{I}, \mathbf{t})] = e^{-2\pi i (q_{1} \frac{t_{1}}{N_{1}} + q_{2} \frac{t_{2}}{N_{2}} + q_{3} \frac{t_{3}}{N_{3}})}$$

$$k_{i} = q_{i}/N_{i}$$

$$\Gamma^{(q_{1} q_{2} q_{3})}[(\mathbf{I}, \mathbf{t})] = \Gamma^{k}[(\mathbf{I}, \mathbf{t})] = \exp{-i(\mathbf{k} \mathbf{t})}$$

ITA conventions:

$$(\mathbf{k} \ \mathbf{t}) = (\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) \begin{vmatrix} \mathbf{a}^* \\ \mathbf{$$

IRREPS of Translational group

unit cell of reciprocal space (fundamental region)

k'=k+K, $K=h_1a_1*+h_2a_2*+h_3a_3*$, $K \in L^*$

$$\Gamma^{k'}=\exp(-i(\mathbf{k}+\mathbf{K})\mathbf{t})=\exp(-i(\mathbf{k}\cdot\mathbf{t})=\Gamma^{k}$$

first Brillouin zone (Wigner-Seitz cell)

 $|\mathbf{k}| \leq |\mathbf{K} \cdot \mathbf{k}|, \forall \mathbf{K} \in L^*$

crystallographic unit cell

0≤|**k**|<|

first Brillouin zone (Wigner-Seitz cell)

 $|\mathbf{k}| \leq |\mathbf{K} \cdot \mathbf{k}|, \forall \mathbf{K} \in L^*$

Wigner-Seitz construction for bcc lattice

Classification of the irreps of the Translation subgroup.

orbits of irreps of T (under the action of G)

$$\begin{split} &\Gamma^{k'}(\mathbf{I}, \mathbf{t}) = \Gamma^{k} \left((\mathcal{W}, w)^{-1}(\mathbf{I}, \mathbf{t})(\mathcal{W}, w) \right), (\mathbf{I}, \mathbf{t}) \in \mathsf{T}, \ (\mathcal{W}, w) \in \mathsf{G} \\ &\Gamma^{k'}(\mathbf{I}, \mathbf{t}) = \Gamma^{k} \left(\mathbf{I}, \mathcal{W}^{-1} \mathbf{t} \right) = \exp^{-i}(\mathbf{k} . (\mathcal{W}^{-1} \mathbf{t})) = \exp^{-i}((\mathbf{k} \mathcal{W}^{-1}) . \mathbf{t}) \\ &\Gamma^{k'} \sim \Gamma^{k'} \mathbf{k'} = \mathbf{k} \mathcal{W} + \mathbf{k'} \end{split}$$

$$O(\Gamma^{k}) = \{\Gamma^{k}, \Gamma^{k'}, \dots, |\mathbf{k}' = \mathbf{k} W + \mathbf{K}, W \in \overline{G}\}$$

little co-group of **k**: G^k

special and general

 $\overline{G}^k = \{I\} \quad \overline{G}^k > \{I\}$

Orbits of irreps of the Translation subgroup. orbit of k $O(\Gamma^{k})=\{\Gamma^{k},\Gamma^{k'},...,|\mathbf{k}'=\mathbf{k}\cdot \mathbf{W}+\mathbf{K},\mathbf{W}\in G\}$ star of k: k* $\overline{G}^{k} < \overline{G}$ $\overline{G}^{k} = \overline{G}^{k}+W_{2}\cdot\overline{G}^{k}+...+W_{m}\cdot\overline{G}^{k}$

representation domain

exactly one **k**-vector from each star (one irrep from each orbit of irreps of T)

?

Little-group irreps (Allowed irreps of the little group)

Step 4. Allowed irreps of G^k

- 1. ${\bf k}$ is a vector of the interior of the BZ OR
- 2. $\mathcal{G}^{\mathbf{k}}$ is a symmorphic space group.

allowed irreps
$$\mathbf{D}^{\mathbf{k},i}$$
:
 $\mathbf{D}^{\mathbf{k},i}(\mathbf{W},\mathbf{w}) = \exp(-(i\mathbf{k}\mathbf{w})\overline{\mathbf{D}}^{\mathbf{k},i}(\mathbf{W})$
Here $\overline{\mathbf{D}}^{\mathbf{k},i}$ is an irrep of $\overline{\mathcal{G}}^{\mathbf{k}}$.

Little-group irreps (Allowed irreps of the little group)

- k is a vector on the surface of the BZ AND
- 2. $\mathcal{G}^{\mathbf{k}}$ is a nonsymmorphic space group.

allowed irreps $D^{k,i}$:

$$\mathbf{D}^{\mathbf{k},i}(\widetilde{\mathbf{W}}_i,\widetilde{\mathbf{w}}_i) = \exp(-(i\mathbf{k}\mathbf{w}_i)\overline{\mathbf{D}}^{\mathbf{k},i}(\widetilde{\mathbf{W}}_i))$$

$$\overline{\mathbf{D}}^{k,i}$$
projective (ray) irreps of $\,\overline{\mathcal{G}}^k$

Construction of the irreps of the space group G by induction from the the small (allowed) irreps of the little group G^{k}

(a) Decomposition of $\mathcal G$ relative to $\mathcal G^{\mathbf{k}}$

 $\mathcal{G} = \mathcal{G}^{\mathbf{k}} \cup (\overline{W}_2, \overline{w}_2) \, \mathcal{G}^{\mathbf{k}} \cup \dots \, (\overline{W}_s, \overline{w}_s) \, \mathcal{G}^{\mathbf{k}}$

b) Construction of the induction matrix

The elements of the little group \mathcal{G}^{k} and the coset representatives $\{q_{1},q_{2},...,q_{s}\}$ of G relative to \mathcal{G}^{k} are necessary for the construction of the induction matrix

$$\mathsf{M}(\mathsf{W},\mathsf{w})_{ij} = \begin{cases} \mathsf{I} \text{ if } \mathsf{q}_i^{-\mathsf{I}}(\mathsf{W},\mathsf{w})\mathsf{q}_j \in \mathcal{G}^{\mathsf{k}} \\ \mathsf{0} \text{ if } \mathsf{q}_i^{-\mathsf{I}}(\mathsf{W},\mathsf{w})\mathsf{q}_j \notin \mathcal{G}^{\mathsf{k}} \end{cases}$$

0		0	0
0	0		0
I	0	0	0
0	0	0	Ι

dim $M=s \times s$

monomial matrix

C)	Matri	ces of th	ie irreps	$\mathbf{D}^{\star \mathbf{k},m}$	of \mathcal{G} :				
	$\mathbf{D}^{\star \mathbf{k},n}$	$n(\boldsymbol{W}_l, \boldsymbol{v}_l)$	$(v_l)_{i\mu,j u}$:	= M(W)	$(l_l, \boldsymbol{w}_l)_{ij}$	$D^{\mathbf{k},m}(\widetilde{oldsymbol{W}}_p,\widetilde{oldsymbol{w}})$	$\widetilde{\boldsymbol{w}}_p)_{\mu u},$		
where $(\widetilde{\boldsymbol{W}}_p, \ \widetilde{\boldsymbol{w}}_p) = q_i^{-1} (\boldsymbol{W}_l, \boldsymbol{w}_l) q_j.$									
		0		0	0				
		0	0	· · ·	0		1		
			0	0	0				
		0	0	0					

All irreps of the space group \mathcal{G} for a given **k** vector are obtained considering all allowed irreps of the little group $\mathcal{G}^{\mathbf{k}}$ $\mathbf{D}^{\mathbf{k},m}$ obtained in step 3. Consider the k-vectors $\Gamma(000)$ and X (0½0) of the group *P4mm*

- (i) Determine the little groups, the k-vector stars,
 the number and the dimensions of the little-group irreps,
 the number and the dimensions of the corresponding irreps
 of the group *P4mm*
- (ii) Calculate a set of coset representatives of the decomposition of the group *P4mm* with respect to the little group of the k-vectors Γ(000) and X, and construct the corresponding full space group irreps of *P4mm*

International Tables for Crystallography (2006). Vol. A, Space group 99, pp. 382–383.

Origin on 4mm

Asymmetric unit $0 \le x \le \frac{1}{2}$; $0 \le y \le \frac{1}{2}$; $0 \le z \le 1$; $x \le y$

Symmetry operations

(1) 1	(2) 2 0,0,z	(3) 4^+ 0,0,z	(4) 4^{-} 0, 0, z
(5) $m x, 0, z$	(6) $m = 0, y, z$	(7) $m x, \bar{x}, z$	(8) $m = x, x, z$

General position

(1) x, y, z	(2) \bar{x}, \bar{y}, z	(3) \bar{y}, x, z	(4) y, \bar{x}, z
(5) x, \bar{y}, z	(6) \bar{x}, y, z	(7) \bar{y}, \bar{x}, z	(8) y, x, z

Consider the k-vectors $\Gamma(000)$ and X (0½0) of the group *P4bm*

- (i) Determine the little groups, the k-vector stars,
 the number and the dimensions of the little-group irreps,
 the number and the dimensions of the corresponding irreps
 of the group *P4bm*
- (ii) Calculate a set of coset representatives of the decomposition of the group *P4bm* with respect to the little group of the k-vectors Γ(000) and X, and construct the corresponding full space group irreps of *P4bm*

Origin on 41g

Asymmetric unit $0 \le x \le \frac{1}{2}; \quad 0 \le y \le \frac{1}{2}; \quad 0 \le z \le 1; \quad y \le \frac{1}{2} - x$

Symmetry operations

(1) 1 (2) 2 0,0,z (3) 4^+ 0,0,z (4) 4^- 0,0,z (5) $a x, \frac{1}{4}, z$ (6) $b \frac{1}{4}, y, z$ (7) $m x + \frac{1}{2}, \overline{x}, z$ (8) $g(\frac{1}{2}, \frac{1}{2}, 0) x, x, z$

General position

(1) x, y, z(2) \bar{x}, \bar{y}, z (3) \bar{y}, x, z (4) y, \bar{x}, z (5) $x + \frac{1}{2}, \bar{y} + \frac{1}{2}, z$ (6) $\bar{x} + \frac{1}{2}, y + \frac{1}{2}, z$ (7) $\bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, z$ (8) $y + \frac{1}{2}, x + \frac{1}{2}, z$

5.5 Crystal class 4mm

5.5.1 Arithmetic crystal class 4mmP

Fig. 5.5.1.1 Diagram for arithmetic crystal class 4mmP $P4mm - C_{4v}^1$ (99) to $P4_2bc - C_{4v}^8$ (106) Reciprocal-space group $(P4mm)^*$, No. 99 see Tab. 5.5.1.1

Consider a general **k**-vector of a space group G. Determine its little co-group, the **k**-vector star. How many arms has its star? How many full-group irreps will be induced and of what dimension? Write down the matrix of the fullgroup irrep of a general **k**-vector of a translation.

REPRESENTATIONS OF CRYSTALLOGRAPHIC GROUPS

DATABASES AND TOOLS OF THE BILBAO CRYSTALLOGRAPHIC SERVER

REPRESENTATIONS OF CRYSTALLOGRAPHIC GROUPS

bilbao crystallographic server

		Contact us	About us	Publications	How to cite the serve				
				Space-group symmetry					
		Repres	entations and App	lications					
lographic	REPRES	Space Grou	Space Groups Representations						
server	Representatio	ons PG Irreducible	representations of the c	rystallographic Point Groups					
FOUND Outside Col	Representatio	ons SG Irreducible	representations of the S	pace Groups					
ECM31-Oviedo Sa	Get_irreps	Irreps and o	order parameters in a sp	ace group-subgroup phase tra	ansition				
Crystallography online: wor use and applications of the s of the Bilbao Crystallogra	Get_mirreps	Irreps and subgroup p	order parameters in a pa hase transition	aramagnetic space group- mag	gnetic				
20.24 August 201	DIRPRO	Direct Prod	lucts of Space Group Irre	educible Representations					
20-21 August 20	CORREL	Correlation group-subg	s relations between the proup pair	irreducible representations of a	a				
New Article in Nature	POINT	Point Group	p Tables						
07/2017: Bradlyn et al. "Topolo obemisted Nature (2017) 547	SITESYM	Site-symme	etry induced representat	ions of Space Groups	S				
criemistry wature (2017). 547,	COMPATIBILI	TY Compatibili	ty relations between the	irreducible representations of	а				
 New program: BANDRE 04/2017: Band representations 	RELATIONS	space grou	р						
Band representations of Doubl	MECHANICAI	REP. Decomposi	ition of the mechanical re	epresentation into irreps					
 New section: Double po groups 	MAGNETIC R	EP. 🛆 Decomposi	ition of the magnetic rep	resentation into irreps					
 New program: DGI 04/2017: General positik Space Groups New program: 	BANDREP	Band repre Space Grou	sentations and Element	ary Band representations of D	ouble				

DEDDESENTATIONS DDC

Bilbao Crystallographic Server

Databases of Representations

Representations of space and point groups

wave-vector data

Brillouin zones representation domains parameter ranges POINT

character tables multiplication tables symmetrized products

Retrieval tools

Database of Representations of Point Groups

Bilbao Crystallographic Server

POINT

Point Group Tables of C_{6v}(6mm)

Character Table									
C _{6v} (6mm)	#	1	2	3	6	m _d	m _v	functions	
Mult.	-	1	1	2	2	3	3		
A ₁	Г ₁	1	1	1	1	1	1	z,x ² +y ² ,z ²	
A ₂	۲ ₂	1	1	1	1	-1	-1	Jz	
B ₁	Г ₃	1	-1	1	-1	1	-1		
B ₂	Γ ₄	1	-1	1	-1	-1	1		
E2	Г ₆	2	2	-1	-1	0	0	(x ² -y ² ,xy)	
E ₁	Г ₅	2	-2	-1	1	0	0	$(x,y),(xz,yz),(J_x,J_y)$	

[List of irreducible representations in matrix form]

character tables matrix representations basis functions

group-subgroup relations

Point Subgroups

Subgroup	Order	Index
6mm	12	1
6	6	2
3m	6	2
3	3	4
mm2	4	3
2	2	6
m	2	6
1	1	12

The Rotation Group D(L)

L	2L+1	A ₁	A ₂	В ₁	B ₂	E_2	E ₁
0	1	1	•	•	•	•	•
1	3	1	•	•	•	•	1
2	5	1	•	•	•	1	1
3	7	1	•	1	1	1	1
4	9	1	•	1	1	2	1
5	11	1	•	1	1	2	2
6	13	2	1	1	1	2	2
7	15	2	1	1	1	2	3
8	17	2	1	1	1	3	3
9	19	2	1	2	2	3	3
10	21	2	1	2	2	4	3

Database of Representations of Point Groups

Bilbao Crystallographic Server

REPRESENTATIONS PG

Irreducible representations of the Point Group 4 (No. 9)

Table of characters

(1)	(2)	(3)	C ₁	C ₂	C ₃	C
GM ₁	Α	GM1	1	1	1	
GM ₂	в	GM ₂	1	1	-1	-
GM ₃	² E	GM ₃	1	-1	i	
GM ₄	¹ E	GM4	1	-1	-i	

conjugacy classes
C ₁ : 1
C ₂ : 2 ₀₀₁
C ₃ : 4 ⁺ 001
C ₄ : 4⁻ ₀₀₁

character tables matrix representations 'reality' of irreps

pairs of conjugated irreps

 GM_3+GM_4

Matrices of the representations of the group

ter the label of the irrep indicates the "reality" of the irrep: (1) for real, (-1) for pseudoreal and (0

N	Matrix presentation	Seitz Symbol 📀	GM ₁ (1)	GM2(1)	GM3(0)	GM4(0)
1	$\left(\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right)$	1	1	1	1	1
2	$\left(\begin{array}{rrrr} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right)$	2 ₀₀₁	1	1	-1	-1
3	$\left(\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$	4 ⁺ 001	1	-1	i	÷
4	$\left(\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$	4 [°] CO1	1	-1	-i	i

Brillouin Zone Database Crystallographic Approach

Reciprocal space groups Brillouin zones **Representation domain** Wave-vector symmetry

k_1

The k-vector Types of Group 22 [F222]

ITA description

Coordinates

0,0,0

0,1/2,1/2

1/2,0,0

0.0.1/2

0,1/2,0

1/2,0,1/2

x,0,0 : 0 < x <= sm_o

 $x, 1/2, 1/2 : 0 \le x \le u_0$

 $x_{0}, 0: 1/2 - u_0 = sm_0 < x < 1/2$

 $x_{0}, 0: 0 \le x \le 1/2$

x,0,1/2 : 0 < x <= a₀

 $x, 1/2, 0: 0 \le x \le c_n$

\mathbf{Y}_{2}		k-vector description			Wyckoff Position		
	c	DML*	Commissional ITA			•	
G_1 Λ_0	Label	Label Primitive				A	
	GM	0,0,0	0,0,0	а	2	222	
C_0 ; Λ	т	1,1/2,1/2	0,1,1	ь	2	222	
	T~T ₂			b	2	222	
	Z	1/2,1/2,0	0,0,1	C	2	222	
Q_0 \hat{R}^{-0}	Y	1/2,0,1/2	0,1,0	d	2	222	
	Y~Y ₂			d	2	222	
Γ Λ Q	SM	0,u,u ex	2u,0,0	е	4	2	
C Y k	, U	1,1/2+u,1/2+u ex	20,1,1	е	4	2	
K_{x}	U~SM1=[SM0 T2]			е	4	2	
	SM+SM ₁ =[GM T ₂]			e	4	2	
	А	1/2,1/2+u,u ex	20,0,1	t	4	2	
	с	1/2,u,1/2+u ex	2u,1,0	1	4	2	
$c^{-2} > a^{-2} + c^{-2}$	b -2						

Brillouin zone Database

The k-vector Types of Group 22 [F222]

Brillouin zone

(Diagram for arithmetic crystal class 222F)

99

Problem: Representations of space groups REPRES

Space Group Number: Please, enter the sequential number of group as given in International Tables for Crystallography, Vol. A or choose it

• You can introduce the k-vector choosing one from the table:

	Chasses	CDI	Wyckoff position		
Option	Choose one	k-vector label	Coordinates	Multiplicity	Letter
Option	0	LD	0,0,u	1	а
	0	V	1/2,1/2,u	1	b
	0	w	0,1/2,u	2	c
	0	С	u,u,v	4	d
k-vector	0	В	0,u,v	4	е
data	0	F	u,1/2,v	4	f
	0	GP	u,v,w	8	g
	-				

• Or you can introduce the **k**-vector coordinates, relative to the basis you have chosen, as any three decimal numbers or fractions:

	k vector data							
	Reciprocal basis	primitive (CDML) ‡						
Option 2	Coordinates	k _x k _y k _z						

k-vector data: option 1

Change and	CDM	Wyckoff position			
Choose one	k-vector label	Coordinates	Multiplicity	Letter	
0	LD	0,0,u	1	а	
0	V	1/2,1/2,u	1	b	
0	W	0,1/2,u	2	с	
0	С	u,u,v	4	d	
0	В	0,u,v	4	e	
0	F	u,1/2,v	4	f	
0	GP	u,v,w	8	g	

Choose one	Label	Coordinates (CDML)
0	GM	0,0,0
0	Z	0,0,1/2
0	LD	0,0,u
•	LE	0,0,-u

continue

INPUT Options

- Optional: If you wish to see the full-group irreps for the generator check this
- Optional: If you wish to change conventional (ITA) basis check this
 Image: Second Second

non- conventional	Rotation	1 0 0 0 1 0 0 0 1)) 1
setting	Origin shift	0 0	0

Optional: If you wish to see the irreps for arbitrary space group element check this

		Rotational part				
arbitrary element	1 0 0	0 1 0	0 0 1		0 0 0	

Space-group data

REPRES: output

Spac Latt	ice	grou e ty	1p G99, 7pe : tP	numb	er	99	G	=<	()	/1.w	/ı) . ,	(W	k .V	(\mathbf{v}_k)	
Numb	er	of	generator	cs :	4			N	•	- /	.,, ,		,	,/	
1 0 0	0 1 0	1 0 0 1	0 0 0	-1 0 0	0 -1 0	2 0 0 1	0 0 0	0 1 0	-1 0 0	3 0 0 1	0 0 0	1 0 0	0 -1 0	4 0 0 1	0 0 0
Numb	er	of	elements	: 8		G=T	-+(W	/ ₂ ,v	v 2)	T+.	+(V	Vn,₩	∕ n)	т	
1 0 0	0 1 0	1 0 0 1	0 0 0	-1 0 0	0 -1 0	2 0 0 1	0 0 0	0 1 0	-1 0 0	3 0 0 1	0 0 0	0 -1 0	1 0 0	4 0 0 1	0 0 0
1 0 0	0 -1 0	5 0 0 1	0 0 0	-1 0 0	0 1 0	6 0 0 1	0 0 0	0 -1 0	-1 0 0	7 0 0 1	0 0 0	0 1 0	1 0 0	8 0 0 1	0 0 0

k-vector and its star *k

K-vector X :
 in primitive basis : 0.000 0.500 0.000
 in standard dual basis : 0.000 0.500 0.000
The star of the k-vector has the following 2 arms :
 0.000 0.500 0.000
 0.500 0.000

Little group $G^{\times}=\{(W_i,w_i)|W_ik=k+K,(W_i,w_i)\in G\}$

The little group of the k-vector has the following 4 Little group G[×] elements as translation coset representatives :

 1
 2
 3
 4

 1
 0
 0
 -1
 0
 0
 1
 0
 0
 -1
 0
 0

 0
 1
 0
 0
 -1
 0
 0
 -1
 0
 0
 0
 -1
 0
 0

 0
 1
 0
 0
 -1
 0
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 0
 1
 < 0 0 0 The little group of the k-vector has 4 allowed irreps. The matrices, corresponding to all of the little group elements are : Irrep (X)(1), dimension 1 (1.000, 0.0) (1.000, 0.0) (1.000, 0.0) (1.000, 0.0) (1.000, 0.0) (1.000, 0.0) irreps DX,I Irrep (X)(2) , dimension 1

Coset decomposition REPRES: output The space group has the following 2 elements as coset representatives relative to the little group : $G=G^{X}+q_2G^{X}+...+q_kG^{X}$ 0 **Full-group irreps: Characters** $\Sigma D^{*\times,i}(W,w)_{ii}$ General position characters: Gen Pos: 1 3 (2.000, 0.0) (2.000, 0.0) (0.000, 0.0)X1 X2 (2.000, 0.0) (2.000, 0.0) (0.000, 0.0) X4 (2.000, 0.0) (2.000, 180.0) (0.000, 0.0)(2.000, 0.0) (2.000, 180.0) (0.000, 0.0)X3

Physically-irreducible irreps

Physically-irreducible representations: *X1 *X2 *X4 *X3 D*X,i ① (D*X,i)*

(a) Obtain the irreps for the space group P4mm for the **k**-vectors $\Gamma(000)$ and X(01/20) using the program REPRES. Compare the results with the solutions of Problem 4.1.

(b) Use the program REPRES for the derivation of the irreps of a general **k**-vector of the group *P4mm* and compare the results with the results of Problem 6.3.

Obtain the irreps for the space group P4bm for the **k**-vectors $\Gamma(000)$ and X(01/20) using the program REPRES. Compare the results with the solutions of Problem 4.2.

BILBAO CRYSTALLOGRAPHIC SERVER

Problem: Representations of space groups REPRESENTATIONS SG

Irreducible representations of the Space Groups

Representations: Get the irreducible representations of the Space Groups	Enter the label of the space group:	choose it
Representations provides a set of irreducible representations (or physically irreducible representations in a real basis) of a given Space Group and a wave vector. Reference. For more information about this program see the following article:	Irreducible representations Physically irreducible representations given in a real basis	Submit Submit
Elcoro <i>et al.</i> "Double crystallographic groups and their representations on the Bilbao Crystallographic Server" <i>J. of Appl. Cryst.</i> (2017). 50 , 1457-1477.		

doi:10.1107/S1600576717011712

If you are using this program in the preparation of an article, please cite the above reference.

Irreducible representations of the Space Groups

Representations: Get the irreducible representations of the Space Groups

Representations provides a set of irreducible representations of a given Space Group and a wave vector.

k-vector data

List of non-equivalent k-vectors of the Space Group P4mm (N. 99)

The components are referred to the conventional basis

Choose one	k-vector label	Components in the conventional basis
0	W ,X,R	(0,1/2,w)
0	LD,Z,GM	(0,0,w)
\bigcirc	V ,M,A	(1/2,1/2,w)
0	C,SM,S	(u,u,w)
0	B,U,DT	(0,v,w)
\bigcirc	F,Y,T	(u,1/2,w)
\bigcirc	GP,E,D	(u,v,w)

Submit

List of non-equivalent k-vectors of the Space Group P4mm (No. 99)

The components are referred to the conventional basis

Choose one	k-vector label	Components in the conventional basis
0	W	(0,1/2,w)
0	x	(0,1/2,0)
0	R	(0,1/2,1/2)

DX,I

Irreducible representations of the Space Group P4mm (No. 99)

and wave vector $k_1 = (0, 1/2, 0)$.

The matrices of the representations (the whole representation and the representation of the little group) with dimension smaller than 5 are given explicitly. When the i representation is larger than 5, only the non-zero elements are given using the following notation: (i;j)=x means that the (i,j) element of the matrix is x.

Seitz Symbol 🔞 X_1 Matrix presentation X_2 X₃ X_4 $\begin{array}{cccc} 0 & 0 & t_1 \\ 1 & 0 & t_2 \\ 0 & 1 & t_3 \end{array}$ 1 0 0 Little $\{1|t_1,t_2,t_3\}$ e^{iπt}2 e^{iπt}2 e^{iπt}2 e^{iπt}2 Allowed group G^X (small) 0 0 -1 0 0 1 -1 0 0 $\left(\begin{array}{c}0\\0\\0\end{array}\right)$ $\{2_{001}|0,0,0\}$ -1 1 1 -1 irreps 1 0 0 0 -1 0 0 0 1 $\left(\begin{array}{c} 0\\ 0\\ 0\\ \end{array}\right)$ {m₀₁₀|0,0,0} -1 -1 1 1 0 0 1 0 0 1 -1 0 0 $\left(\begin{array}{c}0\\0\\0\end{array}\right)$ {m₁₀₀|0,0,0} -1 1 1 -1

Matrices of the representations of the little group

Vectors of the star

 $k_1=(0,1/2,0), k_2=(1/2,0,0)$

k-vector and its star *k

REPRESENTATIONS SG

Matrices of the representations of the group

The number in parentheses after the label of the irrep indicates the "reality" of the irrep: (1) for real, (-1) for pseudoreal and (0) for complex representations.

	Matri	x preser	ntation		Seitz Symbol 📀	*X ₁ (1)	*X ₂ (1)	*X ₃ (1)	*X ₄ (1)
(1 0 0	0 1 0	0 0 1	$\begin{pmatrix} t_1 \\ t_2 \\ t_3 \end{pmatrix}$	{1 t ₁ ,t ₂ ,t ₃ }	$\begin{pmatrix} e^{i\pi t_2} & 0 \\ 0 & e^{i\pi t_1} \end{pmatrix}$	$\begin{pmatrix} e^{i\pi t_2} & 0 \\ 0 & e^{i\pi t_1} \end{pmatrix}$	$\begin{pmatrix} e^{int_2} & 0 \\ 0 & e^{int_1} \end{pmatrix}$	$\begin{pmatrix} e^{i\pi t_2} & 0 \\ 0 & e^{i\pi t_1} \end{pmatrix}$
(-1 0 0 -1 0 0	0 0 1	° °)		{2 ₀₀₁ 0,0,0}	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$ \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right) $		$ \left(\begin{array}{cc} -1 & 0\\ 0 & -1 \end{array}\right) $
(0 -1 1 0 0 0	0 0 1	° ° °		{4 ⁺ 001 0,0,0}	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	Ill-group i		$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$
(0 1 -1 0 0 0	0 0 1	° ° °	1	Aatrice	s of the	$ \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right) $	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$
(1 0 0 -1 0 0	0 0 1	° °		{m ₀₁₀ 0,0,0}	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right)$	$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
(-1 0 0 1 0 0	0 0 1	°)		{m ₁₀₀ 0,0,0}	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right)$	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

SUBDUCED SPACE-GROUP REPRESENTATIONS

Problem: SUBDUCED space-group representations

 $\begin{array}{l} D(G): irrep of G \\ \{D(e), D(g_2), D(g_3), ..., D(g_i), ..., D(g_n)\} \\ \downarrow \\ \{D(e), D(h_2), D(h_3), ..., D(h_m)\} \\ \\ \{D(G)\downarrow H\}: subduced rep of H < G \end{array}$

Problem: Compatibility relations of small (allowed) representations of little groups of a space group G

Subduction of little group irreps

in the limit $\delta \rightarrow 0$ $D^{k,i}(G^k) \downarrow G^{k'} \sim \bigoplus m_j D^{k'j}(G^{k'})$

Correlations between characters

$$\eta^{k,i}(g^{k'}) = \sum_{j} m_j \eta_j^{k'}(g^{k'}) \qquad g^{k'} \in \mathbf{G}^{k'}$$

BILBAO CRYSTALLOGRAPHIC SERVER

EXAMPLE P4/mmm

k-vecto	r description					
(CDML ¹	Wyckoff Position				
Label	Coefficients	Wyckon r oskion				
GM	0,0,0	1	а	4/mmm		
Z	0,0,1/2	1	b	4/mmm		
м	1/2,1/2,0	1	С	4/mmm		
А	1/2,1/2,1/2	1	d	4/mmm		
R	0,1/2,1/2	2	е	mmm.		
х	0,1/2,0	2	f	mmm.		
LD	0,0,u	2	g	4mm		
V	1/2,1/2,u	2	h	4mm		
w	0,1/2,u	4	i	2mm.		
SM	u,u,0	4	j	m.2m		
s	u,u,1/2	4	k	m.2m		
DT	0,u,0	4	I	m2m.		
U	0,u,1/2	4	m	m2m.		
Y	u,1/2,0	4	n	m2m.		
Т	u,1/2,1/2	4	o	m2m.		
D	u,v,0	8	р	m		
E	u,v,1/2	8	q	m		
С	u,u,v	8	r	m		
В	0,u,v	8	s	.m.		
F	u,1/2,v	8	t	.m.		
GP	u,v,w	16	u	1		

	Z U R
	T
Λ	
Г	<u> </u>
k _x	$\Sigma \qquad M \qquad Y \qquad \gamma$
	-==
© bilbao crystallographic server	$Z_1+ \rightarrow U_1$
$Z_1+ \Rightarrow LD_1$	Z_1- ⇒ U_2
$Z_1 \rightarrow LD_4$	Z_2+ ⇒ U_1
$Z_2+ \Rightarrow LD_2$	Z_2- → U_2
Z_2- ⇒ LD_3	Z_3+ ⇒ U_4
$Z_3+ \Rightarrow LD_4$	- Z_3- ⇒ U_3
Z 3- ⇒ LD 1	Z_4+ → U_4
	$Z_4 \rightarrow U_3$
$Z_4+ \Rightarrow LD_3$	$Z_5+ \Rightarrow U_2+U_3$
$Z_4 \rightarrow LD_2$	$Z_5- \Rightarrow U_1 + U_4$

EXAMPLE Electronic energy bands of Ge, Fd-3m (227)

k-vector description		ITA description	
k-vector label	Converting of hearing	Wyckoff position	
	Conventional basis	Multiplicity	Letter
GM	0,0,0	2	a
x	0,1,0	6	b
L	1/2,1/2,1/2	8	c
w	1/2,1,0	12	d
DT	0,u,0	12	e
LD	u,u,u	16	f
v	u,1,0	24	g
SM (S)	u,u,0	24	h
Q	1/2,1-u,u	48	i
A (B)	v,u,0	48	j
G (J)	v,v,-u	48	k
GP	u,v,w	96	I

Г X Δ

Compatibility Relations GM₁⁺(1)→DT₁(1) $GM_1^{-}(1) \rightarrow DT_4(1)$ $GM_2^+(1) \rightarrow DT_2(1)$ $GM_2^{-}(1) \rightarrow DT_3(1)$ GM₃⁺(2)→DT₁(1) ⊕ DT₂(1) $GM_3^{-}(2) \rightarrow DT_3(1) \oplus DT_4(1)$ GM₄⁺(3)→DT₄(1) ⊕ DT₅(2) $GM_4^{-}(3) \rightarrow DT_1(1) \oplus DT_5(2)$ GM₅⁺(3)→DT₃(1) ⊕ DT₅(2) $GM_5^{-}(3) \rightarrow DT_2(1) \oplus DT_5(2)$ $\overline{\text{GM}}_6(2) \rightarrow \overline{\text{DT}}_7(2)$ $\overline{\text{GM}}_7(2) \rightarrow \overline{\text{DT}}_6(2)$ $\overline{\text{GM}}_8(2) \rightarrow \overline{\text{DT}}_7(2)$ $\overline{\text{GM}}_9(2) \rightarrow \overline{\text{DT}}_6(2)$ $\overline{\text{GM}}_{10}(4) \rightarrow \overline{\text{DT}}_6(2) \oplus \overline{\text{DT}}_7(2)$ $\overline{\text{GM}}_{11}(4) \rightarrow \overline{\text{DT}}_6(2) \oplus \overline{\text{DT}}_7(2)$ $X_1(2) \rightarrow DT_1(1) \oplus DT_3(1)$ $X_2(2) \rightarrow DT_2(1) \oplus DT_4(1)$ $X_3(2) \rightarrow DT_5(2)$ $X_4(2) \rightarrow DT_5(2)$ $\overline{X}_{5}(4) \rightarrow \overline{DT}_{6}(2) \oplus \overline{DT}_{7}(2)$

(eV

Problem: Correlations between representations CORREL of space groups

 $\begin{array}{l} D(G): irrep of G \\ \{D(e), D(g_2), D(g_3), ..., D(g_i), ..., D(g_n)\} \\ \downarrow \\ \{D(e), D(h_2), D(h_3), ..., D(h_m)\} \\ \\ \{D(G)\downarrow H\}: subduced rep of H < G \end{array}$

Correlations between representations of space groups

Subduction of space group irreps

$$D^{*k_G,i}(G) H \sim \bigoplus m_j D^{*k_H,j}(H)$$

Step I. Correlations between wave vectors

$$*\mathbf{k}_{\mathsf{G}} \downarrow \mathsf{H} = \sum_{\mathbf{k}_{\mathsf{H}}} (\mathbf{k}_{\mathsf{G}}) \mathbf{k}_{\mathsf{H}}$$

Step 2. Correlations between characters

$$\eta^{*k_{G,i}}(G) = \sum_{k_{H_i}} \frac{1}{k_{H_i}} \eta^{*k_{H_i}} \eta^{*k_{H_i}}$$

BILBAO CRYSTALLOGRAPHIC SERVER

CORREL: OUTPUT data

*k_G - vector data

```
K-vector X :
    in primitive basis : 0.000 0.500 0.000
    in dual basis : 0.000 0.500 0.000
The star *X has the following 3 arms :
    0.000 0.500 0.000
    0.500 0.000
    0.000 0.000
    0.000 0.000
```

```
*k-vector splitting
```

$$*k_{G} = *k_{H,I} + *k_{H,2} + ... + *k_{H,k}$$

Information about splitting

```
The star *X of the supergroup splits the following way *X --> 1 *S1 + 1 *S2
```

Star *S1 = *(0.000 0.500 0.000)

 $\text{Star} * \text{S2} = *(0.000 \ 0.000 \ 0.500)$

CORREL: OUTPUT data

Correlations between representations

$$\{D(G) \downarrow H\} \longrightarrow \bigoplus m_i D_i(H)$$

Subduction problem

Reduction : (*X)(1) = 1(*S1)(1) + 1(*S2)(1)Reduction : (*X)(2) = 1(*S1)(2) + 1(*S2)(2)Reduction : (*X)(3) = 1(*S1)(3) + 1(*S2)(2)Reduction : (*X)(4) = 1(*S1)(4) + 1(*S2)(1)Reduction : (*X)(5) = 1(*S1)(1) + 1(*S2)(3)