

Introduction to symmetry mode analysis:

J. Manuel Perez-Mato

Facultad de Ciencia y Tecnología Universidad del País Vasco, UPV-EHU BILBAO, SPAIN A detailed review with many examples:

"Mode crystallography of distorted structure", Acta Cryst. (2010). A66, 558-590 J.M. Perez-Mato, D. Orobengoa and M.I. Aroyo Acta Cryst. (2010). A66, 558–590 (open access)

	;R
lead articles	OnseMark
Acta Crystallographica Section A Foundations of Crystallography	Mode crystallography of distorted structures
ISSN 0108-7673	J. M. Perez-Mato,* D. Orobengoa and M. I. Aroyo
Received 22 February 2010 Accepted 3 May 2010	Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV-EHU), Apdo 644, 48080 Bilbao, Spain. Correspondence e-mail: jm.perez-mato@ehu.es

What is a mode decomposition?

Why symmetry-adapted modes?

to first-order, these modes only couple with modes of the same symmetry

MODES OF DIFFERENT SYMMETRY ARE UNCOUPLED TO FIRST ORDER

Symmetry of vibrational modes: irreducible representations (group theory)

irrep modes....

Modes in the statics of low-symmetry distorted phases:

The natural language to describe a symmetry break/phase transition (Landau Theory)

primary distortion mode – order parameter

Modes in the statics of solids:

Distorted Structure = High-symmetry Struct + "frozen" modes

distortion mode = Amplitude x polarization vector

We can compare the <u>amplitudes</u> of different frozen distortion modes:

 Q_1 and Q_2 have the same dimensions and their values can be compared

Modes in the statics of low-symmetry distorted phases:

Distorted Structure = High-symmetry Struct + "frozen" modes

distortion mode = Amplitude x polarization vector

AMPLIMODES calculates the amplitudes and polarization vectors of all distortion modes with different symmetries (irreps) frozen in a distorted structure.

Phase Transition / Symmetry break / Order Parameter

Collective irrep modes is the natural language to describe the structure of distorted phases:

Hierarchy of modes:

Von Neumann principle:

all modes compatible with the symmetry will be present in the total distortion

But not all with the same weight!:

primary mode(s): unstable

the origin of the distortion

secondary modes: induced by the presence of the primary one(s)

Hierarchy of modes

ZTF-FCT Zientzia eta Teknologia Fakultatea Facultad de Ciencia y Tecnología

Using AMPLIMODES

An introduction to the program:

"AMPLIMODES: symmetry-mode analysis on the Bilbao Crystallographic Server", J. Appl. Cryst. (2009). 42, 820-833 D. Orobengoa, C. Capillas, M. I. Aroyo and J. M. Perez-Mato

research papers	CrossMark
Journal of Applied Crystallography ISSN 0021-8898	AMPLIMODES: symmetry-mode analysis on the Bilbao Crystallographic Server
	Danel Orobengoa,* Cesar Capillas, Mois I. Aroyo and J. Manuel Perez-Mato
Received 16 April 2009 Accepted 16 July 2009	Departamento de Fisica de la Materia Condensada, Universidad del Pais Vasco, 48080 Bilbao, Spain. Correspondence e-mail: danel.orobengoa@ehu.es

A Tutorial is in the download material for this workshop and in the Bilbao Crystallographic server (not updated!, the most recent features not included...):

site address: www.cryst.ehu.es

Example of input of AMPLIMODES:

Amm2 phase of BaTiO₃

High symmetry structure Pm-3m 221 4.006 4.006 4.006 90 90 90 з Bа la 1 0.0 0.0 0 ті ıb 1 0.5 0.5 0.5 3C 0.5 0.0 0.5 0 1 Low symmetry structure Amm2 38 3.9828 5.6745 5.6916 90 90 90 4 4 parameters ва 1 2a 0.0 0.0 0.0 ті 2b 1 0.5 0.0 0.5170 0 1 2a 0.0 0.0 0.4890 0 2 4e0.5 0.2561 0.2343 Transformation matrix Transf. 0] 1][ľ 0 1 -1 1] [[0 0] 0][0 ſ 1 0 0]

Example of output of AMPLIMODES:

Reference structure:

Transformed high symmetry structure in the subgroup basis

038 4.00600 4	0 5.66	5339 5.66	5339 90.000000	90.000000 90.000	000
Ва	1	2a	0.000000	0.000000	0.000000
Ti	1	2b	0.500000	0.000000	0.500000
0	1	4e	0.500000	0.250000	0.250000
0	1 2	2a	0.000000	0.000000	0.500000

Atom pairings and distances

	Atom Mappings						
WP Atom		Atom	Coordinates in S ₁	Atom	Coordinates in S ₂		
2a	(0,0,z)	Ba1	(0,0,0)	Ba1	(0,0,0)		
2b	(1/2,0,z)	Ti1	(1/2,0,1/2)	Ti1	(1/2,0,0.51700)		
4e	(1/2,y,z)	01	(1/2,1/4,1/4)	02	(1/2,0.25610,0.23430)		
2a	(0,0,z)	01_2	(0,0,1/2)	01	(0,0,0.48900)		

			A	Atomic Distances			
	WP	Atom u _x		uy	uz	[d]	
2a	(0,0,z)	Ba1	0.0000	0.0000	0.0000	0.0000	
2b	(1/2,0,z)	Ti1	0.0000	0.0000	0.0170	0.0963	
4e	(1/2,y,z)	01	0.0000	0.0061	-0.0157	0.0954	
2a	(0,0,z)	01_2	0.0000	0.0000	-0.0110	0.0623	

NOTE: d_x , d_y and d_z are given in relative units. |d| is the absolute distance given in Å Maximum atomic displacement in the distortion, Δ : 0.0963 Å Total distortion amplitude: 0.1771 Å

After origin shift

Relative origin shift to eliminate a global displacement: (0.00000, 0.00000, -0.00508)

	Atom Mappings					
	WP Atom		Coordinates in S ₁	Atom	Coordinates in S ₂	
2a	(0,0,z)	Ba1	(0,0,0)	Ba1	(0,0,0.00508)	
2b	(1/2,0,z)	Ti1	(1/2,0,1/2)	Ti1	(1/2,0,0.52208)	
4e	(1/2,y,z)	01	(1/2,1/4,1/4)	02	(1/2,0.25610,0.23938)	
2a	(0,0,z)	01_2	(0,0,1/2)	01	(0,0,0.49408)	

WP			4	Atomic Distances			
		Atom u _x	u _x	u _y	uz	d	
2a	(0,0,z)	Ba1	0.0000	0.0000	0.0051	0.0288	
2b	(1/2,0,z)	Ti1	0.0000	0.0000	0.0221	0.1251	
4e	(1/2,y,z)	01	0.0000	0.0061	-0.0106	0.0694	
2a	(0,0,z)	01_2	0.0000	0.0000	-0.0059	0.0335	

NOTE: d_x , d_y and d_z are given in relative units. |d| is the absolute distance given in Å Maximum atomic displacement in the distortion, Δ : 0.1251 Å Total distortion amplitude: 0.1650 Å

Symmetry Modes Summary

Atoms	WP	Modes	
01	3c	GM4-(2) GM5-(1)	
Ti1	1 <i>b</i>	GM4-(1)	
Ba1	1 <i>a</i>	GM4-(1)	
Note: Th	ne pri	imary mode is writt	en in bold letter

Summary of Amplitudes

K-vector	Irrep	Direction	Isotropy Subgroup	Dimension	Amplitude (Å)
(0,0,0)	GM4-	(a,a,0)	Amm2 (38)	4	0.1649
(0,0,0)	GM5-	(0,a,-a)	Amm2 (38)	1	0.0056

Global distortion: 0.1650 Å

Example of output of AMPLIMODES:

Normalized Symmetry modes

The modes are normalized to the low symmetry unit cell and are given as relative displacements in this cell.

δz

Irrep GM4-

Atom

GM4- Mode Ba1 1

δx

K-vector: GM = (0.0.0)

GM4- Mode Ti1 1

Atom	δχ	δy	δz
Ti1	0.000000	0.000000	0.176512

Ba1 0.000000 0.000000 0.176512

δy

GM4- Mode O1 1

Atom	δx	δy	δz
01	0.000000	0.062406	0.062406
01_2	0.000000	0.000000	0.124813

GM4- Mode O1 2

Atom	δx	δy	δz
01	0.000000	-0.088256	0.088256
01_2	0.000000	0.000000	0.000000

Irrep GM5-

GM5- Mode O1 1

Atom	δx	δy	δz
01	0.000000	-0.062406	-0.062406
01_2	0.000000	0.000000	0.124813

Virtual structure) with only this symmetry component of the distortion frozen.

Example of output of AMPLIMODES:

The orthorhombic Amm2 structure of BaTiO₃

(Kwei et al. (1993) neutron-powder 190 K)

Perovskite in Amm2 setting

	δχ	δy	δz
Ba1	0.0	0.0	0.0
Ti1	0.5	0.0	0.5
01	0.5	0.25	0.25
012	0.0	0.0	0.5

polarization vector GM4-

	δx	δy	δz	
Ba1	0.0	0.0000	0.0308	
Ti1	0.0	0.0000	0.1339	+ Q _{GM5-}
01	0.0	0.0349	-0.0665	•
012	0.0	0.0000	-0.0317	

polarization vector GM5-

+

	δx	δy	δz
Ba1	0.0	0.0000	0.0000
Ti1	0.0	0.0000	0.0000
01	0.0	0.0624	0.0624
012	0.0	0.0000	-0.1248

Applications of symmetry mode analysis of distorted structures:

- identification of fundamental and marginal degrees of freedom
- reduction of the effective number of crystallographic parameters
- detection of false refinement minima
- quantitative comparison of structures with the same or different space group
- detection of hidden structural correlations (specially for low symmetry distortions)
- systematic characterization of variation of the structure with temperature
- rationalization of phase diagrams and various symmetries in families of compounds.

DISTORTION AMPLITUDES VS. TEMPERATURE:

I4₁/a Pa

Palmer et. (Amer. Miner. 82 (1997) 16

Polarization vectors in Leucite

KAlSi₂O₆

Exercise A1 Ferroelectric phase of $S_2Sn_2P_6$

How does the symmetry mode decomposition depends on the parent structure?

Exercise A1: S₂Sn₂P₆

Summary of Amplitudes

K-vector	Irrep	Direction	Isotropy Subgroup	Dimension	Amplitude (Å)
(0,0,0)	GM1+	(a)	P2_1/c (14)	15	0.1714
(0,0,0)	GM2-	(a)	Pc (7)	15	0.4883

changing the parent structure:

K-vector	Irrep	Direction	Isotropy Subgroup	Dimension	Amplitude (Å)
(0,0,0)	GM1+	(a)	P2_1/c (14)	15	4.1205
(0,0,0)	GM2-	(a)	Pc (7)	15	0.4883

using the option for FullProf (and the "good" parent):

K-vector	Irrep	Direction	Isotropy Subgroup	Dimension	Amplitude (Å)	
(0,0,0)	GM1+	(a)	P2_1/c (14)	15	0.1713	
(0,0,0)	GM2-	(a)	Pc (7)	15	0.5372	

Sequence of transitions in SrZrO₃

20 C

Sequence of transitions in SrZrO₃

Temperature variation:

modes polarization vectors:

(1/2, 1/2, 1/4)

T4

(a,-a,0,0,0,0)

 I4/mcm (a-b,a+b,4c;0,0,1/2)
 1
 1.07

 max atom. displ. : 0.40 Å
 0.40 Å
 0.40 Å

Predominant irrep distortions in NaNbO₃

 $q_1 = (1/2, 1/2, 1/2)$

PrNiO₃

Charge disproportionation

$P2_1/n$ instead of Pnma

Medarde et al. PRL (2007)

Mode R1+:

Amplitudes		SrZrO3	PrNiO3
R4+	(Imma)	1.19(1)	1.092(9)
M3+	(P4/mbm)	0.79(1)	0.689(9)
X5+	(Cmcm)	0.34(1)	0.361(4)
R5+		0.07(1) (Imma)	0.06(1) (C2/m)
M2+	(P4/mbm)	0.01(1)	0.004(9)
R1+	(Fm-3m)	-	0.091(9)
R3+	(I4/mmm)	-	0.012(9)
M5+	(Pmna)	-	0.00(1)

Mode decomposition vs. ab-initio calculations

SrAl₂O₄

$$P6_322 \longrightarrow P2_1$$

(Larsson et al. 2008)

two different displacive instabilities:

Comparison of mode decomposition of experimental and ab-initio structures

Amplitudes and dot products of polarization vectors :

irrep	M ₂ -1	lq	Γ ₆		M ₃ -1q		Γ_5		Γ_4	
dim.	12	-	7		11	_	7	_	3	_
	Amp.	prod.	Amp.	prod.	Amp.	prod.	Amp.	prod.	Amp.	prod.
Exp. Struct.	1.70		1.39		0.57		0.32		0.02	
ab-initio	1.81	0.998	1.35	0.9997	0.57	0.997	0.24	0.96	0.03	0.63

SrAl₂O₄ Independent various behaviour of modes, seen in ab-initio calculations: ferroelastic-ferroelectric coupling

Switch of the polarization through the shear

Use of mode coordinates in the structure refinement, instead of the individual atomic coordinates?

One expects:

- a natural hierarchy of parameters
- less correlations with atomic (thermal) displacement parametes
- minimize correlations

S

S

3

3_2

2i

2i

0.466950

0.533050

0.174150

0.825850

0.125000

0.375000

Symmetry-mode decomposition of NbS₃ structure:

b

Z1 distortion

GM2+ distortion

k-vector	irrep	direction	isotropy subgroup	dim.	amplitude(Å)
(0,0,0)	GM1+	(a)	$P2_{I}/m$ (a , b , c ;0,0,0)	8	0.000(5)
(0,0,0)	GM2+	(a)	<i>P-1</i> (a , b , c ;0,0,0)	4	0.036(3)
(0,1/2,0)	Z1	(0,a)	<i>P-1</i> (a ,2 b , c ;0,0,0)	12	0.520(4)

max atom. displ. : 0.18 Å

Symmetry-mode decomposition of NbS₃ structure. Quantitative description:

GM2+ distortion (dim 4)

Amplitude: 0.036(3) Å

4 allowed orthogonal symmetry-modes

(normalized) polarization vector:

Atom	δx	δy	δz
Nb1	0.0000	0.0536	0.0000
Nb1_2	0.0000	0.0536	0.0000
S1	0.0000	-0.0137	0.0000
S1_2	0.0000	0.0137	0.0000
S2	0.0000	0.0495	0.0000
S2_2	0.0000	-0.0495	0.0000
S3	0.0000	-0.0027	0.0000
S3_2	0.0000	0.0027	0.0000

GM2+ distortion

4 positional parameters

as a 4 dim vector in terms of normalized symmetry modes (3 indep. parameters):

Nb1 1	Nb1 1 S1 1		S3 1	
-0.7216	-0.1850	0.6661	-0.0370	

Symmetry-mode decomposition of NbS₃ structure

Z1 distortion (dim 12)

Amplitude: 0.520(4) Å

12 allowed orthogonal symmetry-modes

(normalized) polarization vector:

Atom	δχ	δy	δz	
Nb1	-0.0002	0.0469	-0.0043	
Nb1_2	0.0002	-0.0469	0.0043	
S1	0.0004	0.0158	-0.0159	
S1_2	0.0004	0.0158	-0.0159	
S2	0.0080	-0.0039	0.0274	
S2_2	0.0080	-0.0039	0.0274	
S3	0.0074	-0.0048	0.0253	
S3_2	0.0074	-0.0048	0.0253	

Z1 distortion

12 positional parameters

or as a 12 dim vector in terms of normalized symmetry modes (11 indep. parameters):

Nb1 1	Nb1 2	Nb1 3	S1 1	S1 2	S1 3	S2 1	S2 2	S2 3	S3 1	S3 2	S3 3
0.6309	0.0790	0.0019	0.2124	0.2909	-0.0038	-0.0518	-0.4917	-0.0787	-0.0648	-0.4537	-0.0730

Exercise A3

False minimum in the refinement of the structure of BaMnO₃

Example 3: BaMnO₃ - False minimum

Summary of Amplitudes 80K							
K-vector	Irrep	Direction	Isotropy Subgroup	Dimension	Amplitude (Å)		
(0,0,0)	GM1+	(a)	P6_3/mmc (194)	1	0.03(4)		
(0,0,0)	GM2-	(a)	P6_3mc (186)	3	0.14(6)		
(1/3,1/3,0)	K1	(a,0)	P6_3/mcm (193)	3	0.04(5)		
(1/3,1/3,0)	K3	(a,0)	P6_3cm (185)	2	0.42(6)		

0.42 Å

 K_1

Example 3: BaMnO₃ - False minimum

K-vector	Irrep	Direction	Isotropy Subgroup	Dimension	Amplitude (Å) at 80 K	Amplitude (Å) at 1.7 K	dot product polariz. vectors
(0,0,0)	GM1+	(a)	P6_3/mmc	1	0.00(4)	0.02(2)	
(0,0,0)	GM2-	(a)	P6_3mc	3	0.14(6)	0.14(7)	0.996
(1/3,1/3,0)	K1	(a,0)	P6_3/mcm	3	0.04(5)	0.15(3)	-0.90
(1/3,1/3,0)	К3	(a,0)	P6_3cm	2	0.42(6)	0.53(7)	0.9998

Amplitude of one K1 basis mode