

International Union of Crystallography Commission on Mathematical and Theoretical Crystallography

International School on Fundamental Crystallography Sixth MaThCryst school in Latin America Workshop on the Applications of Group Theory in the Study of Phase Transitions

Bogotá, Colombia, 26 November - 1st December 2018

CRYSTAL-STRUCTURE TOOLS

BILBAO CRYSTALLOGRAPHIC SERVER PRACTICAL EXERCISES

Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain

bilbao crystallographic server

Bilbao Crystallographic Server

UPV EHU

http://www.cryst.ehu.es

[The crystallographic site at the Condensed Matter Physics Dept. of the University of the Basque Country]

[Space Groups][Layer Groups][Rod Groups][Frieze Groups][Wyckoff Sets]

lections		Space Groups Retrieval Tools		News: • Space Group Selection in SYMMOD	Representation Theo	bry Applications			
Retrieval Tools Group-Subgroup Representations Golid State		GENPOS WYCKPOS HKLCOND MAXSUB	Generator: Wyckoff Pr Reflection Maximal Subgroups of Space Groups			Point Group Tables	ible Representations		
Structure Utilities Subperiodic	Structure	Utilities							
Contact us Noout us Inks Publications How to cite the server Tutorials	CELLTRA STRAIN WPASSIG TRANSTR SETSTRU	N N LU	Transform Unit Cells Strain Tensor Calcul Assignment of Wyck Transform structures Alternative Settings	s lation koff Positions s. for a given Crystal Struct	ure				
Material from the I (Septem	EQUIVSTI VISUALIZ COMPSTI STRUCTU	RU E RU IRE RELATIONS	Equivalent Descripti Visualize structures Comparison of Simil Finds the transforma	Equivalent Descriptions for a given Crystal Structure Visualize structures using Jmol Comparison of Similar Structures with the same Symmetry Finds the transformation matrix that relates the two given group-subgroup related structures within a tolerance.					
	6	CODETO	Const decomposition for a group subgroup pair		SETSTRU	Alternative Settings for a given Crv	stal Structure		

		COSETS	Coset decomposition for a group-subgroup pair	MINSUP	SETSTRU	Alternative Settings for a given Crystal Structure	
		WYCKSPLIT	The splitting of the Wyckoff Positions	07/2011: New version of the program MINSUP for	EQUIVSTRU	Equivalent Descriptions for a given Crystal Structure	
		MINSUP	Minimal Supergroups of Space Groups	monocime and monife apace groups. Details	VISUALIZE	Visualize structures using Jmol	
al from the school on the server		0007000000		NORMALIZER	COMPSTRU	Comparison of Similar Structures with the same Symmetry	
	(June 2009)	SUPERGROUPS	Supergroups of Space Groups	07/2011: New version of the program	STRUCTURE RELATIONS	Finds the transformation matrix that relates the two given group-subgroup related structures within a tolerance.	
		CELLSUB	List of subgroups for a given k-index.	normalizer database is available.			
	CrystallographyOnline:	CELLSUPER	List of supergroups for a given k-index.				
	International Schoolon	NONCHAR	Non Characteristic orbits.		Subperiodic Groups: Layer, Rod ar	nd Frieze Groups Retrieval Tools	
	the Use and Applications	COMMONSUBS Common Subaroups of Space Groups	Common Subgroups of Space Groups	Results in text/plain format	054000		
	Crystallographic	COMMONSUPER	Common Supergroups of Two Space Groups	Results in text/xml format	GENPUS	Generators and General Positions of Subpenduic Groups	
	Server	COMMONION EN	common capargroups of two opage croups		WPOS	Wyckoff Positions of Subperiodic Groups	
	Unit fut	INDEX	Index of a group subgroup pair		MAXSUB	Maximal Subgroups of Subperiodic Groups	

CRYSTAL-STRUCTURE DESCRIPTIONS

Conventional and ITA settings of space groups

Non-conventional settings of space groups

Equivalent structure descriptions

Crystal Structure Descriptions

Inorganic Crystal Structure Database

	•	-							
CC=45520			Details Bonds Pattern Structure Jmol						
Title	Redetermination	of the oxy	yger	parameters in zirco	on (Zr Si O4).				
Authors	Krstanovic, I.R.	Krstanovic, I.R.							
Reference	Reference Acta Crystallographica (1958) 11, 896-897 Link XRef SCOPUS SCIRUS Google								
Compound	compound Zr (Si O4) - [Zircon] Zirconium silicate [ABX4] [tI24] [h b a] [ZrSiO4]								
Cell	6.6164(5), 6.6164, 6.0150(5), 90., 90., 90. I41/AMDZ (141) V=263.32								
Remarks	Remarks R=0.070000 : PDC =01-073-6646 : PDF =6-266 : TYP =ZrSiO4 : XDS MIN =Zircon : At least one temperature factor missing in the paper. hk0- and 0kl-data, crystals not metamict								
Atom (site) Oxid.		х,	y, z, B, Occupancy	1				
Zr1	(4a)	4	0	0.75	0.125	0	1		
Si1	(4b)	4	0	0.75	0.625	0	1		
01	(16h)	-2	0	0.067(3)	0.198(3)	0	1		

Space Group ITA number

|4|

Lattice parameters

6.6164 6.6164 6.0150 90 90 90

Number of independent atoms in the asymmetric unit3

[atom type] [number] [WP] [x] [y] [z]

Zr I 4a 0 0.75 0.125

Si I 4b 0 0.75 0.625

O I I6h 0 0.067 0.198

Bilbao Crystallographic Server

Problem: BASIS TRANSFORMATION

$$(\mathbf{a}, \mathbf{b}, \mathbf{c}), \text{ origin O: point } X(x, y, z)$$

 $(\mathbf{P}, \mathbf{p}) \downarrow$
 $(\mathbf{a}', \mathbf{b}', \mathbf{c}'), \text{ origin O': point } X(x', y', z)$

(i) linear part: change of orientation or length

$$\begin{aligned} (\mathbf{a}', \mathbf{b}', \mathbf{c}') &= (\mathbf{a}, \mathbf{b}, \mathbf{c}) \boldsymbol{P} \\ &= (\mathbf{a}, \mathbf{b}, \mathbf{c}) \begin{pmatrix} P_{11} & P_{12} & P_{13} \\ P_{21} & P_{22} & P_{23} \\ P_{31} & P_{32} & P_{33} \end{pmatrix} & = (P_{11}\mathbf{a} + P_{21}\mathbf{b} + P_{31}\mathbf{c}, \\ P_{12}\mathbf{a} + P_{22}\mathbf{b} + P_{32}\mathbf{c}, \\ P_{13}\mathbf{a} + P_{23}\mathbf{b} + P_{33}\mathbf{c}). \end{aligned}$$

(ii) origin shift by a shift vector $p(p_1, p_2, p_3)$:

O' = O + pthe origin O' has coordinates (p₁,p₂,p₃) in the old coordinate system Transformation of the coordinates of a point X(x,y,z):

$$\begin{array}{c} (X') = (P,p)^{-1}(X) \\ = (P^{-1}, -P^{-1}p)(X) \end{array} \qquad \begin{array}{c} \mathbf{x'} \\ \mathbf{y'} \\ \mathbf{z'} \end{array} = \left(\begin{array}{c} P_{11} & P_{12} & P_{13} & p_{1} \\ P_{21} & P_{22} & P_{23} & p_{2} \\ P_{31} & P_{32} & P_{33} & p_{3} \end{array} \right)^{-1} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{array}$$

special cases

-origin shift (**P**=**I**):

-change of basis (
$$\mathbf{p}=\mathbf{o}$$
): $\mathbf{x}' = \mathbf{P}^{-1}\mathbf{x}$

 $oldsymbol{x}' = oldsymbol{x} - oldsymbol{p}$

Transformation of symmetry operations (W,w):

$$(W',w')=(P,p)^{-1}(W,w)(P,p)$$

Transformation by (\mathbf{P}, \mathbf{p}) of the unit cell parameters:

metric tensor **G**: **G**[']=**P**^t**GP**

Problem: ITA SETTINGS STRUCTURE DESCRIPTIONS

SETSTRU

ITA-settings for the space group C2/c (No.15)

Choose the initial and final space groups symbols

in matrices must be read by columns. P is the transformation from standard to non-

initial setting structure description

X_f=(P,p)⁻¹X_i

final setting structure description (a, b, c)_n = (a, b, c)_s P

P ⁻¹	Р	Setting	Final	Initial
a,b,c	a,b,c	C 1 2/c 1	0	0
c,b,-a-c	-a-c,b,a	A 1 2/n 1	0	0
-a-c,b,a	c,b,-a-c	/ 1 2/a 1	0	0
c,-b,a	c,-b,a	A 1 2/a 1	0	0
a,-b,a-c	a,-b,-a-c	C 1 2/n 1	0	0
-a-c,-b,c	-a-c,-b,c	/ 1 2/c 1	0	0
b,c,a	c,a,b	A 1 1 2/a	0	0
a,c,-a-b	a,-a-c,b	B 1 1 2/n	0	0
-a-b,c,b	-a-c,c,b	/ 1 1 2/b	0	0
a,-c,b	a,c,-b	B 1 1 2/b	0	0
b,-c,-a-b	-a-c,a,-b	A 1 1 2/n	0	0
-a-b,-c,a	c,-a-c,-b	/112/a	0	0
c,a,b	b,c,a	<i>B</i> 2/ <i>b</i> 1 1	0	0
h . h .	h	00/- 11	-	-

EXERCISES

Problem 3.1

Compare the two structure descriptions and check if they belong to the same structure type.

Print 2 entries selected.

CC=Collection Code: [AB2X4]=ANX Form: [cF56]=Pearson: [e d a]=Wyckoff Symbol: [Al2MgO4]=Structure Type: ***Click the ANX, Pearson or Wyckoff Symbol to find structures with that symbol***.

CC=45520		D	etail	s Bonds Pat	tern Structure	Jm	ol	CC=31101		Det	ails	Bonds Pat	ttern Structure) (Jr	nol
Title	Redeterminat	tion of the	e ox	kygen parameters	in zircon (Zr Si O	4).		Title	Die Kristallstruktur von Zirkon und die Kriterien fuer spez					le	
Authors	Krstanovic, I	.R.							Lagen in tetragonalen kaunigruppen						
Reference	Acta Crystall	ographica	(19	958) 11 , 896-897 RUS Google	,			Authors	Wyckoff, R.W.G.;Hendricks, S.B. Zeitschrift fuer Kristallographie, Kristallogometrie, Kristalloh			nvsik	ι.		
Compound	compound Zr (Si O4) - [Zircon] Zirconium silicate [ABX4] [tI24] [h b a] [ZrSiO4]]	Reference	Kristallchemie (1927) 66, 73-102 Link XRef SCOPUS SCIRUS Google Also: Philosophical Magazine, Serie (1926) 1, 1151-1) 1 , 1151-1151	,	~	
Cell	6.6164(5), 6.6164, 6.0150(5), 90., 90., 90. I41/AMDZ (141) V=263.32						Compound	Zr (Si O4) - [Zircon] Zirconium silicate [ABX4] [tI24] [h b a] [ZrSiO4]							
Remarks R=0.070000 : PDC =01-073-6646 : PDF =6-266 : TYP =ZrSiO4 : XDS MIN =Zircon : At least one temperature factor missing in the paper				:	Cell	ell 6.61, 6.61, 5.98, 90., 90., 90. I41/AMDS (141) V=261.28									
	hk0- and 0kl	-data, cry	sta	ls not metamict				Remarks	COR MIN =Ziro At least one te	con : PDF mperatur	=6- e fac	266 : TYP =Zr ctor missing in	SiO4 : XDS the paper.		
Atom (site) Oxid.		x,	y, z, B, Occupar	су				Revised data o	f 31084	pape	er.			
Zr1 ((4a)	4	0	0.75	0.125	0	1								
Si1 ((4b)	4	0	0.75	0.625	0	1	Atom (site)) Oxid.		x,	, z, B, Occup	ancy		
01 ((16h)	-2	0	0.067(3)	0.198(3)	0	1	Zr1	(4a)	4	0	0	0	0	1
								Si1	(4b)	4	0	0	0.5	0	1
								01	(16h)	-2	0	0.2(1)	0.34(2)	0	1

origin choice 2

origin choice I

Structure I: Space group $I4_1/amd$ (141) a=6.60 Å c=5.88 Å origin choice I at $\overline{4}m2$

Structure 2: Space group $I4_1/amd$ (141) a=6.616 Å c=6.015 Å origin choice 2 at 2/m at 0,-1/4,1/8 from $\overline{4}m2$

Compare the two structure descriptions and check if they belong to the same structure type.

Hint: In order to compare the different data, the parameters of Structure I are to be transformed to 'origin at center 2/m', i. e. ORIGIN CHOICE 2.

O(2)=O(1)+p, p=0,-1/4,1/8

Problem: STRUCTURE TRANSFORMATION **TRANSTRU**

Transform Structure

TRANSTRU can transform a structure in two ways:

- To a lower symmetry space group. The transformed structure is given in the low symmetry space group basis, taking care of all possible splittings of the Wyckoff positions.
- With an arbitrary matrix. The structure, including the cell parameters and the atoms in the unit cell, is transformed with an arbitrary matrix introduced by the user.

Only the default choice for the conventional setting of the space groups is used.

HINT: [T	he option fo	r a given filer	name is preferential]		
5.6748	5.6748	20.3784	90 90 120		
Pb	1	3a	0.000000	0.000000	0.00000
Pb	2	6c	0.000000	0.000000	0.207100
PV	3	6C	0.00000	0.000000	0.388400
0	4	6C	0.000000	0.000000	0.324000
<u>0</u>	5	18i	0.842400	0.157600	0.430100
asymmetric default unit settings					
Transfor Transfor	m structur m structur	<u>e to a subg</u> e with an ai	roup basis ⊙ rbitrary matrix ⊝		
					_
			Show	ar	hitrary
	HINT: [T 166 5.6748 5 Pb PV 0 0 0 0 Transfor Transfor	HINT: [The option for 166 5.6748 5.6748 5 Pb 1 Pb 2 PV 3 0 4 0 5 asyn Transform structur Transform structur	HINT: [The option for a given filer 166 5.6748 5.6748 20.3784 5 Pb 1 3a Pb 2 6c PV 3 6c 0 4 6c 0 5 18i asymptut Transform structure to a subg Transform structure with an an	HINT: [The option for a given filename is preferential] 166 5.6748 5.6748 20.3784 90 90 120 5 Pb 1 3a 0.000000 Pb 2 6c 0.000000 0 4 6c 0.000000 0 5 18i 0.842400 asymmetric Unit Transform structure to a subgroup basis ⊙ Transform structure with an arbitrary matrix ○	HINT: [The option for a given filename is preferential] 166 5.6748 5.6748 20.3784 90 90 120 5 5 Pb 1 3a 0.000000 0.000000 Pb 2 6c 0.000000 0.000000 PV 3 6c 0.000000 0.000000 O 4 6c 0.000000 0.000000 O 5 18i 0.842400 0.157600 Transform structure to a subgroup basis \circ Transform structure with an arbitrary matrix \circ

Example **TRANSTRU**: Pb₃(VO₄)₂

High symmetry structure

166					
5.674	48 5.	6748	20.3784 90	90 120	
5					
Pb	1	3a	0.00000	0.000000	0.000000
Pb	2	6c	0.00000	0.000000	0.207100
PV	3	6c	0.00000	0.000000	0.388400
0	4	6c	0.000000	0.000000	0.324000
0	5	18h	0.842400	0.157600	0.430100

Example TRANSTRU: Pb₃(VO₄)₂

Low symmetry structure

014 7.541657 7	5.67480	0 9.8290	041 90.000000 11	5.749245 90.0000	00
Pb	1	2a	0.00000	0.00000	0.000000
Pb	2	4e	0.621300	0.00000	0.207100
PV	3	4e	0.165200	0.00000	0.388400
0	4	4e	0.972000	0.00000	0.324000
0	5	4e	0.290300	0.736400	0.008900
0	5_2	4e	0.290300	0.500000	0.772500
0	5_3	4e	0.709700	0.763600	0.491100

View Structure (with Jmol applet)

Apply the program **TRANSTRU** in order to check if the two structure descriptions belong to the same structure type.

EXERCISES

- Structure I: Space group $I4_1/amd$ (141) a=6.60 Å c=5.88 Å origin choice I at $\overline{4}m2$
- Structure 2: Space group $I4_1/amd$ (141) a=6.616 Å c=6.015 Å origin choice 2 at 2/m at 0,-1/4,1/8 from $\bar{4}m2$

Coordinate transformation Origin choice 2
$$\longrightarrow$$
 Origin choice I $p=0,1/4,-1/8$

Problem: EQUIVALENT DESCRIPTIONS EQUIVSTRU

How to find all possible equivalent descriptions of a crystal structure?

Number of equivalent descriptions= |N(G)|/|G| index of the group in its Euclidean normalizer

Equivalent descriptions: CsCl EQUIVSTRU

Equivalent Descriptions of Crystal Structures

Equivalent Structures

Given a space group ITA number, the cell parameters (separated with spaces) and the atom positions, the program EQUIVSTRU transforms the corresponding structure with the elements of the euclidean normalizer of the space group. All the transformed structures are equivalent symmetry descriptions of the given initial structure. The atom positions are identified generating the Wyckoff sets.

Only the default choice for the conventional setting of the space groups is used.

```
Structure Data
                                                                 Examinar...
[in CIF format]
            HINT: [The option for a given filename is preferential]
            # Space Group ITA number
            221
            # Lattice parameters
            5.3 5.3 5.3 90 90 90
            # Number of independent atoms in the asymmetric unit
            2
              [atom type] [number] [WP] [x] [y] [z]
                   1a 0
                           0
            Cs 1
            Cl 1 1b 0.5 0.5 0.5
Structure
                             space group in
                             default setting
```

Example EQUIVSTRU: CsCI

Equivalent Descriptions of Crystal Structures

Cs1

1a (0,0,0)

m-3m (0.000000,0.000000,0.000000)

(0.000000, 0.000000, 0.000000)

Cs1 1b (1/2,1/2,1/2) m-3m (0.500000,0.500000,0.500000) (0.500000,0.500000,0.500000)

Symmetry-equivalent Wyckoff positions

WYCKOFF SETS

Additional Generators for the Normalizer of the Group 221 (Pm-3m)

Additional generators of Euclidean normalizer (Im-3m) a,b,c

x+1/2,y+1/2,z+1/2	[1	0	0] [1/2]
	[0	1	0] [1/2]
	[0	0	1] [1/2]

Wyckoff Sets of Space Group 221 (Pm-3m)

NOTE: The program uses the default choice for the group settings.

Letter	Mult	SS	Rep.	Equivalent Positions
n	48	1	(x, y, z)	n
m	24	m	(x, x, z)	m
f	6	4m. m	(x, 1/2 , 1/2)	ef
е	6	4m. m	(x, 0, 0)	ef
d	3	4/mm. m	(1/2 , 0, 0)	cd
С	3	4/mm. m	(0, 1/2 , 1/2)	cd
b	1	m-3m	(1/2 , 1/2 , 1/2)	ab
а	1	m-3m	(0, 0, 0)	ab

EXERCISES	Equivalent structure
	descriptions
Problem 3.2b	Space group: P4/n

Exercise 6.4. $P(C_6C_5)_4[MoNCl_4]$ is tetragonal, spac

Atom	Wyckoff	Coordinate	triplets	
	$\operatorname{position}$	x	y	z
Р	2b	0.25	0.75	0
Mo	2c	0.25	0.25	0.121
Ν	2c	0.25	0.25	-0.093
C1	8g	0.362	0.760	0.141
C2	8g	0.437	0.836	0.117
\mathbf{Cl}	8g	0.400	0.347	0.191

N(P4/n) = P4/mmm (a',b',1/2c)

a'=1/2(a-b), b'=1/2(a+b)

EXERCISES

Problem 3.3

EQUIVSTRU

KAsF₆

BaSnF₆

148			
7.348	07	. 3480	7.2740 90.00 90.00 120.00
3			
К	1	3b	0.333333 0.666666 0.166666
As	1	3a	000
F	1	18f	0.1292 0.2165 0.1381

56
5

148			
7.427	797.	4279	7.4180 90.00 90.00 120.00
3			
Sn	1	3b	0 0 0.5
Ba	1	3a	000
F	1	18f	0.2586 0.8262 0.0047

Space-group symmetry: R-3 Euclidean normalizer: R-3m(-a,-b, 1/2c) Coset representatives: x,y,z; x,y,z+1/2; -y,-x,z; -y,-x,z+1/2;

CRYSTAL-STRUCTURE RELATIONSHIPS

Comparison of crystal structures

Phase transitions

Symmetry relations between crystal structures

Crystal-structure relationships

COMPARISON OF CRYSTAL STRUCTURES

normalizer standard

affine

standard

COMPSTRU

Lattice deformation

Atomic displacement

field

standard

maximal atomic displacements

maximal displacements of the paired atoms

Bergerhoff et al. Acta Cryst. (1999), B55, 147

Problem: COMPARISON OF STRUCTURES COMPSTRU

Comparison of crystal structures of the same symmetry

Example COMPSTRU: Pb₃(PO₄)₂

Structure #1

15						
13.	800 5.	691	9.420	90.0	102.3	90.0
7						
Pb	1	4e	0.0	0000	0.2910	0.2500
Pb	2	8f	0.3	3170	0.3090	0.3520
Р	1	8f	0.5	5990	0.2410	0.4470
0	1	8f	0.6	5430	0.0300	0.3920
0	2	8f	0.6	5340	0.4640	0.3740
0	3	8f	0.6	5420	0.2800	0.6120
0	4	8f	0.4	1910	0.2220	0.4200

Evaluation of the structure similarity

S	d _{max.} (Å)	d _{av.} (Å)	Δ
0.0116	0.3386	0.1430	0.066

structural descriptor $\Delta = 0.066$

Atom pairings and distances

	WD	Atom	Atomic Displacements							
	VVP	Atom	u _x	uy	uz	u				
4e	(0,y,1/4)	Pb1	0.0000	-0.0410	0.0000	0.2333				
8f	(x,y,z)	Pb2	0.0019	-0.0590	0.0043	0.3386				
8f	(x,y,z)	P1	0.0043	0.0090	0.0041	0.0816				
8f	(x,y,z)	01	0.0010	-0.0085	-0.0035	0.0617				
8f	(x,y,z)	02	0.0100	0.0145	0.0145	0.1910				
8f	(x,y,z)	O3	0.0020	-0.0300	0.0050	0.1777				
8f	(x,y,z)	04	0.0025	0.0280	-0.0055	0.1733				

maximal displacement d_{max}=0.34 Å

Structure #2

15						
13.	967	5.560	40.778	90.0 16	6.713	90.0
7						
Pb	1	4e	0.0000	0.0000	0.750	00
Pb	2	8f	0.0000	0.0000	0.856	53
Ρ	1	8f	0.0000	0.0000	0.951	1
0	1	8f	0.0000	0.0000	0.914	15
0	2	8f	0.2715	0.7285	0.888	35
0	3	8f	0.9570	0.5000	0.117	70
0	4	8f	0.7285	0.2715	0.611	15

affine normalizer

Most similar configuration to Structure #1

015 13.967000 7	5.560000	9.630055 90.000000	103.295059	90.00000
Pb 1	4e	0.00000	0.250000	0.250000
Pb 2	8f	0.318900	0.250000	0.356300
P 1	8f	0.603300	0.250000	0.451100
0 1	8£	0.493500	0.250000	0.414500
0 2	8£	0.644000	0.478500	0.388500
0 3	8£	0.644000	0.250000	0.617000
0 4	8f	0.644000	0.021500	0.388500

Example COMPSTRU: Pb₃(PO₄)₂

-C 2yc [C 1 2/c 1] #15 a=13.967Å b=5.560Å c=9.630Å α=90.000° β=103.295° γ=90.000°

	Structure #1
	Structure #2
S	structure #2 (most similar)
	Compare Structures
	Compare Lattices
	Atomic Displacements
Str	ucture 1: opaque
Str O Str	ucture 1:
Str Str	ucture 1: opaque ball&stick stick cross ucture 2: opaque ball&stick stick cross
Str Str	ucture 1: opaque ball&stick stick cross ucture 2: opaque ball&stick stick cross ball&stick stick cross Show Distances cutoff: 0.5 S

JSmol: visualization

JSmol

The reference structure is shown, with its unit cell in black. Structure #2 is shown, with its unit cell in lightgreen. Its unit cell and offset have been calculated to be the best possible fit to the reference structure. Scroll down to see details of the analysis.

Problem: COMPARISON OF STRUCTURE COMPSTRU DESCRIPTIONS

Problem 3.4

In ICSD can be found several structure data sets of ε -Fe₂O₃, all of them of symmetry Pna2₁(No.33). Compare the following two descriptions and check if they belong to the same structure type.

Problem 3.4

ICSD data for ε -Fe₂O₃,

ICSD for WWW

Details of the selected entries

(Print) 2 entries selected.

CC=Collection Code: [AB2X4]=ANX Form: [cF56]=Pearson: [e d a]=Wyckoff Symbol: [Al2MgO4]=Structure Type:

Click the ANX, Pearson or Wyckoff Symbol to find structures with that symbol.

CC=173024			Detai	s Bonds Pat	tern Structure) (Jmol)	CC=41	15250			Details	Bonds P	attern Stru	cture (J
Title	High- and	low-te	emperature crys	tal and magnetic	structure of epsil	on-Fe2	Title		Synthesis and structural analysis of epsilon-(Fe2 O3).					
	O3 and the	eir cor	relation to its m	agnetic propertie	s.		Autho	rs	Kelm, K.;Mader, W.					
Authors	Gich, M.; Frontera, C.; Roig, A.; Taboada, E.; Molins, E.; Rechenberg, H.R.; Ardisson, J.D.; Macedo, W.A.A.; Ritter, C.; Hardy, V.; Sort, J.; Skumryev, V.; Nogues, J.						Refer	ence	Zeitschrif 2383-238	t fuer Anorga 9 6 SCOPUS S	anische und A	Allgemeine C	hemie (2005)	631,
Reference	Chemistry Link XRef	of Ma SCO	terials (2007) 1 PUS SCIRUS G	8 , 3889-3897 oogle			Comp	ound	Fe2 03 -	Diiron(III) o	xide - epsilo	n [A2X3] [o	P40] [a10]	[AlFeO3
Compound	Fe2 O3 - 1	Iron(I	II) oxide - epsilo	on [A2X3] [oP40	0] [a10] [AlFeO	3]	Cell		5.0715(2 PNA21 (), 8.7359(4), 33) V=417.2	, 9.4178(4), 24	90, 90, 90		
Cell	5.0885(5), PNA21 (3	5.0885(5), 8.7802(14), 9.4709(13), 90., 90., 90. PNA21 (33) V=423.14					Rema	rks	R=0.039	000 : TYP =A	IFeO3 : XDP	RVP		
Remarks	R=0.013300 : NDP RVP SNP TEM =200 : TYP =AIFeO3 : XDP MAG At least one temperature factor missing in the paper.						Atom	(site)	Oxid.	x, y, z, B, (Occupancy			
							Fe1	(4a)	3	0.6768(9)	0.8427(5)	0.0000000	0.050(2)	1.00000
Atom (site)) Oxid.		x, y, z, B, Occu	ipancy			Fe2	(4a)	3	0.204(1)	0.3509(8)	0.7726(9)	0.063(3)	1.00000
01 (4 02 (4	4a) -2 4a) -2	2	0.978(2) 0.515(2)	0.3282(15) 0.4907(17)	0.4314(11) 0.4187(16)	0 1 0 1	Fe3 Fe4 O1	(4a) (4a) (4a)	3 3 -2	0.807(1) 0.6852(9) 0.337(2)	0.6605(8) 0.4634(5) 0.853(2)	0.693(1) 0.983(2) 0.887(1)	0.069(2) 0.046(1) 0.0063326	1.00000 1.00000 1.00000
03 (4 04 (4	4a) -2 4a) -2	2	0.650(3) 0.160(3)	0.9979(13) 0.1637(15)	0.1883(9) 0 1 0.1956(7) 0 1	9) 01 7) 01	02 03	(4a) (4a)	-2 -2	0.019(3) 0.453(3)	0.474(2) 0.677(2)	0.610(2) 0.651(2)	0.0063326	1.00000
05 (4 06 (4 Fe1 (4	+a) -2 +a) -2 +a) 3	2	0.527(2) 0.1928(11) 0.6826(6)	0.1637(19) 0.1506(6) 0.0291(3)	0.0009(7) 0.9362(9) 0.5807(3)	0 1 0 1 0 1	04 05 06	(4a) (4a) (4a)	-2 -2 -2	0.527(3) 0.868(3) 0.336(3)	0.669(2) 0.334(2) 0.513(1)	0.100(1) 0.863(1) 0.891(1)	0.0063326 0.0063326 0.0063326	1.00000 1.00000 1.00000
Fe3 (4 Fe4 (4	4a) 3 4a) 3		0.1858(10) 0.8104(7)	0.1519(6) 0.1580(4)	0 0.3071(3)	0 1 0 1								

Isoconfigurational Problem: Structure Types **COMPSTRU** Lima-de Faria et al. Acta Cryst. (1990), A46, I Isoconfigurational Isopointal structure types structure types Space group Isopointal Crystallographic orbits Geometrical interrelationships Wyckoff position sequence Pearson symbol

Allmann, Hinek. Acta Cryst. (2007), A63, 412 Inorganic Crystal Structure Database (2009) http://icsdweb.fiz-karlsruhe.de

isoconfigurational structure types?

Composition type (ANX formula) Range of c/a ratio β-range Atomic coordinates Chemical properties

Problem: Isoconfigurational StructureTypes COMPSTRU

Problem 3.3(cont.)

Do these compounds belong to the same structure type ?

KAsF₆

EXERCISES

148			
7.348	07.	3480	7.2740 90.00 90.00 120.00
3			
Κ	1	3b	0.333333 0.666666 0.166666
As	1	Зa	000
F	1	18f	0.1292 0.2165 0.1381

BaSnF₆

148 7.3965 7.3965 7.2826 90.00 90.00 120.00 3 Ba 1 3b 0.333333 0.6666666 0.1666666 Ir 1 3a 0 0 0 F 1 18f 0.0729 0.2325 0.1640

148			
7.427	97.	4279	7.4180 90.00 90.00 120.00
3			
Sn	1	3b	000.5
Ba	1	3a	000
F	1	18f	0.2586 0.8262 0.0047

Koch, Fischer. MathCryst Satell., ECM22, Budapest 2004

Problem 3.3

SOLUTION

tolerances Enter the maximum distance allowed between the paired atoms: 1 Å Enter the allowed tolerance (a b c $\alpha \beta \gamma$): .5 .5 .5 5 5 5
Example: STRUCTURE TYPES COMPSTRU

STUDY OF THE FAMILY ABF6

KCrF6	LiNbF6	VNbF6	HgRhF6	MgPbF6	InAsF6
RbCrF6	LiRuF6	CoZrF6	NiRhF6	ZnPbF6	CsNbF6
KAsF6	LiRhF6	PdPtF6	CaCrF6	NiPbF6	HgCrF6
RuAsF6	LiTaF6	FeNbF6	MgCrF6	MgPdF6	CoSnF6
CsAsF6	LiOsF6	CaSnF6	CdCrF6	CaPdF6	CsNbF6
RbSbF6	LilrF6	FeZrF6	MnSnF6	ZnPdF6	MnPtF6
BaSnF6	LiPtF6	CuZrF6	FeSnF6	CdPdF6	CdRhF6
CsBrF6	LiAuF6	CaPtF6	ZnSnF6	LiSbF6	NaBiF6
CsSbF6	NiPtF6	ZnPtF6	NiSnF6	BalrF6	TIAsF6
CsBiF6	CdPtF6	CoPtF6	CuSnF6	RbBiF6	
CsUF6	LiPF6	MgRhF6	CdSnF6	KRhF6	
KOsF6	LiAsF6	CaRhF6	CdTiF6	CsReF6	
NaCrF6	PdZrF6	ZnRhF6	LiBiF6	KPF6	

STUDY OF THE FAMILY ABX3

R-3 (148);WP sequence: fc²; Pearson: hR10

		_	-	_		_									_		_								
	MgO3	3 CoO	FeSI	MnNi	NiO37	CoM	O3T	MnO:	CdO	GeMg	MnO	GeO?	FeO?	CaO3	CI3M	CuO	GeMr	MgO	CdGe	AsLi	NaO3	CrSi	(AIC	KO3	H4F3N
MgO3Ti	0	0,0	0,2	0,3	0,1	0,3	0,3	0,2	0,6	0,2	0,2	0,3	0,1	0,5	0,3	0,2	0,4	0,4	0,6	0,5	0,6	2,4	2,2	1,2	1,7
CoO3Ti	0,0	0	0,2	0,3	0,1	0,3	0,3	0,2	0,6	0,2	0,2	0,3	0,0	0,5	0,3	0,2	0,4	0,3	0,6	0,4	0,6	2,4	2,2	1,1	1,7
(FeSb0.5)MnO3	0,2	0,2	0	0,4	0,3	0,5	0,4	0,2	0,7	0,1	0,1	0,1	0,2	0,3	0,3	0,2	0,2	0,2	0,4	0,3	0,4	2,6	2,4	1,1	1,6
MnNiO3	0,3	0,3	0,4	0	0,2	0,1	0,2	0,3	0,5	0,4	0,4	0,5	0,3	0,7	0,5	0,4	0,6	0,5	0,8	0,6	0,8	2,3	2,2	1,2	1,7
NiO3Ti	0,1	0,1	0,3	0,2	0	0,2	0,3	0,3	0,6	0,3	0,3	0,4	0,2	0,6	0,4	0,3	0,5	0,4	0,7	0,5	0,6	2,3	2,1	1,2	1,7
CoMnO3	0,3	0,3	0,5	0,1	0,2	0	0,3	0,4	0,6	0,4	0,5	0,5	0,4	0,8	0,5	0,4	0,6	0,6	0,8	0,7	0,8	2,3	2,1	1,2	1,8
O3TiZn	0,3	0,3	0,4	0,2	0,3	0,3	0	0,3	0,5	0,3	0,4	0,4	0,3	0,6	0,5	0,4	0,5	0,5	0,7	0,6	0,7	2,4	2,3	1,2	1,6
MnO3Sn	0,2	0,2	0,2	0,3	0,3	0,4	0,3	0	0,6	0,2	0,2	0,3	0,2	0,4	0,3	0,3	0,3	0,3	0,5	0,4	0,5	2,6	2,4	1,2	1,6
CdO3Ti	0,6	0,6	0,7	0,5	0,6	0,6	0,5	0,6	0	0,7	0,7	0,8	0,7	1,0	0,8	0,8	0,9	0,8	1,0	0,9	1,0	4,9	2,5	1,6	1,8
GeMgO3	0,2	0,2	0,1	0,4	0,3	0,4	0,3	0,2	0,7	0	0,2	0,2	0,2	0,4	0,2	0,2	0,2	0,2	0,4	0,3	0,4	2,6	2,4	1,0	1,6
MnO3Ti	0,2	0,2	0,1	0,4	0,3	0,5	0,4	0,2	0,7	0,2	0,0	0,2	0,1	0,3	0,3	0,1	0,2	0,2	0,4	0,3	0,4	2,5	2,3	1,1	1,6
GeO3Zn	0,3	0,3	0,1	0,5	0,4	0,5	0,4	0,3	0,8	0,2	0,2	0	0,3	0,2	0,3	0,3	0,1	0,2	0,3	0,2	0,3	2,7	2,5	1,0	1,6
FeO3Ti	0,1	0,0	0,2	0,3	0,2	0,4	0,3	0,2	0,7	0,2	0,1	0,3	0	0,4	0,3	0,1	0,3	0,3	0,5	0,4	0,5	2,4	2,2	1,1	1,7
CaO3Sn	0,5	0,5	0,3	0,7	0,6	0,8	0,6	0,4	1,0	0,4	0,3	0,2	0,4	0	0,5	0,4	0,1	0,2	0,2	0,2	0,2	2,9	2,7	1,0	1,6
CI3MnNa	0,3	0,3	0,3	0,5	0,4	0,5	0,5	0,3	0,8	0,2	0,3	0,3	0,3	0,5	0	0,3	0,3	0,2	0,5	0,3	0,4	3,1	2,8	1,2	2,0
CuO3V	0,2	0,2	0,2	0,4	0,3	0,4	0,4	0,3	0,8	0,2	0,1	0,3	0,1	0,4	0,3	0	0,3	0,3	0,5	0,4	0,5	2,4	2,2	1,1	1,7
GeMnO3	0,4	0,4	0,2	0,6	0,5	0,6	0,5	0,3	0,9	0,2	0,2	0,1	0,3	0,1	0,3	0,3	0	0,1	0,2	0,1	0,2	5,1	2,6	1,0	1,6
MgO3Si	0,4	0,3	0,2	0,5	0,4	0,6	0,5	0,3	0,8	0,2	0,2	0,2	0,3	0,2	0,2	0,3	0,1	0	0,2	0,1	0,2	5,0	2,5	1,0	1,6
CdGeO3	0,6	0,6	0,4	0,8	0,7	0,8	0,7	0,5	1,0	0,4	0,4	0,3	0,5	0,2	0,5	0,5	0,2	0,2	0	0,2	0,2	5,1	2,7	1,0	1,7
AsLiO3	0,5	0,4	0,3	0,6	0,5	0,7	0,6	0,4	0,9	0,3	0,3	0,2	0,4	0,2	0,3	0,4	0,1	0,1	0,2	0	0,1	2,9	4,8	0,9	1,7
NaO3Sb	0,6	0,6	0,4	0,8	0,6	0,8	0,7	0,5	1,0	0,4	0,4	0,3	0,5	0,2	0,4	0,5	0,2	0,2	0,2	0,1	0	5,2	2,8	1,0	1,7
CrSiTe3	2,4	2,4	2,6	2,3	2,3	2,3	2,4	2,6	4,9	2,6	2,5	2,7	2,4	2,9	3,1	2,4	5,1	5,0	5,1	2,9	5,2	0	0,4	5,4	3,1
(AICu)PSe3	2,2	2,2	2,4	2,2	2,1	2,1	2,3	2,4	2,5	2,4	2,3	2,5	2,2	2,7	2,8	2,2	2,6	2,5	2,7	4,8	2,8	0,4	0	3,1	3,1
KO3Sb	1,2	1,1	1,1	1,2	1,2	1,2	1,2	1,2	1,6	1,0	1,1	1,0	1,1	1,0	1,2	1,1	1,0	1,0	1,0	0,9	1,0	5,4	3,1	0	1,4
H4F3NSn	1,7	1,7	1,6	1,7	1,7	1,8	1,6	1,6	1,8	1,6	1,6	1,6	1,7	1,6	2,0	1,7	1,6	1,6	1,7	1,7	1,7	3,1	3,1	1,4	0
						1								1		1							1		

Bergerhoff (structure descriptor)

FeTiO₃

FePSe₃

Bilbao Server (global distortion)

0.3 FeTiO₃ (NaSbO₃)
 0.4 FePSe₃

Crystal-structure relationships

STRUCTURAL PHASE TRANSITIONS

STRUCTURE RELATIONS

Given the high- and low-symmetry phases:

 I. Characterize the symmetry reduction between the high- and low-symmetry phases

 -index of the group-subgroup pair: INDEX
 -group-subgroup graph, (P,p): SUBGROUPGRAPH

2. Domain-structure analysis

3. Determine the so-called *reference* structure, *i.e.* high-symmetry structure in the low-symmetry basis -lattice parameters: CELLTRANS -atomic coordinates: TRANSTRU or WYCKSPLIT

4. Evaluate the lattice strain and the atomic displacements accompanying the phase transitions: STRAIN, COMPSTRU

Problem 3.5 Cristobalite phase transitions

At low temperatures, the space-group symmetry of cristobalite is given by the space group is P4₁2₁2 (92) with lattice parameters a=4.9586Å, c=6.9074Å. The four silicon atoms are located in Wyckoff position 4(a) ..2 with the coordinates x, x, 0; -x, -x, 1/2; 1/2-x, 1/2+x, 1/4; 1/2+x, 1/2-x, 3/4, x = 0.3028.

During the phase transition, the tetragonal structure is transformed into a cubic one with space group Fd-3m (227), a=7.147Å. It is listed in the space-group tables with two different origins. If 'Origin choice 2' setting is used (with point symmetry -3m at the origin), then the silicon atoms occupy the position 8(a) -43m with the coordinates 1/8, 1/8, 1/8; 7/8, 3/8, 3/8 and those related by the face-centring translations.

Describe the structural distortion from the cubic to the tetragonal phase by the determination of (i) the displacements if the Si atoms in relative and absolute units, and (ii) the changes on the lattice parameters during the transition.

Example: α -Cristobalite $\rightarrow \beta$ -Cristobalite

2 entries selected.

CC=Collection Code: [AB2X4]=ANX Form: [cF56]=Pearson: [e d a]=Wyckoff Symbol: [Al2MgO4]=Structure Type: ***Click the ANX, Pearson or Wyckoff Symbol to find structures with that symbol***.

CC=44094		Details	Bonds	Pattern	Structure	Jmol	CC=44095		Details	Bonds	Patte	rn St	ructur	e Jn	mol
Title	First-pr	inciples stu	dy of crysta	alline silica.			Title	First-p	rinciples st	tudy of cry	stalline sil	ica.			
Authors	Feng Li	u;Garofalir	ni, H.;King-S	Smith, D.;V	anderbilt, D.		Authors	Feng Liu;Garofalini, H.;King-Smith, D.;Vanderbilt, D.							
Reference	Physica 12528 Link X Also: P	I Review, 9 -12534 Ref SCOP Phase Trans	49,	Reference	Physical Review, Serie 3. B - Condensed Matter (1994) 49, 12528-12534 Link XRef SCOPUS SCIRUS Google Also: Phase Transition (1992) 38, 127-220),				
Compound	nd Si O2 - [Cristobalite alpha] Silicon oxide - HT [AX2] [tP12] [b a] [TeO2(alpha)]						Compound	Si O2 [h a]	- [Cristol []	balite bet	a] Silicon	oxide - H	IT [A)	(2] [cF	F24]
Cell	4.9586, 4.9586, 6.9074, 90., 90., 90. P41212 (92) V=169.84						Cell	7.147, 7.147, 7.147, 90., 90., 90. FD3-MS (227) V=365.07							
Remarks	MIN =0 : THE T At least No R va Metasta	Cristobalite YP =TeO2 t one temp alue given able up to s	alpha : PDC (alpha) : XD erature fact in the paper 500 K (2nd	C =01-089- S tor missing r. ref. , Toma	3434 : PDF =: in the paper. szewski), abov	39-1425 /e Fd3-m	Remarks	MIN =Cristobalite beta : PDC =01-089-3435 : PDF =4-359 THE XDS At least one temperature factor missing in the paper. The coordinates are those given in the paper but the atom distances do not agree with those calculated during testing						9 : nic g.The	
Atom (cito) Ovid			0				No R v	ates are p alue given	in the pa	per.				
Atom (site	e) Oxia.		х, у, z, в,	Occupanc	y 			Metast	able above	e 500 K (2	nd ref. , T	omaszev	vski), s	stable a	above
Si1 (4a)	4	0.3028	0.3028	0 1916	0 1		27 10 1	•						
01 (00)	-2	0.2365	0.1095	0.1010	0 1	Atom (site) Oxid.		x, y, z, B	, Occupa	ncy			
							Si1 (8 01 (9	a) 6h)	4 -2	0 0.125	0 0.081	0 0.169	0	1 0.1667	7

Origin choice 2: Si 8a 1/8,1/8,1/8 7/8,3/8,3/8 I. Characterize the symmetry break between the high- and low-symmetry phases
 -index of the group-subgroup pair: INDEX
 -transformation matrix: SUBGROUPGRAPH

2. Calculate the lattice parameters of the lowsymmetry phase: CELLTRANS

3. Calculate the atomic coordinates of the lowsymmetry phase: TRANSFORM (or WYCKSPLIT)

4. Evaluate the lattice strain and the atomic displacements accompanying the phase transitions: STRAIN, COMPSTRU

Step I. Determination of the index of the group-subgroup pair

formula units

INDEX: Index of a group-subgroup pair

Please, enter the sequential number of group as given in <i>International Tables for</i> <i>Crystallography</i> , Vol. A : Please, enter the sequential number of group as given in <i>International Tables for</i> Crystallography, Vol. A : Choose (choose) Choose (choose)	92
Crystallography, Vol. A :	

Option A: Introduce the formula units (conventional) of the high and low symmetry structure.

The formula units (conventional) on the high symmetry structure:

The formula units (conventional) on the low symmetry structure:

· Option B: Introduce the lattice parameters of the high and low symmetry structure.

Step 2. Study of the group-subgroup symmetry break

SUBGROUPGRAPH

Group-Subgroup Graph

Class 1

Check		Chain [indices]	Chain with HM symbols	Transformation	Identical
۲	1	227 210 098 092 [2 3 2]	Fd-3m > F4 ₁ 32 > I4 ₁ 22 > P4 ₁ 2 ₁ 2	$\left(\begin{array}{rrrrr} -1/2 & 1/2 & 0 & 3/8 \\ 0 & 0 & 1 & 3/8 \\ 1/2 & 1/2 & 0 & 5/8 \end{array}\right)$	to group 1
0	2	227 141 098 092 [3 2 2]	Fd-3m > I4 ₁ /amd > I4 ₁ 22 > P4 ₁ 2 ₁ 2	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(to group 2)
0	3	227 141 098 092 [3 2 2]	Fd-3m > I4 ₁ /amd > I4 ₁ 22 > P4 ₁ 2 ₁ 2	$\left(\begin{array}{rrrrr} 0 & 0 & 1 & 3/8 \\ 1/2 & 1/2 & 0 & 5/8 \\ -1/2 & 1/2 & 0 & 3/8 \end{array}\right)$	(to group 3)

Show graph

Which of the three matrices corresponds to the cristobalite case?

Step 3. Lattice parameters of the reference structure CELLTRANS

Step 3. Atomic coordinates of the reference structure

tructure	Si 1	8a	. (.125000	0.125000	0.125000
ow symmetry Space Group	92					
ransformation Matrix:						
			Rotation	nal part		Origin Shift
	(Pn)	1/2	1/2	0		5/8
n matrix form:	(',P)	-1/2	1/2	0		3/8
		0	0	1		3/8

 AT
 #
 WP
 Coordinates

 Si
 1
 4a
 3/4
 1/4
 3/4

atomic coordinates of the reference structure

Step 4. Characterization of the global distortion

Symmetry break: Fd-3m \rightarrow P4₁2₁2, index 12 $a_t=1/2(a_c-b_c), b_t=1/2(a_c+b_c), c_t=c_c$ origin shift: (5/8,3/8,3/8)

Step 4a. Determination of the affine deformation

Symmetry break: Fd-3m \rightarrow P4₁2₁2, index 12 $a_t=1/2(a_c-b_c), b_t=1/2(a_c+b_c), c_t=c_c$ origin shift: (5/8,3/8,3/8)

Step 4a. Determination of the affine deformation

Step 4b. Atomic displacement field

Symmetry break: Fd-3m→P4₁2₁2, index 12

Step 4b. Atomic displacement field

COMPSTRU

Reference structure

Structure #1

5.053692 5.053692 7.147000 90.000000 90.000000 90.000000

Si 1 4a 0.750000 0.250000 0.750000

Evaluation of the structure similarity

S	d _{max.} (Å)	d _{av.} (Å)	Δ
0.0149	0.3774	0.7548	0.122

structural descriptor $\Delta = 0.122$

Atom pairings and distances

WP		Atom	Atomic Displacements							
		Atom	u _x	uy	uz	u				
4a	(x,x,0)	Si1	-0.0528	0.0528	0.0000	0.3774				

Experimental data

Structure #2

92 4.9586	4.9586	6.9074	90	90 90		
Si	1	4a		0.302800	0.302800	0.000000

affine normalizer

Most similar configuration

092 4.95860	0 4.9	58600 6.9	07400 90.000000	90.000000 90.00	0000
Si	1	4a	0.697200	0.302800	0.750000

maximal displacement d_{max}=0.377 Å

PROBLEM:

Structural Relationship between two structures with group-subgroup related symmetry groups G→H

High-symmetry phase: G

symmetry reduction Group-subgroup relation G>H Wyckoff positions splittings

Reference description: (G)_H

affine lattice deformation transformation atomic displacement field

Low-symmetry phase: H

SOLUTION

highsymmetry structure

Cristobalite phase transition

> lowsymmetry structure

tolerances

STRUCTURE RELATIONS

High symmetry structure

Enter the formula units in the **high symmetry structure** (Leave blank for auto-detection via the volume information)

Structure Data [CIF format]		Examinar)
BCS Format	227 7.147 7.147 7.147 90 90 90 1 Si 1 8a 0.125 0.125 0.125	
Low syn Enter the (Leave bl	metry structure: formula units in the low symmetry structure lank for auto-detection via the volume information)	
Structure Data [CIF format]		Examinar)
BCS Format	92 4.9586 4.9586 6.9074 90 90 90 1 Si 1 4a 0.3028 0.3028 0	

Enter the allowed tolerance (a b c $\alpha \beta \gamma$): .2 .2 .3 2 2 2

Enter the maximum distance allowed between the paired atoms: 1.5 Å

SOLUTION

highsymmetry structure

Origin choice 1

Cristobalite phase transition

STRUCTURE RELATIONS

High symmetry structure

NON-STANDARD settings

Å

Enter the formula units in the **high symmetry structure** (Leave blank for auto-detection via the volume information)

Structure Data [CIF format]		Examina
BCS Format	<pre>#Exercise 3.5 (cristobalite): # Space Group ITA number (high-symmetry phase) 227 7.147 7.147 7.147 90 90 90 1 Si 1 8a 0.0 0.0 0.0</pre>	

Low symmetry structure:

Enter the formula units in the **low symmetry structure** (Leave blank for auto-detection via the volume information)

Structure		
Data ICIF		Examina
format]		
	<pre># Space Group ITA number (low-symmetry phase) 92</pre>	
BCS Format	4.9586 4.9586 6.9074 90 90 90 1	
Format	Si 1 4a 0.3028 0.3028 0	

tolerances

symmetry

structure

low-

Enter the allowed tolerance (a b c $\alpha \beta \gamma$): .2 .2 .3 2 2 2

Enter the maximum distance allowed between the paired atoms: 1.5

NON-standard settings

One or both of the structures are given in a non-standard setting? ONO | OYes

SOLUTION

STRUCTURE RELATIONS

NON-STANDARD settings

Origin choice 1

Please choose the setting in which the high symetry structure is given:

	Setting	Р	P ⁻¹
۲	F d -3 m [origin 2]	a,b,c	a,b,c
0	F d -3 m [origin 1]	a-1/8.b-1/8.c-1/8	a+1/8.b+1/8.c+1/8

Please choose the setting in which the low symetry structure is given: (You can choose one of the ITA settings or define your own setting introducin a label and the transformation matrix to the standard setting)

			Setting	9	Р	P ⁻¹
low- symmetry structure • User of Label		P 4 ₁ 2 ₁ 2 a,		a,b,c	a,b,c	
				Rotational	part	Origin shift
	Transf	ormation	1	0	0	0
Cristobalite	Matrix		0	1	0	0
phase transition			0	0	1	0

Problem 3.6(a)

Lead phosphate $Pb_3(PO_4)_2$ shows a phase transition from a paraelastic high-temperature phase with symmetry R-3m (No. 166) to a ferroelastic phase of symmetry C2/c (No.15).

Using the structure data given in the ExerciseData file and the tools of the Bilbao Crystallographic Server:

(i)characterize the symmetry reduction between the high- and low-symmetry phases (index, graph of maximal subgroups, etc.);

(ii)describe the structural distortion from the rhombohedral to the monoclinic phase by the evaluation of the lattice strain and the atomic displacements accompanying the phase transition.

STRUCTURE RELATIONS

0.096

SOLUTION

highsymmetry structure

 $Pb_3(PO_4)_2$ ferroelastic phase transition

(Leave blank for auto-detection via the volume information) Examinar... # Space Group ITA number 166 # Lattice parameters 5.56 5.56 20.39 90 90 120 Number of independent atoms in the asymmetric unit 5 # [atom type] [number] [WP] [x] [y] [z] Pb 1 3a 0 0 Pb 2 6c 0 0 0.2126 P O 1 0 0 0.4021 6c 1 6c 0 0 0.329

0.181 -0.181

Low symmetry structure:

High symmetry structure

Structure Data

[CIF format]

BCS Format

Enter the formula units in the low symmetry structure (Leave blank for auto-detection via the volume information)

0

2

18h

Enter the formula units in the high symmetry structure

OII		Structure Data [CIF format]	Examinar)
low- symmetry structure		BCS Format	<pre># Space Group ITA number 15 # Lattice parameters 13.80 5.691 9.42 90 102.3 90 # Number of independent atoms in the asymmetric unit 7 # [atom type] [number] [WP] [x] [y] [z] 0 1 8f 0.643 0.030 0.392 0 2 8f 0.634 0.464 0.374 0 3 8f 0.642 0.280 0.612 0 4 8f 0.491 0.222 0.420 P 1 8f 0.599 0.241 0.447 Pb 1 4e 0 0.291 0.25 Pb 2 8f 0.317 0.309 0.352</pre>
tolera	nces	Enter the allowed to Enter the maximum	distance allowed between the paired atoms: 1.5 Å

Problem 3.6 (b) Lead vanadate phase transition

Lead phosphate $Pb_3(VO_4)_2$ shows a phase transition from a paraelastic high-temperature phase with symmetry R-3m (No. 166) to a ferroelastic phase of symmetry $P2_1/c$ (No.14).

Using the structure data given in the ExerciseData file and the tools of the Bilbao Crystallographic Server:

(i)characterize the symmetry reduction between the high- and low-symmetry phases (index, graph of maximal subgroups, etc.);

(ii)describe the structural distortion from the rhombohedral to the monoclinic phase by the evaluation of the lattice strain and the atomic displacements accompanying the phase transition.

Hint: higher tolerances for the differences between the lattice parameters of the two phases maybe necessary.

Problem 3.6(b)

SOLUTION

highsymmetry structure

 $Pb_3(VO_4)_2$ ferroelastic phase transition

> lowsymmetry structure

higher tolerances◄

STRUCTURE RELATIONS

formula units

High symmetry structure Enter the formula units in the high symmetry structure (Leave blank for auto-detection via the volume information)						formula units	
Structure Data [CIF format]					Examinar)	
BCS Format	166 5.6748 5 Pb PV O O	3 5.6748 1 2 3 4 5	3 20.3784 3a 6c 6c 6c 18i	90 90 120 0.000000 0.000000 0.000000 0.000000 0.842400	0.000000 0.000000 0.000000 0.000000 0.157600	0.000000 0.207100 0.388400 0.324000 0.430100	

Low symmetry structure:

Enter the formula units in the low symmetry structure (Leave blank for auto-detection via the volume information)

Structure Data [CIF format]	Examinar
BCS Format	14 7.5075 6.0493 9.4814 90. 115.162 90. 7 Pb 1 2a 0 0 0 Pb 2 4e 0.3835 0.5815 0.2879 PV 1 4e 0.2071 0.0143 0.3999 0 1 4e 0.2872 0.2559 0.0159 0 2 4e 0.2598 0.7979 0.0216 0 3 4e 0.3194 0.9784 0.2823 0 4 4e 0.0335 0.5431 0.2091
Enter the allowed tole	arance (a b c α β v): .2 .5 .5 2 2 2

Enter the maximum distance allowed between the paired atoms: 1.5 Å

Step I. Determination of the index of the group-subgroup pair

0.000000

0.207100

0.388400

0.324000

0.430100

Example: Pb₃(VO₄)₂

High-symmetry phase

166 5.6748 5.6748 20.3784 90 90 120 5 0.000000 0.000000 Pb 1 3a Pb 2 0.000000 0.000000 6c 3 0.000000 0.000000 PV 6c 0 4 6c 0.000000 0.000000 0 5 18i 0.842400 0.157600

Low-symmetry phase

14 7.5075 6.0493 9.4814 90. 115.162 90. 7 Pb 1 2a 0 0 0 Pb 2 4e 0.3835 0.5815 0.2879 PV 1 4e 0.2071 0.0143 0.3999 0 1 4e 0.2872 0.2559 0.0159 0 2 4e 0.2598 0.7979 0.0216 0 3 4e 0.3194 0.9784 0.2823 0 4 4e 0.0335 0.5431 0.2091 INDEX: $[i]=[i_P]\cdot[i_L]$ [i]=3.2=6 $\mathcal{R}-3m$ \downarrow $i_P=P_G/P_H=3$ C2/m

 $\int i_{L} = Z_{H} / Z_{G} = 2$ $\mathcal{P}2_{1} / c$

Step 2. Study of the group-subgroup symmetry break

Input for SUBGROUPGRAPH

Please, enter the sequential numbers of group and subgroup as given in International Tables for Crystallography, Vol. A:			
Enter supergroup number (G) or choose it:	166		
Enter subgroup number (H) or choose it:	14		
Enter the index [G:H] (optional):	6		

Construct the lattice

Group-subgroup graph for Pb₃(VO₄)₂

Subgroups P2₁/c of R-3m of index 6 (data ITA1)

Check		Chain [indices]	Chain with HM symbols		Transformation	Identical
۲	1	166 012 014 <mark>[</mark> 3 2]	R-3m > C2/m > P2 ₁ /c	($\begin{pmatrix} 0 & -1 & 1/3 & 0 \\ 0 & -1 & -1/3 & 0 \\ 1 & 0 & 2/3 & 0 \end{pmatrix}$	
0	2	166 012 014 <mark>[</mark> 3 2]	R-3m > C2/m > P2 ₁ /c	($\begin{pmatrix} 0 & 1 & 1/3 & 0 \\ 0 & 0 & 2/3 & 0 \\ 1 & 0 & 2/3 & 0 \end{pmatrix}$	
0	3	166 012 014 <mark>[</mark> 3 2]	R-3m > C2/m > P2 ₁ /c	($\begin{pmatrix} 0 & 0 & -2/3 & 0 \\ 0 & 1 & -1/3 & 0 \\ 1 & 0 & 2/3 & 0 \end{pmatrix}$	

Arbitrariness of (P,p)

 $[(P,p)_{exp}]^{-1}(P,p)_{ITAI}=N(P2_{I}/c)$

Show graph
$$(P,p)$$
 ITAI
 $(P,p)_{exp} = \begin{bmatrix} -1/3 - 1 & 1 & 0 \\ 1/3 - 1 - 1 & 0 \\ 1/3 & 0 & 0 & 0 \end{bmatrix}$

Crystal-structure relationships

SYMMETRY RELATIONS BETWEEN CRYSTAL STRUCTURES

U. Mueller, Gargnano 2008

Modul design of crystal symmetry relations

Scheme of the general formulation of the smallest step of symmetry reduction connecting two related crystal structures

Family tree of hettotypes of ReO3

Hettotype of CsCl structure

Show that the crystal structure of CoU maybe interpreted as a slightly distorted CsCl (or β -brass, CuZn)-type structure. Using the structural data in the *Exercise Data* file, characterize the structural relationship between the CoU structure and CsCl structure.

STRUCTURE RELATIONS

SOLUTION	High symmetry Enter the formu	y structure la units in the high symmetry structure	formula units per unit cell		
high- symmetry structure	(Leave blank fo Structure Data [CIF format] BCS Format	r auto-detection via the volume information) #CuZn (CsCl type) 221 #V=25.67 2.959 2.959 2.959 90. 90. 90. 2 Cu 1 1a 0 0 0 Zn1 1 1b 0.5 0.5 0.5	Examinar		
	Low symmetry Enter the formu (Leave blank fo Structure Data [CIF format]	a structure: la units in the low symmetry structure r auto-detection via the volume information)	8 Examinar		
low- symmetry structure	BCS Format	199 #I213 #V=256.74 6.3557 6.3557 6.3557 90. 90. 90. 2 Co 1 8a 0.294 0.294 0.294 U 1 8a 0.0347 0.0347 0.0347	atomic species correspondence scheme Co↔Cu		
tolerances	Enter the allowe Enter the maxin One or both of t	ed tolerance (a b c $\alpha \beta \gamma$): 1 1 1 5 5 5 num distance allowed between the paired atoms the structures are given in a non-standard settin	$U \leftrightarrow Zn$ s: 1.5 Å ng? \odot No \bigcirc Yes		
HT-quartz and LT-quartz

(i) Upon heating above 573 °C the *LT*-quartz transforms to its *HT* form. Set up the corresponding Baernighausen tree that describes the symmetry relations between the two quartz forms. Which additional degree of freedom are present in the lower symmetry form? (The crystal structures of *HT*-quartz and *LT*-quartz can be found in the *ExerciseData* file.)

(ii) Consider the structure data of AIPO₄ listed in the *ExerciseData* file. Describe its structural relationship to quartz and construct the corresponding Baernighausen tree.

Hint: In order to find the structural relationship between quartz and AIPO₄ consider the splitting of Si positions into two: one for AI and one for P.

Problem 3.10 Problem: Symmetry relations between crystal structures

The structure of α -XOF (X=La, Y, and Pu) can be derived from that of cubic CaF₂ (fluorite structure) by splitting the fluorine positions into two: one for oxygen and one for fluorine, and by shifting the metal positions along *c*. By these changes the space-group symmetry is reduced.

a'=1/2(a-b), b'=1/2(a+b); p=(1/4, 0, 1/4)

The coordinates of CaF_2 are:

Ca	4a	$m\overline{3}m$	0, 0, 0	$rac{1}{2},rac{1}{2},0$	$\frac{1}{2},0\frac{1}{2}$	$0, \frac{1}{2}, \frac{1}{2}$
F	8c	$\bar{4}3m$	$rac{1}{4},rac{1}{4},rac{1}{4}$	$rac{1}{4},rac{3}{4},rac{3}{4}$	$rac{3}{4},rac{1}{4},rac{3}{4}$	$rac{3}{4},rac{3}{4},rac{1}{4}$
			$rac{3}{4},rac{3}{4},rac{3}{4}$	$rac{3}{4},rac{1}{4},rac{1}{4}$	$rac{1}{4},rac{3}{4},rac{3}{4}$	$rac{1}{4},rac{1}{4},rac{3}{4}$

Hahn, Wondratschek. Symmetry of Crystals, Sofia, 1994

(i) Display the relation between the old (a,b,c) and the new (a',b',c') unit cell by means of a drawing.

(ii) Which is the crystal system of the new unit cell? Which is its centring type? (The lattice of CaF2 is F-centred cubic(fcc), a=b=c, $a=\beta=\gamma$.)

(iii) Construct the transformation matrix P describing the change of the basis.

(iv) What is the volume of the new unit cell compared to that of the old one?

(v) What are the coordinates of the atoms of the CaF2 structure referred to the new coordinate system?

(vi) Can the structure of α-LaOF be considered as a hettotype
 (derivative structure) of the aristo- type (basic) structure of CaF2 ?
 (structure data of α-LaOF in Exercise Data file)

Problem 3.10

STRUCTURE RELATIONS

4

SOLUTION

High symmetry structure

Structure Data

Enter the formula units in the high symmetry structure (Leave blank for auto-detection via the volume information) formula units per unit cell

Examinar

[CIF format]	
BCS Format	<pre>225 # Lattice parameters 5.0 5.0 5.0 90 90 90 # Number of independent atoms in the asymmetric unit 2 # [atom type] [number] [WP] [x] [y] [z] Ca 1 4a 0.0 0.0 0 F 2 8c 0.25 0.25 0.25</pre>
Low symmetry Enter the formul (Leave blank for	structure: a units in the low symmetry structure auto-detection via the volume information)
Structure Data [CIF format]	Examinar
BCS Format	$ \begin{array}{c} 129 \\ \# \text{ Lattice parameters} \\ 4.091 \ 4.091 \ 5.836 \ 90 \ 90 \ 90 \\ \# \text{ Number of independent atoms in the asymmetric unit} \\ 3 \\ \# \text{ [atom type] [number] [WP] [x] [y] [z]} \\ \hline Ca \ 1 \ 2c \ 0.5 \ 0.0 \ 0.222 \\ F \ 1 \ 2a \ 0.0 \ 0.0 \ 0.5 \\ \hline F \ 2 \ 2b \ 0.0 \ 0.0 \ 0.5 \\ \hline \end{array} $
Enter the allowe Enter the maxim	d tolerance (a b c $\alpha \beta \gamma$): $(.7.71222)$ The structures are given in a non-standard setting? ONe L @Yes
	[CIF format] BCS Format Low symmetry Enter the formula (Leave blank for Structure Data [CIF format] BCS Format Enter the allowe Enter the maxim