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# Space Group ITA number
141
# Lattice parameters
6.6164 6.6164 6.0150 90 90 90
# Number of independent atoms in the asymmetric unit
3
# [atom type] [number] [WP] [x] [y] [z]
Zr 1 4a   0 0.75 0.125
Si 1 4b   0 0.75 0.625 
O  1 16h  0 0.067 0.198

Inorganic 
Crystal 

Structure 
Database

Bilbao 
Crystallographic 

Server



5.1. Transformations of the coordinate system (unit-cell transformations)
BY H. ARNOLD

5.1.1. Introduction

There are two main uses of transformations in crystallography.
(i) Transformation of the coordinate system and the unit cell

while keeping the crystal at rest. This aspect forms the main topic of
the present part. Transformations of coordinate systems are useful
when nonconventional descriptions of a crystal structure are
considered, for instance in the study of relations between different
structures, of phase transitions and of group–subgroup relations.
Unit-cell transformations occur particularly frequently when
different settings or cell choices of monoclinic, orthorhombic or
rhombohedral space groups are to be compared or when ‘reduced
cells’ are derived.

(ii) Description of the symmetry operations (motions) of an
object (crystal structure). This involves the transformation of the
coordinates of a point or the components of a position vector while
keeping the coordinate system unchanged. Symmetry operations are
treated in Chapter 8.1 and Part 11. They are briefly reviewed in
Chapter 5.2.

5.1.2. Matrix notation

Throughout this volume, matrices are written in the following
notation:

As (1 ! 3) row matrices:

(a, b, c) the basis vectors of direct space
(h, k, l) the Miller indices of a plane (or a set of

planes) in direct space or the coordinates
of a point in reciprocal space

As (3 ! 1) or (4 ! 1) column matrices:
x " #x!y!z$ the coordinates of a point in direct space
#a%!b%!c%$ the basis vectors of reciprocal space
(u!v!w) the indices of a direction in direct space
p" #p1!p2!p3$ the components of a shift vector from

origin O to the new origin O &

q" #q1!q2!q3$ the components of an inverse origin
shift from origin O & to origin O, with
q" ' P' 1p

w " #w1!w2!w3$ the translation part of a symmetry
operation ! in direct space

! " #x!y!z!1$ the augmented #4 ! 1$ column matrix of
the coordinates of a point in direct space

As (3 ! 3) or (4 ! 4) square matrices:
P, Q " P' 1 linear parts of an affine transformation;

if P is applied to a #1 ! 3$ row matrix,
Q must be applied to a #3 ! 1$ column
matrix, and vice versa

W the rotation part of a symmetry
operation ! in direct space

" " P p
o 1

! "
the augmented affine #4 ! 4 $ trans-
formation matrix, with o" #0, 0, 0$

# " Q q
o 1

! "
the augmented affine #4 ! 4 $ trans-
formation matrix, with # " "' 1

$ " W w
o 1

! "
the augmented #4 ! 4 $ matrix of a
symmetry operation in direct space (cf.
Chapter 8.1 and Part 11).

5.1.3. General transformation

Here the crystal structure is considered to be at rest, whereas the
coordinate system and the unit cell are changed. Specifically, a
point X in a crystal is defined with respect to the basis vectors a, b, c
and the origin O by the coordinates x, y, z, i.e. the position vector r
of point X is given by

r " xa ( yb ( zc

" #a, b, c$
x

y

z

#

$%

&

'("

The same point X is given with respect to a new coordinate system,
i.e. the new basis vectors a&, b&, c& and the new origin O& (Fig.
5.1.3.1), by the position vector

r& " x&a& ( y&b& ( z&c&"

In this section, the relations between the primed and unprimed
quantities are treated.

The general transformation (affine transformation) of the
coordinate system consists of two parts, a linear part and a shift
of origin. The #3 ! 3$ matrix P of the linear part and the #3 ! 1$
column matrix p, containing the components of the shift vector p,
define the transformation uniquely. It is represented by the symbol
(P, p).

(i) The linear part implies a change of orientation or length or
both of the basis vectors a, b, c, i.e.

#a&, b&, c&$ " #a, b, c$P

" #a, b, c$
P11 P12 P13

P21 P22 P23

P31 P32 P33

#

$%

&

'(

" #P11a ( P21b ( P31c,

P12a ( P22b ( P32c,

P13a ( P23b ( P33c$"

For a pure linear transformation, the shift vector p is zero and the
symbol is (P, o).

The determinant of P, det#P$, should be positive. If det#P$ is
negative, a right-handed coordinate system is transformed into a
left-handed one (or vice versa). If det#P$ " 0, the new basis vectors
are linearly dependent and do not form a complete coordinate
system.

In this chapter, transformations in three-dimensional space are
treated. A change of the basis vectors in two dimensions, i.e. of the
basis vectors a and b, can be considered as a three-dimensional
transformation with invariant c axis. This is achieved by setting
P33 " 1 and P13 " P23 " P31 " P32 " 0.

(ii) A shift of origin is defined by the shift vector

p " p1a ( p2b ( p3c"

The basis vectors a, b, c are fixed at the origin O; the new basis
vectors are fixed at the new origin O& which has the coordinates
p1, p2, p3 in the old coordinate system (Fig. 5.1.3.1).

For a pure origin shift, the basis vectors do not change their lengths
or orientations. In this case, the transformation matrix P is the unit
matrix I and the symbol of the pure shift becomes (I, p).
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(a,b, c), origin O: point X(x, y, z)

(a′
,b′

, c′), origin O’: point X(x′
, y

′
, z

′)

(P, p)

(i) linear part: change of orientation or length

(ii) origin shift by a shift vector p(p1,p2,p3): 

the origin O’ has 
coordinates (p1,p2,p3) in 
the old coordinate system 

O’ = O + p

Also, the inverse matrices of P and pare needed. They are

Q ! P"1

and

q! "P"1p!

The matrix qconsists of the components of the negative shift vector
q which refer to the coordinate system a#, b#, c#, i.e.

q ! q1a# $ q2b# $ q3c#!

Thus, the transformation (Q, q) is the inverse transformation of
(P, p). Applying (Q, q) to the basis vectors a#, b#, c# and the origin
O#, the old basis vectors a, b, c with origin O are obtained.

For a two-dimensional transformation of a# and b#, some
elements of Q are set as follows: Q33 ! 1 and
Q13 ! Q23 ! Q31 ! Q32 ! 0.

The quantities which transform in the same way as the basis
vectors a, b, c are called covariant quantities and are written as row
matrices. They are:

the Miller indices of a plane (or a set of planes), (hkl), in direct
space and

the coordinates of a point in reciprocal space, h, k, l.

Both are transformed by

%h#, k#, l#& ! %h, k, l&P!

Usually, the Miller indices are made relative prime before and after
the transformation.

The quantities which are covariant with respect to the basis
vectors a, b, c are contravariant with respect to the basis vectors
a', b', c' of reciprocal space.

The basis vectors of reciprocal space are written as a column
matrix and their transformation is achieved by the matrix Q:

a'#

b'#

c'#

!

"#

$

%& ! Q

a'

b'

c'

!

"#

$

%&

!
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

!

"#

$

%&
a'

b'

c'

!

"#

$

%&

!
Q11a' $ Q12b' $ Q13c'

Q21a' $ Q22b' $ Q23c'

Q31a' $ Q32b' $ Q33c'

!

"#

$

%&!

The inverse transformation is obtained by the inverse matrix

P ! Q"1:

a'

b'

c'

!

#

$

& ! P
a'#

b'#

c'#

!

#

$

&!

These transformation rules apply also to the quantities covariant
with respect to the basis vectors a', b', c' and contravariant with
respect to a, b, c, which are written as column matrices. They are the
indices of a direction in direct space, [uvw], which are transformed
by

u#

v#

w#

!

#

$

& ! Q
u
v
w

!

#

$

&!

In contrast to all quantities mentioned above, the components of a
position vector r or the coordinates of a point X in direct space
x, y, z depend also on the shift of the origin in direct space. The
general (affine) transformation is given by

x#

y#

z#

!

"#

$

%& ! Q

x

y

z

!

"#

$

%& $ q

!
Q11x $ Q12y $ Q13z $ q1

Q21x $ Q22y $ Q23z $ q2

Q31x $ Q32y $ Q33z $ q3

!

"#

$

%&!

Example

If no shift of origin is applied, i.e. p! q! o, the position vector
r of point X is transformed by

r# ! %a, b, c&PQ
x
y
z

!

#

$

& ! %a#, b#, c#&
x#

y#

z#

!

#

$

&!

In this case, r ! r#, i.e. the position vector is invariant, although
the basis vectors and the components are transformed. For a pure
shift of origin, i.e. P ! Q ! I , the transformed position vector r#
becomes

r# ! %x $ q1&a $ %y $ q2&b $ %z $ q3&c
! r $ q1a $ q2b $ q3c
! %x " p1&a $ %y " p2&b $ %z " p3&c
! r " p1a " p2b " p3c!

Here the transformed vector r# is no longer identical with r.

It is convenient to introduce the augmented %4 ( 4 & matrix !
which is composed of the matrices Q and qin the following manner
(cf. Chapter 8.1):

! ! Q q
o 1

' (
!

Q11 Q12 Q13 q1

Q21 Q22 Q23 q2

Q31 Q32 Q33 q3

0 0 0 1

!

""#

$

%%&

with othe %1 ( 3& row matrix containing zeros. In this notation, the
transformed coordinates x#, y#, z# are obtained by

Fig. 5.1.3.1. General affine transformation, consisting of a shift of origin
from O to O# by a shift vector p with components p1 and p2 and a change
of basis from a, b to a#, b#. This implies a change in the coordinates of
the point X from x, y to x#, y#.
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Transformation of the coordinates of a point X(x,y,z):

-origin shift (P=I): 

-change of basis (p=o) : 

special cases 

=
P11 P12 P13

P21 P22 P23

P31 P32 P33

x

y

z

p1

p2

p3
( )(X’)=(P,p)-1(X)

           =(P-1, -P-1p)(X)

-1

Transformation by (P,p) of the unit cell parameters:

metric tensor G:    G´=Pt G P

Transformation of symmetry operations (W,w):

(W’,w’)=(P,p)-1(W,w)(P,p)

x´

y
z



ITA-settings for the space group C2/c (No.15)

ITA SETTINGS STRUCTURE 
DESCRIPTIONS SETSTRUProblem:

initial setting
structure description

final setting
structure description

Xf=(P,p)-1Xi

Bilbao Crystallographic Server



Problem 3.1EXERCISES

origin choice 1 origin choice 2 

Compare the two structure descriptions and check if they 
belong to the same structure type.



EXERCISES Problem 3.1

Structure 1: Space group I41/amd (141) a=6.60 Å Åc=5.88
origin choice 1 at ̄4m2

Structure 2: Space group I41/amd (141) a=6.616 Å Åc=6.015

origin choice 2  4̄m22/m at 0,-1/4,1/8 fromat

Compare the two structure descriptions and check if they 
belong to the same structure type.

In order to compare the different data, the parameters of 
Structure 1 are to be transformed to ‘origin at center  2/m’, 
i. e. ORIGIN CHOICE 2.

Hint:

O(2)=O(1)+p,    p=0,-1/4,1/8



UNIT CELL 
TRANSFORMATION

CELLTRANProblem:

lattice parameters
hexagonal cell

lattice parameters
monoclinic cell Transformation 

matrix 
(P,p)

G´=PTGP

Bilbao Crystallographic Server



STRUCTURE 
TRANSFORMATION TRANSTRUProblem:

default 
settingsasymmetric 

unit 

subgroup
basis

arbitrary 
transformation

Bilbao Crystallographic Server



Description
R-3m (166)

Example TRANSTRU: Pb3(VO4)2

Description
P21/c (14)

(P,p)
Validity (P,p)

WP 
splittings

Bilbao Crystallographic Server



Example TRANSTRU: Pb3(VO4)2

R-3m
structure Pb1(3a)  Pb2(6c)  PV(6c)  O1(6c)  O2(18h)

Pb1(2a)  Pb2(4e)  PV(4e)  O1(4e)  O21(4e)  O22(4e)P21/c
structure 

(P,p) WP
splitting 



EXERCISES Problem 3.1(cont.)

Structure 1: Space group I41/amd (141) a=6.60 Å Åc=5.88
origin choice 1 at ̄4m2

Structure 2: Space group I41/amd (141) a=6.616 Å Åc=6.015

origin choice 2  4̄m22/m at 0,-1/4,1/8 fromat

Apply the program TRANSTRU in order to check 
if the two structure descriptions belong to the same 
structure type.

Coordinate 
transformation

Origin choice 2   Origin choice 1   

p=0,1/4,-1/8



Pm-3m (221)

1a (0,0,0)

1b (1/2,1/2,1/2)

1b (1/2,1/2,1/2)

1a (0,0,0)

CsCl

EQUIVALENT 
DESCRIPTIONS EQUIVSTRUProblem:

How to find all possible equivalent 
descriptions of a crystal structure?

Number of equivalent descriptions= |N(G)|/|G|
index of the group in its Euclidean normalizer



Equivalent descriptions: CsCl

Bilbao Crystallographic Server

space group in 
default setting

Problem 3.2a

EQUIVSTRU



Example EQUIVSTRU: CsCl



WYCKOFF SETSSymmetry-equivalent 
Wyckoff positions



EXERCISES

Problem 3.2b

Equivalent structure 
descriptions  
Space group:  P4/n

N(P4/n) = P4/mmm (a’,b’,1/2c)

a’=1/2(a-b), b’=1/2(a+b)



BaSnF6BaIrF6KAsF6

Space-group symmetry: R-3
Euclidean normalizer: R-3m(-a,-b, 1/2c)

Coset representatives: x,y,z; x,y,z+1/2; -y,-x,z; -y,-x,z+1/2;

EXERCISES Problem 3.3

EQUIVSTRU



CRYSTAL-STRUCTURE
RELATIONSHIPS  

Phase transitions 

Symmetry relations between 
crystal structures 

Comparison of crystal 
structures 



Crystal-structure relationships

COMPARISON OF 
CRYSTAL STRUCTURES  



Different descriptions of 
the same structure 

Two descriptions of the same structure with respect to the 
same space group, specified by unit-cell parameters and 
atomic coordinates data. 

Search for a mapping of the two descriptions such that the 
global distortion accompanying the mapping is tolerably small. 

Description 2

G
standard 

symmetry
controlled
mapping

most similar
configuration

global
distortion of
the mapping

PROBLEM:

G
standard 

Description 1

G
standard 

(Description 2)1

Lattice deformation 
Atomic displacement 

field 

affine 
normalizer

COMPSTRU

⎬ ⎫⎭



Description 1
a1,b1,c1

(x1,y1,z1)

Problem:

How to measure the similarity 
between two descriptions ? 

degree of lattice 
distortion

Similarity of the descriptions

Description 2
a2,b2,c2

(x2,y2,z2)

S =
1

3

sX

i

�2i

maximal atomic 
displacements

average atomic 
displacements

   -eigenvalues of 
the Lagrangian 
strain tensor 

⌘i

   -atomic 
displacements 
ui

maximal displacements of 
the paired atoms

dav =
1

n

X

i

miui



Bergerhoff et al.  Acta Cryst.(1999), B55, 147

Description 1
a1,b1,c1

(x1,y1,z1)

Problem:

How to measure the similarity 
between two descriptions ? 

structural
descriptor

weighted mean
difference between 
atomic coordinates relation between 

axial ratios

Similarity of the descriptions

Description 2
a2,b2,c2

(x2,y2,z2)



COMPARISON OF 
STRUCTURES COMPSTRUProblem:

structure 2

tolerances

structure 1

default 
settings



Example COMPSTRU: Pb3(PO4)2

affine
normalizer

maximal 
displacement
dmax=0.34 Å 

structural   
descriptor � = 0.066



Example COMPSTRU: Pb3(PO4)2 JSmol: visualization 



COMPARISON OF 
STRUCTURE 
DESCRIPTIONS

COMPSTRU
Problem:

Problem 3.4

In ICSD can be found several structure data sets 
of ε-Fe2O3, all of them of symmetry Pna21(No.33). 
Compare the following two descriptions and 
check if they belong to the same structure type.



ICSD data for ε-Fe2O3,Problem 3.4



Allmann, Hinek.  Acta Cryst.(2007), A63, 412

Isoconfigurational 
Structure TypesProblem: COMPSTRU

isoconfigurational 
structure types?

Isopointal 
structure types 

Space group
Wyckoff position  

      sequence
Pearson symbol

Isoconfigurational 
structure types 

Composition type
(ANX formula)
Range of c/a ratio
β-range

Atomic coordinates

Lima-de Faria et al.  Acta Cryst.(1990), A46, 1

Inorganic Crystal Structure Database (2009) 
http://icsdweb.fiz-karlsruhe.de

Chemical properties

Crystallographic orbits 

Geometrical interrelationships 

Isopointal 

si
m

ila
r

http://icsdweb.fiz-karlsruhe.de/


Consider two isopointal structures specified by their space-
group symmetry, unit-cell parameters and atomic 
coordinates data. 
We search for a mapping of the two structures such that 
the global distortion accompanying the mapping is tolerably 
small. 

Structure 2

symmetry
controlled
mapping

Lattice deformation 
Atomic displacement 

field 

most similar
configuration

Structure 1(Structure 2)1

global
distortion of
the mapping

PROBLEM:

G
standard 

G
standard G

standard 

Isoconfigurational
(configurationally isotypic) Structure Types

atomic species 
correspondence 

scheme

COMPSTRU

⎬ ⎫⎭



Bergerhoff et al.  Acta Cryst.(1999), B55, 147

Structure1
a1,b1,c1

(x1,x2,x3)

Isoconfigurational 
Structure Types

Structure2
a2,b2,c2
(y1,y2,y3)

Problem: COMPSTRU

isoconfigurational?

How to measure the similarity 
between two isopointal structures ? 

structural
descriptor

degree of lattice 
distortion

S =
1

3

sX

i

�2i

average atomic 
displacements

   -eigenvalues of 
the Lagrangian 
strain tensor 

⌘i

   -atomic 
displacements 
uidav =

1

n

X

i

miui



BaSnF6BaIrF6KAsF6

Do these compounds belong to the 
same structure type ?

Koch, Fischer.  MathCryst Satell., ECM22, Budapest 2004

Problem: Isoconfigurational 
StructureTypes COMPSTRU

EXERCISES Problem 3.3(cont.)



tolerances

default 
settings

structure 1

structure 2

Problem 3.3 SOLUTION

COMPSTRU



Example: STRUCTURE TYPES COMPSTRU

STUDY  OF  THE  FAMILY  ABF6



Example:

STUDY  OF  THE  FAMILY  ABF6

STRUCTURE TYPES COMPSTRU

Reference structure: 
CaCrF6

MnPtF6 NiPtF6 NiRhF6
0.1282 0.1802 0.2005

BrIrF6CsBrF6 CsUF6

1.0731 1.1397 1.4067

maximal 
distance Δ[Å]

Type: LiSbF6

Type: KOsF6



STUDY  OF  THE  FAMILY  ABX3

ICSD (c/a)

R-3 (148);WP sequence: fc2; Pearson: hR10

Bergerhoff
(structure descriptor)

Bilbao Server
(global distortion)

FeTiO3

FePSe3

0.3 FeTiO3 (NaSbO3)

0.4 FePSe3



Crystal-structure relationships

STRUCTURAL PHASE 
TRANSITIONS  



Structure Relationships 

Wyckoff positions 
schemes

High-
symmetry 

phase

G 

symmetry
controlled
mapping

affine
transformation

Lattice deformation 
Atomic displacement 

field 

most similar
configuration

Low-
symmetry 

phase

H (G)H 

(High-symmetry 
phase)Low

global
distortion of
the mapping

G > H 
relationship

PROBLEM:

STRUCTURE  RELATIONS

⎬ ⎫⎭

Consider two phases of the same compound (specified by 
their unit-cell parameters and atomic coordinates) with 
group-subgroup related symmetry groups G>H 
Search for a mapping of the two structures such that the 
global distortion accompanying the mapping is tolerably small. 



1. Characterize the symmetry reduction between 
the high- and low-symmetry phases

-index of the group-subgroup pair: INDEX
-group-subgroup graph, (P,p): SUBGROUPGRAPH

-lattice parameters: CELLTRANS
-atomic coordinates: TRANSTRU or WYCKSPLIT

4. Evaluate the lattice strain and the atomic 
displacements accompanying the phase transitions: 
STRAIN, COMPSTRU

Given the high- and low-symmetry phases:

3. Determine the so-called reference structure, i.e. 
high-symmetry structure in the low-symmetry basis

2. Domain-structure analysis



At low temperatures, the space-group symmetry of cristobalite is 
given by the space group is P41212 (92) with lattice parameters 
a=4.9586Å, c=6.9074Å. The four silicon atoms are located in Wyckoff 
position 4(a) ..2 with the coordinates x, x, 0; -x, -x, 1/2; 1/2-x,1/2+x,
1/4; 1/2+x,1/2-x,3/4, x = 0.3028. 
During the phase transition, the tetragonal structure is transformed 
into a cubic one with space group Fd-3m (227), a=7.147Å. It is listed 
in the space-group tables with two different origins. If ‘Origin choice 
2’ setting is used (with point symmetry -3m at the origin), then the 
silicon atoms occupy the position 8(a) -43m with the coordinates 1/8, 
1/8, 1/8; 7/8, 3/8, 3/8 and those related by the face-centring 
translations. 

Describe the structural distortion from the cubic to the 
tetragonal phase by the determination of (i) the displacements if the 
Si atoms in relative and absolute units, and (ii) the changes on the 
lattice parameters during the transition. 

Problem 3.5 Cristobalite phase transitions



Example: α-Cristobalite → β-Cristobalite

Si 8a 1/8,1/8,1/8  7/8,3/8,3/8
Origin choice 2:



Problem 3.5 SOLUTION

1. Characterize the symmetry break between the 
high- and low-symmetry phases

-index of the group-subgroup pair: INDEX
-transformation matrix: SUBGROUPGRAPH

2. Calculate the lattice parameters of the low-
symmetry phase: CELLTRANS

3. Calculate the atomic coordinates of the low-
symmetry phase: TRANSFORM (or WYCKSPLIT)

4. Evaluate the lattice strain and the atomic 
displacements accompanying the phase transitions: 
STRAIN, COMPSTRU



Step 1. Determination of the index of 
the group-subgroup pair

space-group 
identification

formula units

lattice 
parameters

[iP]=6
[iL]=2⎬[i]=12

INDEX



Step 2. Study of the group-subgroup symmetry break

SUBGROUPGRAPH

Which of the three matrices corresponds to 
the cristobalite case? 



Step 3. Lattice parameters of the reference structure
CELLTRANS

High-
symmetry 

phase

(G)H 

(High-symmetry 
phase)Low

G > H
 

relationship

G 

5.053 5.053 7.147 90 90 90 lattice parameters of the 
reference structure



Step 3. Atomic coordinates of the reference structure

TRANSTRU
High-

symmetry 
phase

(G)H 

(High-symmetry 
phase)Low

G > H 

relationship

G 

atomic coordinates of 
the reference structure

(P,p)



Cubic phase: 
a=7.147 Å

Experiment:

Si  8a  1/8 1/8 1/8

Tetragonal phase: 
a=4.9586 Å, c=6.9074
Si  4a   0.3028  0.3028  0

Calculated:

7/8 3/8 3/8

(P,p) a=5.053 Å, c=7.147 Å
0.75 0.25 0.75  
0.25  0.25  0

affine deformation ?
atomic
displacements ?

Symmetry break: 
Fd-3m➝P41212, index 12
at=1/2(ac-bc), bt=1/2(ac+bc),ct=cc

origin shift: (5/8,3/8,3/8)

Reference description: 

Si  4a 

Step 4. Characterization of the global distortion



Cubic phase: 
a=7.147 Å

Experiment:

Tetragonal phase: 
a=4.9586 Å, c=6.9074

Calculated:

P=

a=5.053 Å, c=7.147 Å

affine 
deformation 

Symmetry break: 
Fd-3m➝P41212, index 12
at=1/2(ac-bc), bt=1/2(ac+bc),ct=cc

origin shift: (5/8,3/8,3/8)

STRAIN

CELLTRANS

Step 4a. Determination of the affine deformation

1/2 1/2 0

-1/2 1/2 0

0 0 1

Reference description: 



STRAIN

(G)H 

Low-symmetry 
phase

 H 

Strain 
tensor

S=1/3(∑ηi2)1/2

(High-symmetry 
phase)Low

Step 4a. Determination of the affine deformation



Cubic phase: 
Experiment:

Si  8a  1/8 1/8 1/8

Tetragonal phase: 
a=4.9586 Å, c=6.9074

Si  4a   0.3028  0.3028  0

Calculated:

7/8 3/8 3/8

a=5.053 Å, c=7.147 Å
0.75 0.25 0.75  
0.25  0.25  0

atomic
displacement  

field

Symmetry break: 
Fd-3m➝P41212, index 12

Si  4a 

Step 4b. Atomic displacement field

a=7.147 Å

COMPSTRU

5/8

3/8

3/8( )1/2 1/2 0

-1/2 1/2 0

0 0 1

TRANSTRU
Reference description: 



affine
normalizer

maximal 
displacement
dmax=0.377 Å 

structural   
descriptor

Reference structure Experimental data

Most similar configuration

� = 0.122

Step 4b. Atomic displacement field COMPSTRU



WYCKSPLIT

HERMANN

STRAIN

COMPSTRU

SUBGROUPGRAPH

PROBLEM: Structural Relationship between two 
structures with group-subgroup related 

symmetry groups G    H

⎬

⎫

⎭

INDEX

STRUCTURE

RELATIONS
Wyckoff positions 
splittings 

Group-subgroup 
relation G>H 

High-symmetry phase: G

Low-symmetry phase: H 

symmetry
reduction

affine
transformation

lattice deformation 
atomic 
displacement field 

Reference description: (G)H



high-
symmetry 
 structure

low-
symmetry 
 structure

tolerances

Cristobalite 
phase transition

Problem 3.5

SOLUTION

STRUCTURE RELATIONS 



high-
symmetry 
 structure

low-
symmetry 
 structure

tolerances

Cristobalite 
phase transition

Problem 3.5

SOLUTION

NON-standard settings

Origin choice 1

STRUCTURE RELATIONS 

NON-STANDARD settings



high-
symmetry 
 structure

low-
symmetry 
 structure

Cristobalite 
phase transition

Problem 3.5 SOLUTION
NON-STANDARD settings

Origin choice 1

STRUCTURE RELATIONS 

⎬

⎫

⎭
⎬



Lead phosphate Pb3(PO4)2 shows a phase transition from a 
paraelastic high-temperature phase with symmetry R-3m (No.
166) to a ferroelastic phase of symmetry C2/c (No.15). 
 

Using the structure data given in the ExerciseData file and 
the tools of the Bilbao Crystallographic Server: 

(i)characterize the symmetry reduction between the high- and 
low-symmetry phases (index, graph of maximal subgroups, 
etc.);

(ii)describe the structural distortion from the rhombohedral 
to the monoclinic phase by the evaluation of the lattice strain 
and the atomic displacements accompanying the phase 
transition. 

Lead phosphate phase transitionProblem 3.6(a)



high-
symmetry 
 structure

low-
symmetry 
 structure

tolerances

Pb3(PO4)2 
ferroelastic 
phase transition

Problem 3.6

SOLUTION

STRUCTURE RELATIONS 



Lead phosphate Pb3(VO4)2 shows a phase transition from a 
paraelastic high-temperature phase with symmetry R-3m (No.
166) to a ferroelastic phase of symmetry P21/c (No.14). 
 Using the structure data given in the ExerciseData file and 
the tools of the Bilbao Crystallographic Server: 

(i)characterize the symmetry reduction between the high- and 
low-symmetry phases (index, graph of maximal subgroups, 
etc.);

(ii)describe the structural distortion from the rhombohedral 
to the monoclinic phase by the evaluation of the lattice strain 
and the atomic displacements accompanying the phase 
transition. 

Lead vanadate phase transitionProblem 3.6 (b)

Hint: higher tolerances for the differences between the lattice 
parameters of the two phases maybe necessary.



high-
symmetry 
 structure

low-
symmetry 
 structure

higher 
tolerances

Pb3(VO4)2 
ferroelastic 
phase transition

Problem 3.6(b)

SOLUTION
formula 

units

formula 
units

STRUCTURE RELATIONS 



Example: Pb3(VO4)2 

R-3m

C2/m

P21/c

iP=PG/PH=3

iL=ZH/ZG=2

[i]=[iP].[iL]
[i]=3.2=6

INDEX:

High-symmetry phase

Low-symmetry phase

Step 1. Determination of the index of 
the group-subgroup pair INDEX



Input for SUBGROUPGRAPH

Group-subgroup graph for Pb3(VO4)2 

Step 2. Study of the group-subgroup symmetry break



©

Subgroups P21/c of R-3m of index 6 
(data ITA1)

Transformation matrix (P,p) for G>H

 1/3 -1 -1
  1/3  0  0

 -1/3 -1  1

0
0

Arbitrariness of (P,p) 

[(P,p)exp]-1(P,p)ITA1=N(P21/c)
(P,p)exp=

(P,p)ITA1

0



Crystal-structure relationships

SYMMETRY RELATIONS 
BETWEEN CRYSTAL 

STRUCTURES   



Problem:

Baernighausen Trees

Symmetry Relations 
between Crystal Structures

Hettotypes

Pyrite
Structural family

Derivative 
structures

Aristotype

Basic 
structure

U. Mueller, Gargnano 2008



Baernighausen Trees

U. Mueller, Gargnano 2008

Modul design of crystal 
symmetry relations

Element symbol
Wyckoff posit.
site symmetry

coordinates

Element symbol
Wyckoff posit.
site symmetry

coordinates



Baernighausen Trees
Family tree of hettotypes of ReO3

U. Mueller, Gargnano 2008



Structure Relationships 

High-
symmetry 
structure

G 

symmetry
controlled
mapping

affine
transformation

Lattice deformation 
Atomic displacement 

field 

most similar
configuration

Low-
symmetry 
structure

H (G)H 

(High-symmetry 
phase)Low

global
distortion of
the mapping

G > H 
relationship

PROBLEM:

STRUCTURE  RELATIONS

⎬ ⎫⎭

Consider two structures (specified by their unit-cell 
parameters and atomic coordinates) with group-subgroup 
related symmetry groups G>H 
Search for a mapping of the two structures such that the 
global distortion accompanying the mapping is tolerably small. 

atomic species 
correspondence 

scheme



Problem 3.8 Problem: Symmetry relations
between crystal structures

Hettotype of CsCl structure

Show that the crystal structure of CoU maybe interpreted 
as a slightly distorted CsCl (or β−brass, CuZn)-type 
structure. Using the structural data in the Exercise Data 
file, characterize the structural relationship between the 
CoU structure and CsCl structure.



Problem 3.8

SOLUTION

STRUCTURE RELATIONS 

high-
symmetry 
 structure

low-
symmetry 
 structure

atomic species 
correspondence 

scheme

formula units
per unit cell 

Co     Cu 
U      Zn 

tolerances



Problem 3.9 Problem: Symmetry relations
between crystal structures

(i) Upon heating above 573 ºC the LT-quartz transforms to its 
HT form. Set up the corresponding  Baernighausen tree that 
describes the symmetry relations between the two quartz 
forms.  Which additional degree of freedom are present in the 
lower symmetry form? (The crystal structures of HT-quartz 
and LT-quartz can be found in the ExerciseData file.)

(ii) Consider the structure data of AlPO4 listed in the 
ExerciseData file. Describe its structural relationship to quartz 
and construct the corresponding Baernighausen tree.

HT-quartz and LT-quartz

Hint: In order to find the structural relationship between quartz 
and AlPO4 consider the splitting of Si positions into two: one for Al 
and one for P.



Problem 3.10

a’=1/2(a-b), b’=1/2(a+b); p=(1/4, 0, 1/4)

G=Fm-3m(225)

H=P4/nmm(129)

(P,p)

Problem: Symmetry relations
between crystal structures

The structure of α-XOF (X=La, Y, and Pu) can be derived from that of 
cubic CaF2 (fluorite structure) by splitting the fluorine positions into two: 
one for oxygen and one for fluorine, and by shifting the metal positions 
along c. By these changes the space-group symmetry is reduced.

Hahn, Wondratschek.  Symmetry of Crystals, Sofia, 1994



Problem 3.10

(vi) Can the structure of α-LaOF be considered as a hettotype 
(derivative structure) of the aristo- type (basic) structure of CaF2 ? 
(structure data of α-LaOF in Exercise Data file)

Questions

(i) Display the relation between the old (a,b,c) and the new (a′,b′,c′) 
unit cell by means of a drawing.

(ii) Which is the crystal system of the new unit cell? Which is its 
centring type? (The lattice of CaF2 is F-centred cubic(fcc),a=b=c,α=β=γ.)

(iii) Construct the transformation matrix P describing the change
 of the basis.
(iv) What is the volume of the new unit cell compared to that of 
the old one?

(v) What are the coordinates of the atoms of the CaF2 structure 
referred to the new coordinate system?



Problem 3.10

SOLUTION

STRUCTURE RELATIONS 

high-
symmetry 
 structure

low-
symmetry 
 structure

atomic species 
correspondence 

scheme

formula units
per unit cell 

La     Ca 
F      F1 

tolerances O      F2 


