

International Union of Crystallography Commission on Mathematical and Theoretical Crystallography

International School on Fundamental Crystallography Sixth MaThCryst school in Latin America Workshop on the Applications of Group Theory in the Study of Phase Transitions

Bogotá, Colombia, 26 November - 1st December 2018

CRYSTAL-STRUCTURE TOOLS-PSEUDO

BILBAO CRYSTALLOGRAPHIC SERVER PRACTICAL EXERCISES

Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain

Crystal-structure relationships Phase transitions

STRUCTURAL PSEUDOSYMMETRY

Problem: PSEUDOSYMMETRY PSEUDO SEARCH

Search for a structure of space-group symmetry G, supergroup of H, such that:

If the distortion is small enough, it can indicate a symmetry change at high temperature.

phase transition

Applications: PSEU

Prediction of phase transitions Search for ferroic materials -new ferroelectrics -new ferroelastics

Prediction of the symmetry and structure of some other phase of a material

Detection of false symmetry assignments (overlooked symmetry)

Space-group determination of theoretically determined structure (e.g. ab initio calculations)

Determination of an optimised virtual parent structure (paraphase)

Maximal distance between all compatible atom pairings

Asumption:

The high symmetry phase is described by a **supergroup** of the initial space group.

$$\mathcal{G} = \mathcal{H} + g_2 \mathcal{H} + \dots + g_m \mathcal{H}$$

SUPERGROUPS OF SPACE GROUPS

SUPERGROUPS MINSUP

 $\mathcal{H} = P222$ $\mathcal{G} = P422$ $P422 = P222 + (4|\omega)P222$

	4 en	ω	${\cal G}$
4_{z}	z = (0, 0, 0)	(0, 0, 0)	$(P422)_1$
4_{i}	(0,0,0)	(0, 0, 0)	$(P422)_2$
4	c (0, 0, 0)	(0, 0, 0)	$(P422)_3$
4_{z}	$(\frac{1}{2}, 0, 0)$	$(\frac{1}{2},\frac{1}{2},\underline{0})$	$(P422)'_1$
4_{i}	$(\frac{1}{2},0,0)$	$(rac{1}{2}, rac{0}{2}, rac{1}{2})$	$(P422)_{2}^{\prime}$
4_{a}	c $(0, \frac{1}{2}, 0)$	$(0,rac{1}{2},rac{1}{2})$	$(P422)'_{3}$

Problem: PSEUDOSYMMETRY PSEUDO SEARCH

Any group – supergroup relation can be represented by a chain of minimal supergroups.

If a structure of symmetry \mathcal{H} is pseudosymmetric for a supergroup G, it will be pseudosymmetric for all intermediate subgroups Zi.

```
EXERCISES
```

Analyse the structural pseudosymmetry of Pb_2MgWO_6

Option I: Search of maximal pseudosymmetry stepwise 'climbing' via minimal supergroups

```
#(Pb2MgWO6:Pseudo1)
# Space Group ITA number
62
# Lattice parameters
11.4059 7.9440 5.6866 90.00 90.00 90.00
# Number of independent atoms in the asymmetric unit
8
# [atom type] [number] [WP] [x] [y] [z]
         8d
               0.1422 0.0032 0.7804
Pb
      1
               0.3772 0.25 0.7519
Mq
      1
        4c
               0.1161 0.25 0.2577
W
      1 4c
0
     1 8d
             0.1314 0.4907 0.2365
     2 4c
               0.0027 0.25 0.0133
0
     3 4c
               0.0103 0.25 0.4991
0
     4
               0.237 0.25 -0.0153
0
         4c
      5
                0.2491 0.25 0.4745
0
          4c
```

Problem 3.11 (i)

SOLUTION

Option I: Search of structural pseudosymmetry stepwise 'climbing' via minimal supergroups

○ ik: 1 ‡		in supergroups t	able]
⊖ G : 221			
	Rotationa	al part	Origin Shift
1	0	0	0
0	1	0	0
0	0	1	0
	G: 221	G: 221 Rotationa 1 0 0 1 0 0	G: 221 Rotational part 1 0 0 1 0 1 0 1

Enter the tolerance (maximum allowed distance) for pseudosymmetry search.

Select minimal supergroups of space group Pnma (62)

The next step is to select the supergroups which the pseudosymmetry should be searched for. Each supergroup in the table can be selected by marking the corresponding checkbox.

Select/Unselect all:

No. #	Select	HM Symb.	IT Numb.	Index	Index ik	Transformation (P,p)	Transformed Cell	Wyckoff Positions Splitting Consideration
1	Z	Pbam	055	2	2	a,-2c,b ; 0,0,0	11.4059 5.6866 3.9720 90.00 90.00 90.00	This transformation is <u>valid</u> under Wyckoff Splitting conditions. Details
2		Pbcm	057	2	2	b,c,2a ; 0,0,0	2.8433 11.4059 7.9440 90.00 90.00 90.00	This transformation is invalid under Wyckoff Splitting criteria. Details
3	z	Pmmn	059	2	2	2c,b,-a ; 0,0,0	5.6866 7.9440 5.7030 90.00 90.00 90.00	This transformation is <u>valid</u> under Wyckoff Splitting conditions. Details
4	•	Pnma	062	3	3	3a,b,c ; 0,0,0	3.8020 7.9440 5.6866 90.00 90.00 90.00	This transformation is invalid under Wyckoff Splitting criteria. Details
5	•	Pnma	062	3	3	a,3b,c; 0,0,0	11.4059 2.6480 5.6866 90.00 90.00 90.00	This transformation is invalid under Wyckoff Splitting criteria. Details
6	•	Pnma	062	3	3	a,b,3c ; 0,0,0	11.4059 7.9440 1.8955 90.00 90.00 90.00 Lattice parameters don't comply [Threshold: 0.5Å for a,b,c ; 10° for α,β,γ & lengths must be >2.5Å]	This transformation is invalid under Wyckoff Splitting criteria. Details
7	•	Pnma	062	5	5	5a,b,c ; 0,0,0	2.2812 7.9440 5.6866 90.00 90.00 90.00 Lattice parameters don't comply [Threshold: 0.5Å for a,b,c ; 10° for α,β,γ & lengths must be >2.5Å]	This transformation is invalid under Wyckoff Splitting criteria. Details
8		Pnma	062	5	5	a,5b,c;0,0,0	11.4059 1.5888 5.6866 90.00 90.00 90.00 Lattice parameters don't comply [Threshold: 0.5Å for a,b,c ; 10° for α,β,γ & lengths must be >2.5Å]	This transformation is invalid under Wyckoff Splitting criteria. Details
9	۰	Pnma	062	5	5	a,b,5c ; 0,0,0	11.4059 7.9440 1.1373 90.00 90.00 90.00 Lattice parameters don't comply [Threshold: 0.5Å for a,b,c ; 10° for α,β,γ & lengths must be >2.5Å]	This transformation is invalid under Wyckoff Splitting criteria. Details
10		Pnma	062	7	7	7a,b,c;0,0,0	1.6294 7.9440 5.6866 90.00 90.00 90.00 Lattice parameters don't comply [Threshold: 0.5Å for a,b,c ; 10° for α,β,γ & lengths must be >2.5Å]	This transformation is invalid under Wyckoff Splitting criteria. Details
11	•	Pnma	062	7	7	a,7b,c ; 0,0,0	11.4059 1.1349 5.6866 90.00 90.00 90.00 Lattice parameters don't comply [Threshold: 0.5Å for a,b,c ; 10° for α,β,γ & lengths must be >2.5Å]	This transformation is invalid under Wyckoff Splitting criteria. Details
12	•	Pnma	062	7	7	a,b,7c ; 0,0,0	11.4059 7.9440 0.8124 90.00 90.00 90.00 Lattice parameters don't comply [Threshold: 0.5Å for a,b,c ; 10° for α,β,γ & lengths must be >2.5Å]	This transformation is invalid under Wyckoff Splitting criteria. Details
13	Z	Cmcm	063	2	2	b,c,a ; 0,0,0	5.6866 11.4059 7.9440 90.00 90.00 90.00	This transformation is <u>valid</u> under Wyckoff Splitting conditions. Details
14	Z	Cmcm	063	2	2	c,a,b ; 1/4,1/4,0	7.9440 5.6866 11.4059 90.00 90.00 90.00	This transformation is <u>valid</u> under Wyckoff Splitting conditions. Details
15	2	Cmce	064	2	2	-b,a,c; 1/4,1/4,0	7.9440 11.4059 5.6866 90.00 90.00 90.00	This transformation is <u>valid</u> under Wyckoff Splitting conditions. Details
								This transformation is walled under Whiskoff Califfing conditions

Wyckoff Positions Splitting Check Under Transformation

The Wyckoff Split Table for the transformation from Pmmn (#59) to Pnma (#62)

No	Wyckoff position(s)							
NO	Group	Subgroup						
1	2a	4c						
2	2b	4c						
3	4c	4a 4b						
4	4d	8d						
5	4e	8d						
6	4f	4c 4c						
7	8g	8d 8d						

This transformation is valid under the Wyckoff Splittings Criteria

Species : Mg Wyckoff Positions :c

WP(#59)		WP(#62)	# additional atoms
(1/2)f	=>	С	
b	=>	С	
а	=>	С	
f	=>	c + c	(4) [1:1]

Species : Pb Wyckoff Positions :d

WP(#59)		WP(#62)	# additional atoms
(1/2)g	=>	d	
е	=>	d	
d	=>	d	
g	=>	d + <i>d</i>	(8) [1:1]

WP(#59)		WP(#62)	# additional atoms
2f,(1/2)g	=>	d,c,c,c,c	
4b,(1/2)g	=>	d,c,c,c,c	
4a,(1/2)g	=>	d,c,c,c,c	
e,2f	=>	d,c,c,c,c	
d,2f	=>	d,c,c,c,c	
4b,e	=>	d,c,c,c,c	
4b,d	=>	d,c,c,c,c	
4a,e	=>	d,c,c,c,c	
4a,d	=>	d,c,c,c,c	
2f,g	=> (d,c,c,c,c + <i>d</i>	(8) [3:1]
4b,g	=> (d,c,c,c,c + <i>d</i>	(8) [3:1]
4a.q	=> (d.c.c.c.c + d	(8) [3:1]

Species : O Wyckoff Positions :d,c,c,c,c

Flagged pseudosymmetry of Pb₂MgWO₆ with respect to the space group Pmmn (59)

Summary search results

Pseudosymmetry search among minimal supergroups.

Case #	Supergroup G	Index i	Index i _k	(P,p)			Tr. N	latrix		Δ _{max}	u _{max}
1	<i>Pbam</i> (055)	2	2	a,-2c,b ; 0,0,0	[[]	1 0 0	0 0 -2	0] [1] [0] [0] 0] 0]	>tol	-
2	<i>Pmmn</i> (059)	2	2	2c,b,-a ; 0,0,0	[[]	0 0 2	0 1 0	-1] [0] [0] [0] 0] 0]	0.3457	0.1729
3	Cmcm (063)	2	2	b,c,a ; 0,0,0	[[[0 1 0	0 0 1	1] [0] [0] [0] 0] 0]	>tol	-
4	Cmcm (063)	2	2	c,a,b ;1/4,1/4,0	[[]	0 0 1	1 0 0	0] [1] [0] [1/4] 1/4] 0]	>tol	-
5	<i>Cmce</i> (064)	2	2	-b,a,c ; 1/4,1/4,0	[[]	0 -1 0	1 0 0	0] [0] [1] [1/4] 1/4] 0]	>tol	-
6	<i>lmma</i> (074)	2	2	a,b,c ; 0,0,0	[[]	1 0 0	0 1 0	0] [0] [1] [0] 0] 0]	>tol	-

Structural pseudosymmetry:

Displacements:

Atom	Idealized Coordinates	ux	uy	uz	u
Pb1	(0.1422, 0.0032, 0.7500)	0.000000	0.000000	0.030400	0.1729
Mg1	(0.3772, 0.2500, 0.7500)	0.000000	0.000000	0.001900	0.0108
W1	(0.1161, 0.2500, 0.2500)	0.000000	0.000000	0.007700	0.0438
01	(0.1314, 0.4907, 0.2500)	0.000000	0.000000	-0.013500	0.0768
O2	(0.0065, 0.2500, 0.0071)	-0.003800	0.000000	0.006200	0.0559
O3	(0.0065, 0.2500, 0.4929)	0.003800	0.000000	0.006200	0.0559
O4	(0.2430, 0.2500, 0.0051)	-0.006050	0.000000	-0.020400	0.1350
O5	(0.2430, 0.2500, 0.4949)	0.006050	0.000000	-0.020400	0.1350

Idealized structure data

Idealized structure (supergroup setting):

59 5.6866	7.9440	5.7030	90.00 90.00	90.00		
6						
Pb	1	4e	0.250000		0.003200	0.28440
Mg	1	2a	0.250000		0.250000	0.75440
W	1	2b	0.750000		0.250000	0.23220
0	1	4e	0.750000		0.490700	0.26280
0	2	4f	0.992900		0.250000	0.01300
0	4	4f	0.994900		0.250000	0.48610

Pmmn(59)> Pnma(62) [i]=2 (P,p)=2c,b,-a u_{max}=0.1729Å

-lattice parameters:

-atomic coordinates: WPASSIGN

-redundant atoms

Continue to search for pseudosymmetry with this structure (#059)

Visualize this structure

re CIF File

Plot the progress so far [Click here to see full report]

to 'climb up' further...

Step2. Immm (71) pseudosymmetry of idealized structure of Pb₂MgWO₆ of symmetry Pmmn (59)

Case #	Supergroup G	Index i	Index i _k	(P,p)		Tr. N	latrix	Δ _{max}	u _{max}
1	Cmmm (065)	2	2	a,b,c ; 1/4,1/4,0	[1 [0 [0	0 1 0	0] [1/4] 0] [1/4] 1] [0]	>tol	-
2	<i>lmmm</i> (071)	2	2	a,b,c ; 1/4,1/4,1/4	[1 [0 [0	0 1 0	0] [1/4] 0] [1/4] 1] [1/4]	0.3924	0.1962

5# Supergroup Immm (071): a,b,c ; 1/4,1/4,1/4 and index 2

Displacements:

Atom	Idealized Coordinates	u _x	u _y	uz	u
Pb1	(0.2500, 0.0032, 0.2500)	0.000000	0.000000	0.034400	0.1962
Mg1	(0.2500, 0.2500, 0.7500)	0.000000	0.000000	0.004400	0.0251
W1	(0.7500, 0.2500, 0.2500)	0.000000	0.000000	-0.017800	0.1015
01	(0.7500, 0.4907, 0.2500)	0.000000	0.000000	0.012800	0.0730
02	(0.9939, 0.2500, 0.0135)	-0.001000	0.000000	-0.000450	0.0062
O4	(0.9939, 0.2500, 0.4865)	0.001000	0.000000	-0.000450	0.0062

Idealized structure (supergroup setting):

071 5.6860 5	5 7.9	9440	5.7030	90.00 90	0.00 90.	00
Pb	1	-	0.5000	0.2532	0.5000	
Mg	1	-	0.5000	0.5000	0.0000	
W	1	-	0.0000	0.5000	0.5000	
0	1	-	0.0000	0.7407	0.5000	
0	2	-	0.2439	0.5000	0.2635	
#O	4	-	0.2439	0.5000	0.7366	5

Step3. Pseudosymmetry of idealised structure of Pb₂MgWO₆ of symmetry Immn (71)

Idealized structures

7# Supergroup I4/mmm (139): b,c,a ; 0,1/2,0 and index 2

Displacements:

Atom	Idealized Coordinates	u _x	u _y	u _z	u
Pb1	(0.5000, 0.2500, 0.5000)	0.000000	0.003200	0.000000	0.0254
Mg1	(0.5000, 0.5000, 0.0000)	0.000000	0.000000	0.000000	0.0000
W1	(0.0000, 0.5000, 0.5000)	0.000000	0.000000	0.000000	0.0000
01	(0.0000, 0.7407, 0.5000)	0.000000	0.000000	0.000000	0.0000
O 2	(0.2402, 0.5000, 0.2598)	0.003700	0.000000	0.003700	0.0298

Idealized structure (supergroup setting):

```
139
5.7030 5.6866 7.9440 90.00 90.00 90.00
5
Pb
         - 0.5000
                   0.0000
                           0.2500
     1
     1 - 0.0000 0.0000
Mq
                          0.5000
     1 - 0.5000 0.5000
                          0.5000
W
     1 - 0.5000 0.5000
                          0.7407
0
     2
         - 0.2598
                   0.7402
                           0.5000
0
```

lattice parameters: not symmetrized

Step4. Pseudosymmetry of idealised structure of Pb₂MgWO₆ of symmetry I4/mmm (139)

2# Supergroup Fm-3m (225): 1/2a-1/2b,1/2a+1/2b,c ; 0,0,0 and index 3

Displacements:

Atom	Idealized Coordinates	u _x	u _y	uz	u
Pb1	(0.5000, 0.0000, 0.2500)	0.000000	0.000000	0.000000	0.0000
Mg1	(0.0000, 0.0000, 0.5000)	0.000000	0.000000	0.000000	0.0000
W1	(0.5000, 0.5000, 0.5000)	0.000000	0.000000	0.000000	0.0000
01	(0.5000, 0.5000, 0.7404)	0.000000	0.000000	0.000333	0.0026
02	(0.2596, 0.7404, 0.5000)	0.000167	-0.000167	0.000000	0.0013

225 8.0537 8.0537 7.9440 90.00 90.00 90.17 4 Pb 0.2500 0.7500 0.2500 1 1 - 0.0000 0.0000 0.5000 Mq 1 - 0.5000 0.0000 0.5000 W 1 - 0.5000 0.0000 0.7404 0 2 #0 0.5000 0.2404 0.5000

WPASSIGN: Pb 8c Mg 4b W 4a O 24e

Structural pseudosymmetry of Pb₂MgWO₆

Analyse the structural pseudosymmetry of Pb₂MgWO₆

Option 3: Search of structural pseudosymmetry with respect to specific supergroup

Problem 3.11 (ii)

SOLUTION

Option 3: Search of structural pseudosymmetry with respect to a specific supergroup

1. Minimal supergroups	⊙ ⊡[Show	only indices	in supergroups t	able]
2. Supergroups with k-index	⊖ ik:[] ∓			
3. Specify supergroup transformation	⊖ G : 221			
		Rotationa	al part	Origin Shift
Transf. Matrix	1	0	0	0
(in option 3 only)	0	1	0	0
	0	0	1	0

Enter the tolerance (maximum allowed distance) for pseudosymmetry search.

EXERCISES

Analyse the structural pseudosymmetry of the virtual structure of C222₁ symmetry stepwise, i.e. via the minimal supergroup Option 1 of PSEUDO. Compare the results if different minimal-supergroup paths are followed.

(combined application of Option 3 and Option 1 of PSEUDO)

Analyse the structural pseudosymmetry of the orthorhombic phase Ga-II of Ga under pressure. (For the structure data, see the Structure Data file.)

Hint: As a first step check the structural pseudosymmetry with respect to an isomorphic supergroup of index 13 (can you guess why?), specified by the transformation matrix: **a**,**b**, 13**c**, i.e. first apply Option 3 of PSEUDO.

GeF₂, having the P2₁2₁2₁ (N. 19) structure given below, is reported to have a high temperatures an unknown tetragonal phase, with the primitive unit cell volume being essentially maintained. Using PSEUDO, with the option 2, which allows to check supergroups with a fixed k-index (multiplication of the primitive unit cell) postulate a probable space group or groups and a starting structural model for this high-temperature phase.

```
19
4.682 5.158 8.312 90 90 90
3
Ge 1 4a 0.23400.00830.1311
F 1 4a 0.029 0.083 -0.018
F 2 4a 0.067 0.246 0.279
```

SOLUTION

Option 2: Search of structural pseudosymmetry with respect to supergroups of specific [i_L] index

1. Minimal supergroups	⊙ □[Show	only indices	in supergroups ta	able]
2. Supergroups with k-index	O ik: 1 ‡	J		
3. Specify supergroup transformation	O G: 221			
		Rotationa	l part	Origin Shift
Transf Matrix	1	0	0	0
(in option 3 only)	0	1	0	0
	0	0	1	0
 Lattice Pseudosymmetry with minimal supergroups [*] Only for triclinics and monoclinics. 	🔵 Ang. Tol	(in degrees)	5 [*]	

Enter the tolerance (maximum allowed distance) for pseudosymmetry search.

Bilbao Crystallographic Server

SUBGROUPGRAPH for the pair $P4_2/mnm > P2_12_12_1$, [i]=8

Group-Subgroup Lattice

Problem: Search for ferroelectrics (as pseudosymmetric structures)

Two necessary conditions for a structure to be ferroelectric:

- Polar symmetry group (it should allow non-zero polarization)
- Pseudosymmetry with respect to a non-polar symmetry group (the polar distortion should be small and "multistable")

Problem: Search for ferroelectrics (as pseudosymmetric structures)

Problem: Search for ferroelectrics (as pseudosymmetric structures)

Default example: BaTiO₃ Problem: Search for ferroelectrics

Select minimal supergroups of space group P4mm (99)

The next step is to select the supergroups which the pseudosymmetry should be searched for. Each supergroup in the table can be selected by marking the corresponding checkbox.

Select/Unselect all:

No. #	Select	HM Symb.	IT Numb.	Index	Index i _k	Transformation (P,p)	Transformed Cell	Wyckoff Positions Splitting Consideration
1		P4mm	099	2	2	a,b,2c ; 0,0,2t	3.9990 3.9990 2.0100 90.00 90.00 90.00 Lattice parameters don't comply [Threshold: 0.5Å for a,b,c ; 10° for α,β,γ & lengths must be >2.5Å]	This transformation is invalid under Wyckoff Splitting criteria. Details
2		P4mm	099	2	2	a-b,a+b,c ; 0,0,t	2.8277 2.8277 4.0200 90.00 90.00 90.00	This transformation is invalid under Wyckoff Splitting criteria. Details
3		P4mm	099	3	3	a,b,3c ; 0,0,3t	3.9990 3.9990 1.3400 90.00 90.00 90.00 Lattice parameters don't comply [Threshold: 0.5Å for a,b,c ; 10° for α,β,γ & lengths must be >2.5Å]	This transformation is invalid under Wyckoff Splitting criteria. Details
4		P4mm	099	5	5	a,b,5c ; 0,0,5t	3.9990 3.9990 0.8040 90.00 90.00 90.00 Lattice parameters don't comply [Threshold: 0.5Å for a,b,c ; 10° for α,β,γ & lengths must be >2.5Å]	This transformation is invalid under Wyckoff Splitting criteria. Details
5		P4mm	099	7	7	a,b,7c ; 0,0,7t	3.9990 3.9990 0.5743 90.00 90.00 90.00 Lattice parameters don't comply [Threshold: 0.5Å for a,b,c ; 10° for α,β,γ & lengths must be >2.5Å]	This transformation is invalid under Wyckoff Splitting criteria. Details
6		P4mm	099	9	9	3a,3b,c ; 0,0,t	1.3330 1.3330 4.0200 90.00 90.00 90.00 Lattice parameters don't comply [Threshold: 0.5Å for a,b,c ; 10° for α,β,γ & lengths must be >2.5Å]	This transformation is invalid under Wyckoff Splitting criteria. Details
7		P4mm	099	9	9	a,b,9c ; 0,0,9t	3.9990 3.9990 0.4467 90.00 90.00 90.00 Lattice parameters don't comply [Threshold: 0.5Å for a,b,c ; 10° for α,β,γ & lengths must be >2.5Å]	This transformation is invalid under Wyckoff Splitting criteria. Details
8		I4mm	107	2	2	a,b,c ; 0,0,t	3.9990 3.9990 4.0200 90.00 90.00 90.00	This transformation is invalid under Wyckoff Splitting criteria. Details
9	₹	P4/mmm	123	2	1	a,b,c ; 0,0,t	3.9990 3.9990 4.0200 90.00 90.00 90.00	This transformation is <u>valid</u> under Wyckoff Splitting conditions. Details
10		P4/nmm	129	2	1	a,b,c ; 1/4,1/4,t	3.9990 3.9990 4.0200 90.00 90.00 90.00	This transformation is invalid under Wyckoff Splitting criteria. Details

HINT: The initial structure is polar, which means that, in general, an origin shift will be necessary to minimize the displacements between the initial polar structure and the hypothetical idealized parent one. insert a minimum grid for the optimization (in Angstroms)

Pseudosymmetry

Problem: Prediction of Pna2₁ ferroelectrics

ICSD (Inorganic Crystal Structure Database)

	Binary	Ternary	Quaternary	Total
Entries Compounds Pseudo. Entries Pseudo. Compounds	39 26 20 12	202 125 100 66	223 161 40 36	464 312 160 114
Overlooked Sym.	7	30	9	46
Known Ferro.	1	14	4	19
Candidates?	1	13	4	18

Known Ferroelectrics

Compound	${\cal G}$	[i]	$\Delta_{\max}(\text{\AA})$	$\eta_{m{g}}$	γ	$T_{c}(K)$
Nb_6I_{11}	$\mathbf{P}ccn$	2	0.547	0.623	0.189	274
$D_{0.45}Nb_{6}I_{11}$	$\mathbf{P}ccn$	2	0.745	0.626	0.187	?
NaTaO ₃	$\mathbf{P}nma$	2	0.232	0.988	0.006	753
LaYbO3	$\mathbf{P}nma$	2	0.347	0.968	0.016	?
RbGeBr ₃	$\mathbf{P}nma$	2	0.536	0.519	0.240	366
K_2 SeO ₄	$\mathbf{P}nma$	2	0.539	0.833	0.084	93
Cs_2BeF_4	$\mathbf{P}nma$	2	0.174	0.663	0.168	?
Rb_2BeF_4	$\mathbf{P}nma$	2	0.171	0.992	0.004	921
$K_2 \overline{BeF_4}$	$\mathbf{P}nma$	2	0.338	0.772	0.114	968
Rb_2ZnBr_4	$\mathbf{P}nma$	2	0.131	0.961	0.020	200
$Rb_2^{-}ZnCl_4^{-}$	$\mathbf{P}nma$	2	0.463	0.849	0.076	189
$K_2 \overline{ZnCl_4}$	$\mathbf{P}nma$	2	0.177	0.898	0.051	130
SPSI	$\mathbf{P}nma$	2	0.103	0.766	0.117	293
SbSBr	$\mathbf{P}nma$	2	0.109	0.821	0.089	23
SbNbO ₄	$\mathbf{P}nna$	2	0.421	0.455	0.272	678
(BiO) ₄ (NbO ₄)Cl	Pbcn	2	0.623	0.733	0.133	640
$CsTiO(AsO_4)$	$\mathbf{P}nna$	2	0.447	0.622	0.189	?
$KTiO(AsO_4)$	$\mathbf{P}nna$	2	0.610	0.997	0.002	?
TITIO(PO ₄)	Pnna	2	0.408	0.792	0.104	856

pseudosymmetry search

CANDIDATES FOR FERROELECTRICS

Compound	${\cal G}$	[i]	Δ_{\max} (Å)	η_g	γ
Sb_2O_4	$\mathbf{P}nna$	2	0.581	0.641	0.179
PbNCN	$\mathbf{P}nma$	2	0.193	0.996	0.002
NalO3	$\mathbf{P}nma$	2	0.194	0.977	0.012
YScS ₃	$\mathbf{P}nma$	2	0.179	0.865	0.068
CeSiP ₃	$\mathbf{P}nma$	2	0.648	0.935	0.032
SmBeF ₄	$\mathbf{P}nma$	2	0.325	0.979	0.010
K_3AsS_4	$\mathbf{P}nma$	2	0.227	0.847	0.077
WPO ₅	$\mathbf{P}nma$	2	0.457	0.986	0.007
$Sr_3Sb_4S_9$	$\mathbf{P}nma$	2	0.230	0.822	0.089
$Be_4Pr_9O_{20}$	$\mathbf{P}nma$	2	0.246	0.904	0.048
$Ca_{0.84}$ Sr $_{1.16}$ SiO $_4$	$\mathbf{P}nma$	2	0.580	0.747	0.127
$TI_{1.1}AlSiO_4$	$\mathbf{P}nma$	2	0.590	0.953	0.024
$Na_2UO_2P_2O_7$	$\mathbf{P}nma$	2	0.559	0.991	0.040
TISnPS ₄	$\mathbf{P}nma$	2	0.488	0.734	0.133

Example: Sb_2O_4 ($Pna2_1 \xrightarrow{(2)} Pnna$)

$\Delta=0.581$ Å y $\eta_{m g}=0.641$ Å

pseudosymmetry search

The compound NaSb₃F₁₀ whose room-temperature phase is polar, space group P6₃, has been predicted to be ferroelectric. (For the structure data, see the Structure Data file.) The symmetries P6₃22 and P6₃/mmc had been proposed for two successive non-polar phases at high temperature.

Applying the pseudosymmetry approach confirm the predictions for the non-polar phases of $NaSb_3F_{10}$. Show that apart from P6₃22, there are two more appropriate candidates for the intermediate phases between the polar phase P6₃ and the non-polar one of maximal symmetry, P6₃/mmc.

Pseudosymmetry search

Please, enter structure data in the text area (or load CIF file).

Any comments and/or critics are welcome, tool.

Pseudosymmetry search

The program **PSEUDO** looks for a pseudosymmetry in a structure among the (minimal) supergroups of the structure's space group.

The first step in the program is the input of the structure's data. The data can be given using the form or it can be loaded from a CIF file. The necessary data for the structure consists in the number of its space group in the *International Tables for Crystallography*, Vol A, the lattice parameters (in A and degrees), the number of the atoms in the asymmetric unit and the corresponding atomic positions.

Then, it's necessary to select among what type of supergroups the search is performed. The available options are:

- Minimal supergroups
- Supergroups for a defined cell multiplication
- Supergroup for a well-known transformation matrix

Another option (only for triclinic and monoclinic groups) is to check first the pseudosymmetry of the given cell (obtaining the possible lattice transformations for a given angular tolerance and checking if they are compatible with a space supergroup transformation)

Finally, the program needs a maximum allowed tolerance for pseudosymmetry calculations, i.e., the maximal allowed displacement of the atoms from their high symmetry position in Angstroms. Normally a default value between 0.75-1A is a good choice.

When you have filled all of the data, click on the [show] button to search for pseudosymmetry with respect to the chosen supergroups option.

To get a tutorial about this program click here.

If you are using this program in the preparation of a paper, please cite it in the following form:

C. Capillas, E.S. Tasci, G. de la Flor, D. Orobengoa, J.M. Perez-Mato and M.I. Aroyo. "A new computer tool at the Bibao Crystallographic Server to detect and characterize pseudosymmetry". Z. Krist. (2011), 226(2), 186-196 DOI: 10.1524/zkri.2011.1321.

If you are interested in other publications related to Bibao Crystallographic Server, click here.

Structure data [In CIF format]		Browne
[in CIF format]		Browse
	IINT: [The option for a given filename is preferential]	
	173	
	8.285 8.285 7.600 90. 90. 120. 6	
	2 1 6c 0.8837 0.2243 0.25	
	Na 1 2b 0.3333 0.6667 0.167	
6	F 2 6c 0.111 0.229 0.340	
	F 3 6c 0.035 0.491 0.281	
1	F 4 2b 0.6667 0.3333 0.245	
itial Structure (LS)		

We are developing a new version of PSEUDO. It is currently in beta version and it will be available soon. Please, let us

know if you experience any problem with the program or you find errors. The e-mail for contact is cryst@wm.ic.ehu.es.

Select supergroups type for pseudosymmetry search.

. Specify supergroup transformation	O G: 22	1		
		Rotation	al part	Origin Shift
and Makis	1	0	0	0
n option 3 only)	0	1	0	0
	0	0	1	0
Lattice Pseudosymmetry with minim pergroups	nal 🔿 Ang. T	oi (in degrees)	s [*]	
And a first being and an and shares				

SOLUTION

Example: NaSb₃F₁₀

Structural Data

Search options

Tolerance

SOLUTION

1									This transformation is invalid under Wyckoff
	1		<i>P</i> 6	168	2	2	a,b,2c ; 0,0,2t	8.2850 8.2850 3.8000 90.00 90.00 120.00	Splitting criteria.
	2		P6 ₃	173	3	3	a,b,3c ; 0,0,3t	8.2850 8.2850 2.5333 90.00 90.00 120.00	This transformation is invalid and or thy tori Splitting criteria. Details
	3		P63	173	3	3	a-b,a+2b,c ; 0,0,t	4.7833 4.7833 7.6000 90.00 90.00 120.00	This transformation is main on a Wyck 1 10 Details 3 10
	4		P63	173	4	4	2a,2b,c; 0,0,t	4.1425 4.1425 7.6000 90.00 90.00 120.00	This transformation is invalid under Wyckoff Splitting criteria. Details
	5		P63	173	5	5	a,b,5c ; 0,0,5t	8.2850 8.2850 1.5200 90.00 90.00 120.00	This transformation is invalid under Wyckoff Splitting criteria. Details
	6		P63	173	7	7	a,b,7c ; 0,0,7t	8.2850 8.2850 1.0857 90.00 90.00 120.00	This transformation is invalid under Wyckoff Splitting criteria. Details
	7		P63	173	7	7	a-2b,2a+3b,c; 0,0,t	3.1314 3.1314 7.6000 90.00 90.00 120.00	This transformation is invalid under Wyckoff Splitting criteria. Details
	8		P63	173	7	7	-2a-3b,-a+2b,-c ; 0,0,-t	3.1314 3.1314 7.6000 90.00 90.00 120.00	This transformation is invalid under Wyckoff Splitting criteria. Details
>	9	8	P6₃/m	176	2	1	a,b,c ; 0,0,t	8.2850 8.2850 7.6000 90.00 90.00 120.00	This transformation is valid under Wyckoff Splitting conditions. Details
>	10	S	P6 ₃ 22	182	2	1	a,b,c ; 0,0,t	8.2850 8.2850 7.6000 90.00 90.00 120.00	This transformation is valid under Wyckoff Splitting conditions. Details
	11		P6 ₃ cm	185	2	1	a,b,c ; 0,0,t	8.2850 8.2850 7.6000 90.00 90.00 120.00	This transformation is invalid under Wyckoff Splitting criteria. Details
	12	8	P6 ₃ mc	186	2	1	a,b,c ; 0,0,t	8.2850 8.2850 7.6000 90.00 90.00 120.00	This transformation is valid under Wyckoff Splitting conditions. Details

HINT: The initial structure is polar, which means that, in general, an origin shift will be necessary to minimize the displacements between the initial polar structure and the hipothetical idealized parent one. Please, insert a minimum grid for the optimization (in Angstroms)

Grid: 0.5

SOLUTION

Summary search results

Pseudosymmetry search among minimal supergroups.

Example: NaSb₃F₁₀

Case #	Supergroup G	Index i	Index i _k	(P,p)	Tr. Matrix	Δ _{max}	u _{max}
1	P6 ₃ /m (176)	2	1	a,b,c; 0,0,0	[1 0 0][0] [0 1 0][0] [0 0 1][0]	1.4010	0.7005
2	<i>P</i> 6 ₃ 22 (182)	2	1	a,b,c; 0,0,0	[1 0 0][0] [0 1 0][0] [0 0 1][0]	1.3984	0.6992
3	P6 ₃ mc (186)	2	1	a,b,c ; 0,0,0	[1 0 0][0] [0 1 0][0] [0 0 1][0]	0.8948	0.4474

3# Supergroup P63mc (186): a,b,c ; 0,0,0 and index 2

Displacements:

\leq	$P6_3$ / mmc	\geq
		\sum
P6 ₃ /m	P6 ₃ 22	P6₃mc
		\geq
\langle	P63	>

Atom	Idealized Coordinates	ux	uy	uz	u	
Sb1	(0.8297, 0.1703, 0.2500)	0.054000	0.054000	0.000000	0.4474	
Na1	(0.3333, 0.6667, 0.1670)	0.000000	0.000000	0.000000	0.0000	
F1	(0.1965, 0.3930, 0.9940)	0.007500	0.000000	0.000000	0.0621	
F2	(0.1145, 0.2290, 0.3400)	-0.003500	0.000000	0.000000	0.0290	
F3	(0.0350, 0.5175, 0.2810)	0.000000	-0.026500	0.000000	0.2196	
F4	(0.6667, 0.3333, 0.2450)	0.000000	0.000000	0.000000	0.0000	

SOLUTION

The compound Nd₄GeO₈ is reported to have polar Pmc2₁ symmetry (Doklady Akademii Nauk SSSR (1978) 241, 353-356).

(i) Show using PSEUDO (option I) that this structure can be considered a small distortion of a *Cmcm* structure.

(ii) Using SUBGROUPGRAPH show the graph of maximal subgroups connecting the two symmetries.

(iii) Using again PSEUDO (option 3) obtain the atomic displacements relating the two structures.

According to a structural model for Ca₂Ge₇O₁₆ published in Doklady Akademii Nauk SSSR (1979) 245, 110-113, the symmetry group of the compound is *Pba2*.

Using PSEUDO, demonstrate that this structure differs from a tetragonal one with space group P-4b2, by atomic displacements which are practically negligible or within experimental accuracy, so that in fact this structure file should be considered incorrect, being a case of "overlooked symmetry".

Problem: Minimal t-supergroups for monoclinic and triclinic groups

Problem 3.18(a) Lead phosphate phase transition

Lead phosphate $Pb_3(PO_4)_2$ shows a phase transition from a paraelastic high-temperature phase with symmetry R-3m (No.166) to a ferroelastic phase of symmetry C2/c (No.15).

Using the structure data of the low-symmetry monoclinic phase given in the *ExerciseData* file (Problem 6a) analyze its structural pseudosymmetry with respect to the symmetry group of the high-symmetry phase. Using the program COMPSTRU evaluate the difference between the experimentally determined R-3m structure and the idealized high-symmetry structure proposed by PSEUDO.

Hint:

C2/m

 $R\bar{3}m$

For the analysis of the pseudosymmetry of the monoclinic structure, use a combination of Option I and Option 4 of PSEUDO

Option I: Search of structural pseudosymmetry stepwise 'climbing' via minimal supergroups

Formulae	Pb3(P	Pb3(PO4)2					
Structure data							
[in CIF format]	HINT:	[The c	ption for	a given filename is preferential]			
	15						
	13.8	0 5.	691 9.	42 90 102.3 90			
	7						
	0	1	81 04	$0.643 \ 0.030 \ 0.392$			
	0	2	81 8f	0.634 0.464 $0.3740.642 0.280 0.612$			
	ö	4	8f	$0.491 \ 0.222 \ 0.420$			
	P	1	8f	0.599 0.241 0.447			
	Pb	1	4e	0 0.291 0.25			
	Pb	2	8f	0.317 0.309 0.352			
Initial Structure (LS)							

Select supergroups type for pseudosymmetry search.

1. Minimal supergroups	 [Show only indices in supergroups table]
2. Supergroups with k-index	○ ik: 1 ‡
3. Specify supergroup transformation	O G: 221

Flagged pseudosymmetry of $Pb_3(SO_4)_2$ with respect to C2/m (12)

Select minimal supergroups of space group C2/c (15)

The next step is to select the supergroups which the pseudosymmetry should be searched for. Each supergroup in the table can be selected by marking the corresponding checkbox.

Select/Unselect all:

No. #	Select	HM Symb.	IT Numb.	Index	Index i _k	Transformation (P,p)	Transformed Cell	Wyckoff Positions Splitting Consid
1	Z	C2/m	012	2	2	a,b,2c ; 0,0,0	13.8000 5.6910 4.7100 90.00 102.30 90.00	This transformation is <u>valid</u> under Wyck conditions. Details
2	₹	C2/m	012	2	2	a,b,a+2c ; 1/4,1/4,0	13.8000 5.6910 9.1455 90.00 149.79 90.00	This transformation is <u>valid</u> under Wycke conditions. Details

Summary search results

Pseudosymmetry search among minimal supergroups.

Case #	Supergroup G	Index i	Index i _k	(P,p)	p) Tr. Matrix			∆ _{max}	u _{max}		
1	C2/m (012)	2	2	a,b,2c ; 0,0,0	[[[1 0 0	0 1 0	0] [0] [2] [0] 0] 0]	>tol	-
	C2/m (012)	2	2	a,b,a+2c ; 1/4,1/4,0	[[[1 0 0	0 1 0	1] [0] [2] [1/4] 1/4] 0]	0.6715	0.3358

Option 3: Pseudosymmetry search for structures of monoclinic symmetry

Formulae	Pb3(PO4)2							
Structure data					(Examinar		
[in CIF format]	HINT: [The option for a given filename is preferential]							
	12							
	13.8000	5.6910	9.1455	90.00 149.79	90.00			
	6							
	0	1	8j	0.271500	0.283000	0.766000		
	0	3	4i	0.504000	0.500000	0.224000		
	0	4	4i	0.161000	0.500000	0.840000		
	P	1	4i	0.296000	0.500000	0.894000		
	Pb	1	2c	0.500000	0.500000	0.500000		
	Pb	2	4i	0.919000	0.500000	0.704000		

Select supergroups type for pseudosymmetry search.

- 1. Minimal supergroups
- 2. Supergroups with k-index
- 3. Specify supergroup transformation

Show only indices in supergroups table]
○ ik: 1 ‡

Rotational part

0		
0		
0	1	

Transf. Matrix (in option 3 only)

 1
 0
 0

 0
 1
 0

 0
 0
 1

4. [*] Lattice Pseudosymmetry with minimal supergroups ③ Ang. Tol (in degrees) 10

Lattice pseudosymmetry

Please, select one the possible metrics:

No. #	Select	Latt.	Idealized/Transformed cell	Transformation matrix P	Strain	Tol.
1	۲	hR	5.5662 5.5662 20.2270 90.00 90.00 120.00 5.5027 5.5027 20.2270 89.27 90.73 117.72	$\begin{bmatrix} 1/3 & 1 & -2/3 \\ -1/3 & 1 & 2/3 \\ 2/3 & 0 & -1/3 \end{bmatrix}$	0.01135	2.371

Note: (a b c)G = (a b c)H P

Possible minimal supergroups

Possible lattices: hR

No. #	Select	HM Symb.	IT Numb.	Latt.	Index
1	\odot	P2/m	10	mP	2
2	0	Cmcm	63	oC	2
3	0	Cmce	64	oC	2
4	0	Cmmm	65	oC	2
5	0	Cmme	67	oC	2
6	0	Fmmm	69	oF	2
7	0	Immm	71	ol	2
8	0	lbam	72	ol	2
9	0	Imma	74	ol	2

10	0	14/m	87	tl	2
11	0	C2/m	12	mC	2
12	0	C2/m	12	mC	3
13	0	C2/m	12	mC	5
14	0	C2/m	12	mC	7
15	0	<i>P</i> -31 <i>m</i>	162	hP	3
16	0	P-3m1	164	hP	3
17	0	R-3m	166	hR	3

Show)

Structural pseudosymmetry: R-3m(166)> C2/m(12)

[i]=3, u_{max}=0.064

Summary search results

Pseudosymmetry search among minimal supergroups within the specialized normalizer and compatible with possible high symmetry lattices

Case #	Supergroup G	Index i	Index i _k	(P,p)	Tr. Matrix	Δ _{max}	Imax
1	<i>R-3m</i> (166)	3	1	1/3a-1/3b+2/3c,a+b,-2/3a+2/3b-1/3c ; 0,0,0	$\begin{bmatrix} 1/3 & 1 & -2/3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} -1/3 & 1 & 2/3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 2/3 & 0 & -1/3 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$	0.1233	0.0640
2	<i>R-3m</i> (166)	3	1	1/3a-1/3b+2/3c,a+b,-2/3a+2/3b-1/3c; 1/6,-1/6,1/3	$\begin{bmatrix} 1/3 & 1 & -2/3 \end{bmatrix} \begin{bmatrix} 1/6 \\ -1/3 & 1 & 2/3 \end{bmatrix} \begin{bmatrix} -1/6 \\ -1/6 \end{bmatrix}$ $\begin{bmatrix} 2/3 & 0 & -1/3 \end{bmatrix} \begin{bmatrix} 1/3 \end{bmatrix}$	>tol	-

Idealized structure data

Idealized structure (supergroup setting):

166 5.5027	5.5027	20.2270	89.27 90.73	117.72	
0	1	18h	0.851722	0.703444	0.926444
0	4	6c	0.000000	1.000000	0.827334
P	1	6C	0.00000	1.000000	0.899334
Pb	1	3b	0.333333	0.666667	0.166667
Pb	2	6C	0.333333	0.666666	0.378000

lattice parameters: not symmetrized

Comparison between the idealized 'Pseudo' R-3m structure and the experimental one

Structure Data			Examina	r)							
[in CIF format]	HINT: [The option for a given filename is preferential]										
	166 5.56 5.56 20 5	.39 90 90	120								
Structure 1	Pb 1 5a Pb 2 6c P 1 6c O 1 6c O 2 18h	0 0 0 0 0.181 -0.	0.2126 0.4021 0.329 181 0.096								
Structure Data	Data										
[in CIF format]	HINT: [The option										
	166 5.5027 5.5027 20.2270 89.27 90.73 117.72 5										
	0 1	18h	0.851722	0.703444	0.926444						
Structure 2	0 4	6c	0.00000	1.000000	0.827334						
	P 1	6C	0.000000	1.000000	0.899334						
	Pb 1	35	0.333333	0.666667	0.166667						
PD 2 6C 0.33333 0.666666 0.378000											
Enter the maximum distance allowed between the paired atoms: 1 Å											
Enter the allowed to	olerance (a b c α	3γ): .5 .5 .5 5	5 5								

Example COMPSTRU: Pb₃(PO₄)₂

Experimental data

18h (x,-x,z)

02

0.0041 -0.0041 -0.0029 0.0707

Idealized 'Pseudo' data

16 5. Pb Pb P 0 0	6 56 5.56 20 1 2 1 1 2 2	39 90 9 3a 6c 6c 6c 18h	0 120 0.0000 0.0000 0.0000 0.0000 0.1810	000 000 000 000 000	0.000000 0.000000 0.000000 0.000000 0.819000	0.000 0.212 0.402 0.329 0.096	000 600 100 000 000		166 5.502 5 0 0 P Pb Pb Pb	27 5.502 1 4 1 1 2	27 20.2270 18h 6c 6c 3b 6c	89.27 90.73 1 0.851722 0.000000 0.000000 0.333333 0.333333	0.703444 0.000000 0.000000 0.666667 0.666666	0.926444 0.827334 0.899334 0.166667 0.378000
	Evalua S 0.0116	ation (d _{max.} 0.07	of the s (Å) d _{av} 07 0.0	structur 7. (Å) / 0400 0.0	re simila	arity stru desc Δ =	ctura ripto = 0.008					a n	ffine ormaliz	zer
	max disp	cima blac	al eme	ent			166 5.50 5	M0	OST	sir 20.220	nilai	CON	figurat .730003 117.7	ion 20001
	WD	Atom	Ato	omic Dis	placeme	nts	0	1 4	18) 60	h	0.18505	55 (00 (0.814945	0.093111 0.327334
	VVP	Atom	u _x	uy	uz	u	P Pb Pb	1	3a		0.00000		0.000000	0.099334
3a	(0,0,0)	Pb1	0.0000	0.0000	0.0000	0.0000	FD	2	00		0.00000			0.211555
6c	(0,0,z)	Pb2	0.0000	0.0000	-0.0013	0.0258								
6c	(0,0,z)	P1	0.0000	0.0000	-0.0028	0.0564	Ato	mic (coo	rdi	nate	es diff	erence	s:
6c	(0,0,z)	01	0.0000	0.0000	-0.0017	0.0340	alor		nrial	ble	par	amete	ers	
401-	(00	0 0044	0.0044	0.0000	0 0707								

Problem 3.18(b) Lead vanadate phase transition

Lead phosphate $Pb_3(VO_4)_2$ shows a phase transition from a paraelastic high-temperature phase with symmetry R-3m (No.166) to a ferroelastic phase of symmetry P2₁/c (No.14).

Using the structure data of the low-symmetry monoclinic phase given in the *ExerciseData* file (Problem 6b) analyse its structural pseudosymmetry with respect to the symmetry group of the high-symmetry phase. Using the program COMPSTRU evaluate the difference between the experimentally determined R-3m structure and the idealized high-symmetry structure proposed by PSEUDO.

Hint:

For the analysis of the pseudosymmetry of the monoclinic structure, use a combination of Option I and Option 4 of PSEUDO