

International Union of Crystallography Commission on Mathematical and Theoretical Crystallography

International School on Fundamental Crystallography Sixth MaThCryst school in Latin America Workshop on the Applications of Group Theory in the Study of Phase Transitions

Bogotá, Colombia, 26 November - 1st December 2018

SPACE GROUPS II

International Tables for Crystallography, Volume A: Space-group Symmetry

Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain

SPACE GROUPS

Crystal pattern:

A model of the ideal crystal (crystal structure) in point space consisting of a strictly 3-dimensional periodic set of points

Space group G:

The set of all symmetry operations (isometries) of a crystal pattern

Translation subgroup H < G:

The infinite set of all translations that are symmetry operations of the crystal pattern

Point group of the space groups P_G:

The factor group of the space group G with respect to the translation subgroup T: $P_G \cong G/H$

INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY VOLUME A: SPACE-GROUP SYMMETRY

Extensive tabulations and illustrations of the 17 plane groups and of the 230 space groups

- •headline with the relevant group symbols;
- diagrams of the symmetry elements and of the general position;
- specification of the origin and the asymmetric unit;
- •list of symmetry operations;
- •generators;
- •general and special positions with multiplicities, site symmetries, coordinates and reflection conditions;
- symmetries of special projections;

Space-group symmetry
Edited by Mois I. Aroyo
Sixth edition

GENERAL LAYOUT: LEFT-HAND PAGE

① Cmm2

 $C_{2\nu}^{11}$

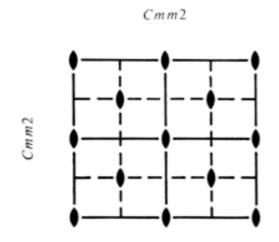
mm2

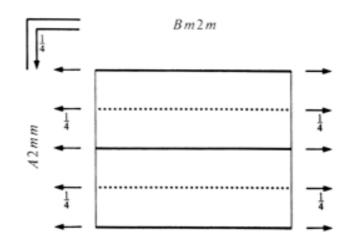
Orthorhombic

2 No. 35

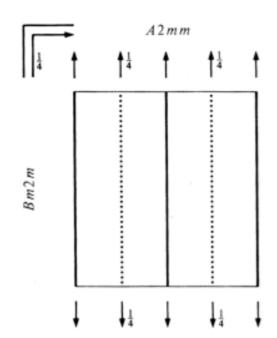
Cmm2

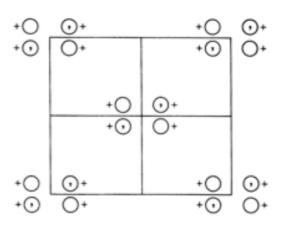
Patterson symmetry Cmmm





3





- 4 Origin on mm2
- **5** Asymmetric unit $0 \le x \le \frac{1}{4}$; $0 \le y \le \frac{1}{2}$; $0 \le z \le 1$
- 6 Symmetry operations

For (0,0,0) + set (1) 1

(2) 2 0,0,z

(3) $m \ x, 0, z$

(4) m = 0, y, z

General Layout: Right-hand page

1 CONTINUED No. 35 Cmm2

2 Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); $t(\frac{1}{2},\frac{1}{2},0)$; (2); (3)

3 Positions

Multiplicity, Wyckoff letter, Site symmetry

 $4 \quad e \quad m \dots$

 $4 \quad d \quad .m$

 $4 \quad c \quad \dots 2$

Coordinates

 $(0,0,0)+ (\frac{1}{2},\frac{1}{2},0)+$

8 f 1

(1) x, y, z

0, y, z

x,0,z

 $\frac{1}{4}, \frac{1}{4}, Z$

 $0, \frac{1}{2}, z$

(2) \bar{x}, \bar{y}, z

 $0, \bar{y}, z$

 $\bar{x}, 0, z$

 $\frac{1}{4}, \frac{3}{4}, Z$

(3) x, \bar{y}, z

(4) \bar{x} , y, z

Reflection conditions

General:

hkl: h+k=2n

0kl: k = 2n

h0l: h=2n

hk0: h+k=2n

h00: h = 2n

0k0: k = 2n

Special: as above, plus

no extra conditions

no extra conditions

hkl: h = 2n

no extra conditions

no extra conditions

 $2 \quad a \quad m m 2 \qquad 0, 0, z$

4 Symmetry of special projections

Along [001] c 2mm $\mathbf{a}' = \mathbf{a}$ $\mathbf{b}' = \mathbf{b}$ Origin at 0, 0, z

b mm2

Along [100] p 1m1 $\mathbf{a}' = \frac{1}{2}\mathbf{b}$ $\mathbf{b}' = \mathbf{c}$ Origin at x, 0, 0

Along [010] $p \, 1 \, 1 \, m$ $\mathbf{a}' = \mathbf{c}$ $\mathbf{b}' = \frac{1}{2} \mathbf{a}$ Origin at 0, y, 0

Primitive and centred lattice basis in 2D

{**a**₁, **a**₂}: two translation vectors, linearly independent, form a *lattice basis*

Primitive basis:

If all lattice vectors are expressed as integer linear combinations of the basis vectors

Centred basis: If some lattice vectors are expressed as linear combinations of the basis vectors with rational, non-integer coefficients

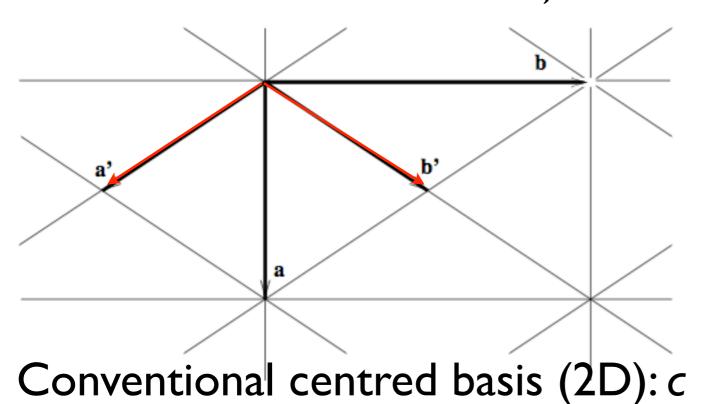


Fig. 1.5.2 c-centred lattice (net) in the plane with conventional **a**, **b** and primitive **a**', **b**' bases.

Number of lattice points per primitive and centred cells

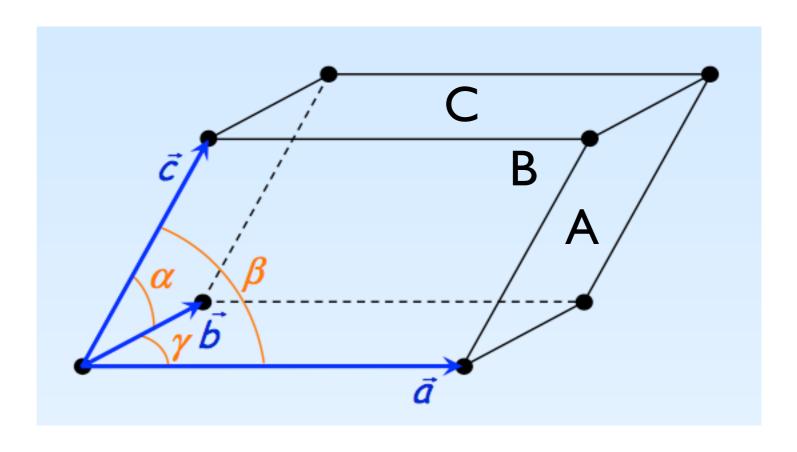
Crystal families, crystal systems, conventional coordinate system and Bravais lattices in 2D

				No. of	Conventional coor	dinate system	_
Crystal family	Symbol*	Crystal system	Crystallographic point groups†	space groups	Restrictions on cell parameters	Parameters to be determined	Bravais lattices*
		,		,			
One dimension							
ı	_	_	1, <u>m</u>	2	None	a	p
Two dimensions							
Oblique (monoclinic)	m	Oblique	1, 2	2	None	a,b $\gamma \ddagger$	тр
Rectangular (orthorhombic)	0	Rectangular	m, 2mm	7	$\gamma = 90^{\circ}$	a, b	op oc
Square (tetragonal)	t	Square	4, 4 <i>mm</i>	3	a = b $\gamma = 90^{\circ}$	а	tp
Hexagonal	h	Hexagonal	3, 6 3m, 6mm	5	a = b $\gamma = 120^{\circ}$	а	hp

3D-unit cell and lattice parameters

lattice basis: {a, b, c}

unit cell:
the parallelepiped
defined by the
basis vectors



primitive P and centred unit cells: A,B,C,F, I, R

number of lattice points per unit cell

Lattice parameters

lengths of the unit translations:

a

b

C

angles between them:

$$\alpha = (\overrightarrow{b}, \overrightarrow{c})$$

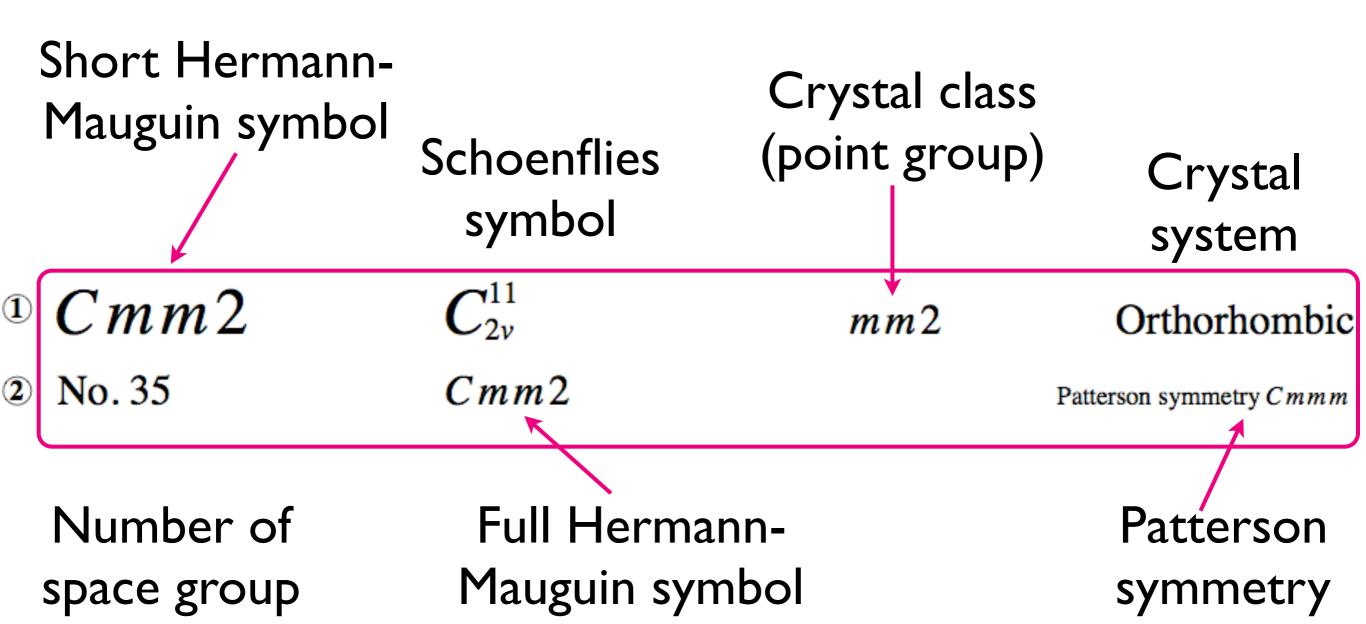
$$\beta = (\widehat{c}, \widehat{a})$$

$$\gamma = (\widehat{\vec{a}}, \widehat{\vec{b}})$$

Crystal families, crystal systems, lattice systems and Bravais lattices in 3D

				No. of	Conventional coordinate system		
Crystal family	Symbol*	Crystal system	Crystallographic point groups†	space groups	Restrictions on cell parameters	Parameters to be determined	Bravais lattices*
Triclinic (anorthic)	a	Triclinic	1, 🗓	2	None	$a,b,c,\ \alpha,\beta,\gamma$	aP
Monoclinic	m	Monoclinic	2, m, 2/m	13	b -unique setting $\alpha = \gamma = 90^{\circ}$	a, b, c β‡	mP mS (mC, mA, mI)
					c -unique setting $\alpha = \beta = 90^{\circ}$	$a,b,c,$ $\gamma \ddagger$	mP mS (mA, mB, mI)
Orthorhombic	0	Orthorhombic	222, mm2, mmm	59	$lpha=eta=\gamma=90^\circ$	a, b, c	oP oS (oC, oA, oB) oI oF
Tetragonal	t	Tetragonal	$4, \overline{4}, 4/m$ $422, 4mm, \overline{4}2m,$ 4/mmm	68	a = b $\alpha = \beta = \gamma = 90^{\circ}$	a, c	tP tI
Hexagonal	h	Trigonal	$3, \overline{3}$ $32, 3m, \overline{3}m$	18	a=b $\alpha=\beta=90^{\circ}, \ \gamma=120^{\circ}$	a, c	hP
				7	$a = b = c$ $\alpha = \beta = \gamma$ (rhombohedral axes, primitive cell) $a = b$ $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$ (hexagonal axes, triple obverse cell)	a, α	hR
		Hexagonal	6, \(\overline{6}\), \(\overline{6}/m\) 622, \(6mm\), \(\overline{6}2m\), \(\overline{6}/mmm\)	27	a=b $\alpha=\beta=90^\circ, \gamma=120^\circ$	a, c	hP
Cubic	С	Cubic	23, m3 432, 43m, m3m	36	a = b = c $\alpha = \beta = \gamma = 90^{\circ}$	а	cP cI cF

HEADLINE BLOCK



HERMANN-MAUGUIN SYMBOLISM FOR SPACE GROUPS

Hermann-Mauguin symbols for space groups

The Hermann-Mauguin symbol for a space group consists of a sequence of letters and numbers, here called the constituents of the HM symbol.

- (i) The first constituent is always a symbol for the conventional cell of the translation lattice of the space group
- (ii) The second part of the full HM symbol of a space group consists of one position for each of up to three representative symmetry directions. To each position belong the generating symmetry operations of their representative symmetry direction. The position is thus occupied either by a rotation, screw rotation or rotoinversion and/or by a reflection or glide reflection.
 - (iii) Simplest-operation rule:

```
pure rotations > screw rotations;
pure rotations > rotoinversions
reflection m > a; b; c > n
">' means
'has priority'
```

14 Bravais Lattices

crystal family	Ρ	Latt <i>I</i>	ice type <i>F</i>	es <i>C</i>	R
triclinic	c_{α}^{α}				
monoclinic	β			•	
orthorhombic					
tetragonal	a	•			
hexagonal	c				
cubic					

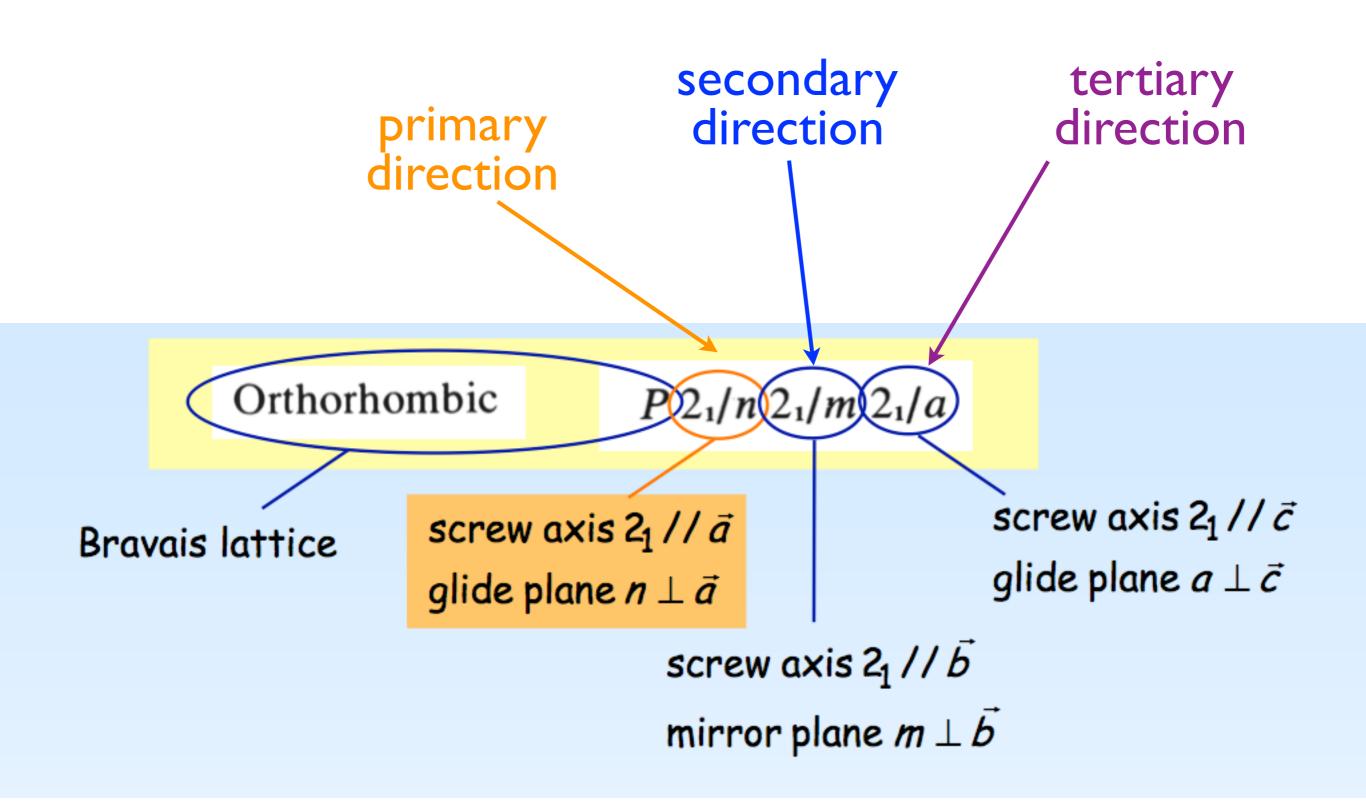
Symmetry directions

A direction is called a **symmetry direction** of a crystal structure if it is parallel to an axis of rotation, screw rotation or rotoinversion or if it is parallel to the normal of a reflection or glide-reflection plane. A symmetry direction is thus the direction of the geometric element of a symmetry operation, when the normal of a symmetry plane is used for the description of its orientation.

Hermann-Mauguin symbols for space groups

Directions that belong to the same set of equivalent symmetry directions are collected between braces. The first entry in each set is taken as the representative of that set.

	Symmetry direction (position in Hermann– Mauguin symbol)				
Lattice	Primary	Secondary	Tertiary		
Triclinic	None				
Monoclinic*	[010] ('uniqu [001] ('uniqu				
Orthorhombic	[100]	[010]	[001]		
Tetragonal	[001]	{ [100] } [010] }	$\left\{ \begin{bmatrix} 1\bar{1}0\\ 110 \end{bmatrix} \right\}$		
Hexagonal	[001]	$ \left\{ \begin{bmatrix} 100 \\ 010 \\ \hline 110 \end{bmatrix} \right\} $	$ \left\{ \begin{bmatrix} 1\bar{1}0\\ 120\\ \bar{2}\bar{1}0 \end{bmatrix} \right\} $		
Rhombohedral (hexagonal axes)	[001]	$ \left\{ \begin{bmatrix} 100 \\ 010 \\ \hline{1}10 \end{bmatrix} \right\} $			
Rhombohedral (rhombohedral axes)	[111]	$ \left\{ \begin{bmatrix} 1\bar{1}0\\ 01\bar{1}\\ \bar{1}01 \end{bmatrix} \right\} $			
Cubic	{ [100] [010] } [001] }	$ \left\{ \begin{bmatrix} 1111 \\ 11\overline{1} \end{bmatrix} \\ \begin{bmatrix} 111 \end{bmatrix} \\ \begin{bmatrix} 111 \end{bmatrix} \right\} $	$ \left\{ \begin{bmatrix} 1\bar{1}0 & [110] \\ 01\bar{1} & [011] \\ [\bar{1}01] & [101] \end{bmatrix} \right\} $		



PRESENTATION OF SPACE-GROUP SYMMETRY OPERATIONS

IN INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY, VOL.A

Crystallographic symmetry operations

characteristics:

fixed points of isometries $(W,w)X_f=X_f$ geometric elements

Types of isometries preserve handedness

identity:

the whole space fixed

translation t:

no fixed point

$$\tilde{\mathbf{x}} = \mathbf{x} + \mathbf{t}$$

rotation:

one line fixed rotation axis

$$\phi = k \times 360^{\circ}/N$$

screw rotation:

no fixed point screw axis

screw vector

Types of isometries

do not preserve handedness

roto-inversion:

centre of roto-inversion fixed roto-inversion axis

inversion:

centre of inversion fixed

reflection:

plane fixed reflection/mirror plane

glide reflection:

no fixed point glide plane

glide vector

Matrix formalism

$$\begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{pmatrix} = \begin{pmatrix} W_{11}W_{12}W_{13} \\ W_{21}W_{22}W_{23} \\ W_{31}W_{32}W_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$$

linear/matrix part

translation column part

$$\tilde{\boldsymbol{x}} = \boldsymbol{W} \boldsymbol{x} + \boldsymbol{w}$$

$$\tilde{\boldsymbol{x}} = (\boldsymbol{W}, \boldsymbol{w}) \boldsymbol{x} \text{ or } \tilde{\boldsymbol{x}} = \{\boldsymbol{W} | \boldsymbol{w}\} \boldsymbol{x}$$

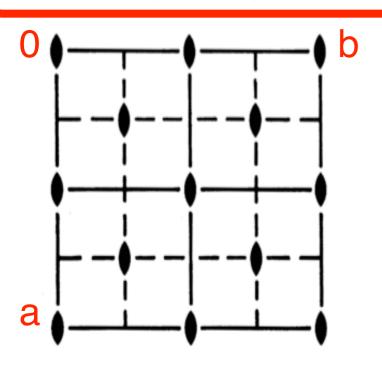
matrix-column pair

Seitz symbol

Space group Cmm2 (No. 35)

How are the symmetry operations represented in ITA?

Diagram of symmetry elements



Symmetry operations

For (0,0,0) + set

(1) 1

(2) 2 0,0,z

(3) m x, 0, z

(4) m = 0, y, z

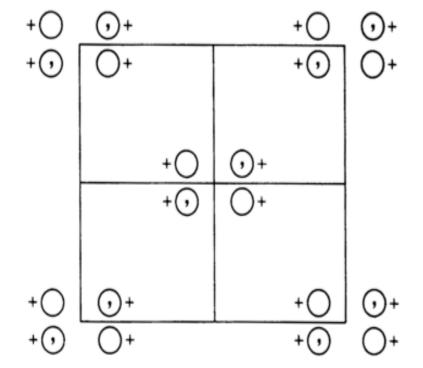
For $(\frac{1}{2}, \frac{1}{2}, 0)$ + set

(1) $t(\frac{1}{2},\frac{1}{2},0)$

(2) 2 $\frac{1}{4}, \frac{1}{4}, z$

(3) $a x, \frac{1}{4}, z$ (4) $b \frac{1}{4}, y, z$

Diagram of general position points



General Position

Coordinates

$$(0,0,0)+(\frac{1}{2},\frac{1}{2},0)+$$

f1 (1) x, y, z

(2) \bar{x}, \bar{y}, z

(3) x, \bar{y}, z

(4) \bar{x}, y, z

General position

- (i) coordinate triplets of an image point X of the original point $X = \begin{bmatrix} x \\ y \end{bmatrix}$ under (W,w) of G
 - -presentation of infinite image points \widetilde{X} under the action of (W,w) of G
- (ii) short-hand notation of the matrix-column pairs (W,w) of the symmetry operations of G
 - -presentation of infinite symmetry operations of G $(W,w) = (I,t_n)(W,w_0), 0 \le w_{i0} < I$

Space Groups: infinite order

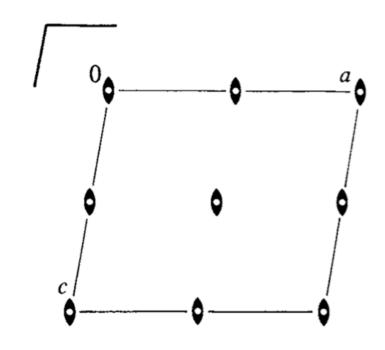
Coset decomposition G:T_G

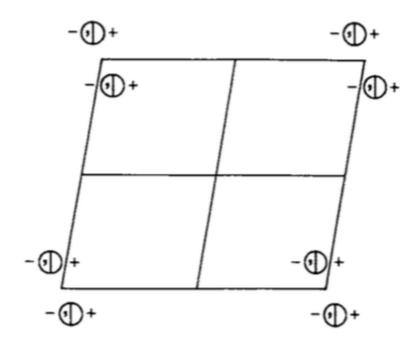
General position

Factor group G/T_G

isomorphic to the point group P_G of GPoint group $P_G = \{I, W_2, W_3, ..., W_i\}$

Example: PI2/mI





inversion centres (T,t):

Coset decomposition G:T_G

Point group
$$P_G = \{1, 2, \overline{1}, m\}$$

General position

$$(1,0)$$
 $(2,0)$ $(\overline{1},0)$ $(m,0)$

$$(l,t_1)$$
 $(2,t_1)$ $(\overline{1},t_1)$ (m,t_1)

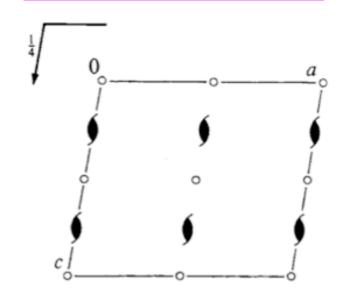
$$(1,t_2)$$
 $(2,t_2)$ $(\overline{1},t_2)$ (m,t_2)

...
$$(1,t_j)$$
 ... $(2,t_j)$... $(1,t_j)$... (m,t_j)

- I			nı	_	n _I /2	
	-1		n ₂		n ₂ /2	
		-1	n ₃		n ₃ /2	

EXAMPLE

Coset decomposition P12₁/c1:T



Point group !

General position

(1)
$$x, y, z$$

(1)
$$x, y, z$$
 (2) $\bar{x}, y + \frac{1}{2}, \bar{z} + \frac{1}{2}$

(3)
$$\bar{x}, \bar{y}, \bar{z}$$

(4)
$$x, \bar{y} + \frac{1}{2}, z + \frac{1}{2}$$

$$(I,0)$$
 $(2,0 \frac{1}{2} \frac{1}{2})$ $(\overline{I},0)$ $(m,0 \frac{1}{2} \frac{1}{2})$

$$(I,t_1)$$
 $(2,0 \frac{1}{2} \frac{1}{2}+t_1)$ (\overline{I},t_1) $(m,0 \frac{1}{2} \frac{1}{2}+t_1)$

$$(I,t_2)$$
 $(2,0 \frac{1}{2} \frac{1}{2} + t_2)$ (I,t_2) $(m,0 \frac{1}{2} \frac{1}{2} + t_2)$

$$(I,t_j)$$
 $(2,0 \frac{1}{2} \frac{1}{2} + t_j)$ (\overline{I},t_j) $(m,0 \frac{1}{2} \frac{1}{2} + t_j)$

inversion centers

$$(\overline{I},pqr)$$
: \overline{I} at p/2,q/2,r/2

2₁screw axes

$$(2,u \frac{1}{2}+v \frac{1}{2}+w)$$

$$(2,0 \frac{1}{2}+v \frac{1}{2})$$

$$(2,u \frac{1}{2} \frac{1}{2}+w)$$

Symmetry Operations Block

TYPE of the symmetry operation

SCREW/GLIDE component

ORIENTATION of the geometric element

LOCATION of the geometric element

GEOMETRIC INTERPRETATION OF THE MATRIX-COLUMN PRESENTATION OF THE SYMMETRY OPERATIONS

Example: Cmm2

Coordinates

 $(0,0,0)+(\frac{1}{2},\frac{1}{2},0)+$

General position

Diagram of symmetry elements

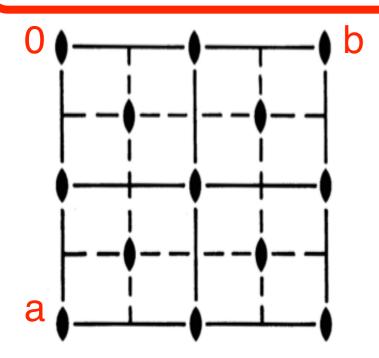
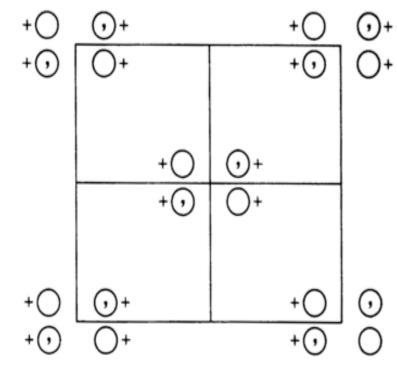


Diagram of general position points



8 f 1

(1) x, y, z

(2) \bar{x}, \bar{y}, z

(3) x, \bar{y}, z

(4) \bar{x}, y, z

 T_G $T_G 2$ $T_{G m_y}$ $T_{G m_x}$ (I,0) (2,0) $(m_y,0)$ $(m_x,0)$

$$(I,t_I)$$
 $(2,t_I)$ (m_y,t_I) (m_x,t_I)

$$(l,t_2)$$
 $(2,t_2)$ (m_y,t_2) (m_x,t_2)

... $(1,t_j)$... (m_y,t_j) ... (m_x,t_j)

Symmetry operations

For (0,0,0) + set

(1) 1

(2) 2 0,0,z

(3) $m \ x, 0, z$

(4) m = 0, y, z

For $(\frac{1}{2}, \frac{1}{2}, 0)$ + set

(1)
$$t(\frac{1}{2}, \frac{1}{2}, 0)$$

(2) 2
$$\frac{1}{4}, \frac{1}{4}, z$$

(3)
$$a x, \frac{1}{4}, z$$

(4) $b = \frac{1}{4}, y, z$

International Tables for Crystallography (2006). Vol. A, Space gro

Space group $P2_1/c$ (No. 14)

$$P2_1/c$$

 C_{2h}^5

2/m

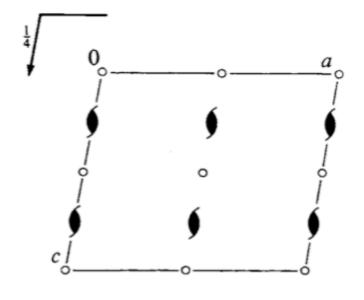
No. 14

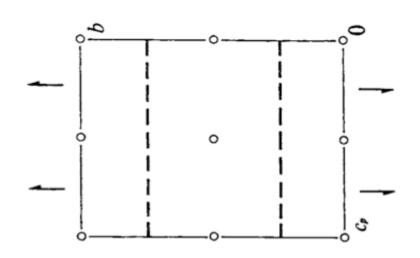
 $P12_1/c1$

Patterson sy:

UNIQUE AXIS b, CELL CHOICE 1

EXAMPLE





Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3)

Positions

Multiplicity, Wyckoff letter, Site symmetry

Coordinates

Matrix-column presentation

Geometric

interpretation

(1) x, y, z

(2) $\bar{x}, y + \frac{1}{2}, \bar{z} + \frac{1}{2}$

(3) $\bar{x}, \bar{y}, \bar{z}$

(4) $x, \bar{y} + \frac{1}{2}, z + \frac{1}{2}$

Symmetry operations

(1) 1

(2) $2(0,\frac{1}{2},0)$ $0,y,\frac{1}{4}$

 $(3) \bar{1} 0,0,0$

(4) $c x, \frac{1}{4}, z$

bilbao crystallographic server

About us

h bilbao crystal lographic server Contact us

IDENTIFY GROUP

ECM31-Oviedo Satellite

rystallography online: workshop on e and applications of the structural t of the Bilbao Crystallographic Serve

20-21 August 2018

	Space-group symmetry
GENPOS	Generators and General Positions of Space Groups
WYCKPOS	Wyckoff Positions of Space Groups
HKLCOND	Reflection conditions of Space Groups
MAXSUB	Maximal Subgroups of Space Groups
SERIES	Series of Maximal Isomorphic Subgroups of Space Groups
WYCKSETS	Equivalent Sets of Wyckoff Positions
NORMALIZER	Normalizers of Space Groups
KVEC	The k-vector types and Brillouin zones of Space Groups
SYMMETRY OPERATIONS	Geometric interpretation of matrix column representations of symmetry operations

WS:

- New Article in Nature 07/2017: Bradlyn et al. "Topological quantum chemistry" Nature (2017). 547, 298-305.
- New program: BANDREP 04/2017: Band representations and Elementary Band representations of Double Space Groups.
- New section: Double point and space groups
 - New program: DGENPOS 04/2017: General positions of Double Space Groups
 - New program: REPRESENTATIONS DPG

Structure Utilities

Identification of a Space Group from a set of generators in an arbitrary setting

Publications

How to cite the server

Subperiodic Groups: Layer, Rod and Frieze Groups

Structure Databases

Raman and Hyper-Raman scattering

Point-group symmetry

Plane-group symmetry

Bilbao Crystallographic Server

Problem: Matrix-column presentation Geometrical interpretation

GENPOS

Generators and General Positions

space group

How to select the group

The space groups are specified by their sequential number as given in the International Tables for Crystallography, Vol. A. You can give this number, if you know it, or you can choose it from the table with the space group numbers and symbols if you click on the button [choose it].

To see the data in a non conventional setting click on [Non conventional Setting] or [ITA Settings] for checking the non

Please, enter the sequential number of group as given in the International Tables for Crystallography, Vol. A or

Show:

Generators only

All General

Positions

Non Conventional Setting

ITA Settings

Example GENPOS: Space group P2₁/c (14)

Space-group symmetry operations

General Positions of the Group 14 ($P2_1/c$) [unique axis b]

Click here to get the general positions in text format

short-hand notation

$$\begin{array}{ll} \text{matrix-column} \\ \text{presentation} \end{array} \begin{pmatrix} W_{11}W_{12}W_{13} \\ W_{21}W_{22}W_{23} \\ W_{31}W_{32}W_{33} \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$$

Geometric interpretation

Seitz symbols

No.	(v v v) form	Matrix form	Symmetry operation		
NO.	(x,y,z) form	Matrix form	ITA	Seitz	
1	x,y,z	$\left(\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$	1	{1 0}	
2	-x,y+1/2,-z+1/2	$ \left(\begin{array}{ccccc} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & -1 & 1/2 \end{array}\right) $	2 (0,1/2,0) 0,y,1/4	{ 2 ₀₁₀ 0 1/2 1/2 }	
3	-x,-y,-z	$\left(\begin{array}{cccc} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{array}\right)$	-1 0,0,0	{-1 0}	
4	x,-y+1/2,z+1/2	$\left(\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & 1 & 1/2 \end{array}\right)$	c x,1/4,z	{ m ₀₁₀ 0 1/2 1/2 }	

General positions

- (1) x, y, z
- (2) $\bar{x}, y + \frac{1}{2}, \bar{z} + \frac{1}{2}$ (3) $\bar{x}, \bar{y}, \bar{z}$
- (4) $x, \bar{y} + \frac{1}{2}, z + \frac{1}{2}$

Symmetry operations

(1) 1

- (2) $2(0,\frac{1}{2},0)$ $0,y,\frac{1}{4}$ (3) $\bar{1}$ 0,0,0

SEITZ SYMBOLS FOR SYMMETRY OPERATIONS

Seitz symbols { R | t }

short-hand description of the matrix-column presentations of the symmetry operations of the space groups

rotation (or linear) part R

- specify the type and the order of the symmetry operation;
- orientation of the symmetry element by the direction of the axis for rotations and rotoinversions, or the direction of the normal to reflection planes.

1 and $\overline{1}$	identity and inversion
m	reflections
2, 3, 4 and 6	rotations
$\overline{3}$, $\overline{4}$ and $\overline{6}$	rotoinversions

translation part t

translation parts of the coordinate triplets of the *General* position blocks

EXAMPLE

Seitz symbols for symmetry operations of hexagonal and trigonal crystal systems

	Seitz			
No.	coord. triplet	type	orien- tation	symbol
1)	x, y, z	1		1
2)	$\overline{y}, x-y, z$	3+	0, 0, z	3+001
3)	$\overline{x} + y, \overline{x}, z$	3-	0, 0, z	3-001
4)	$\overline{x}, \overline{y}, z$	2	0, 0, z	2 ₀₀₁
5)	$y, \overline{x} + y, z$	6	0, 0, z	6_001
6)	x-y,x,z	6+	0, 0, z	6+001
7)	y, x, \overline{z}	2	<i>x</i> , <i>x</i> , 0	2,110
8)	$x-y, \overline{y}, \overline{z}$	2	x,0,0	2 ₁₀₀
9)	$\overline{x}, \overline{x} + y, \overline{z}$	2	0, y, 0	2 ₀₁₀
10)	$\overline{y}, \overline{x}, \overline{z}$	2	$x, \bar{x}, 0$	2,110
11)	$\overline{x} + y, y, \overline{z}$	2	x,2x,0	2 ₁₂₀
12)	$x, x-y, \overline{z}$	2	2x, x, 0	2210

	Seitz			
No.	coord. triplet	type	orien- tation	symbol
13)	$\overline{x}, \overline{y}, \overline{z}$	ī		<u>1</u>
14)	$y, \overline{x} + y, \overline{z}$	<u>3</u> +	0, 0, z	3+
15)	$x-y,x,\overline{z}$	3-	0, 0, z	3 ₀₀₁
16)	x, y, \overline{z}	m	x, y, 0	<i>m</i> ₀₀₁
17)	$\overline{y}, x-y, \overline{z}$	6 -	0, 0, z	$\overline{6}_{001}^{-}$
18)	$\overline{x} + y, \overline{x}, \overline{z}$	6 +	0, 0, z	6+001
19)	$\overline{y}, \overline{x}, z$	m	x, \overline{x}, z	<i>m</i> ₁₁₀
20)	$\overline{x} + y, y, z$	m	x, 2x, z	<i>m</i> ₁₀₀
21)	x, x-y, z	m	2x, x, z	<i>m</i> ₀₁₀
22)	y, x, z	m	x, x, z	m ₁₁₀
23)	$x-y, \overline{y}, z$	m	x, 0, z	<i>m</i> ₁₂₀
24)	$\overline{x}, \overline{x} + y, z$	m	0, y, z	m ₂₁₀

Glazer et al. Acta Cryst A 70, 300 (2014)

International Tables for Crystallography (2006). Vol. A, Space group

Space group P2₁/c (No. 14)

$$P2_1/c$$

$$C_{2h}^5$$

2/m

No. 14

 $P12_{1}/c1$

Patterson sy:

UNIQUE AXIS b, CELL CHOICE 1

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3)

Positions

Multiplicity, Wyckoff letter, Site symmetry

Coordinates

Matrix-column presentation

(1) x, y, z

(2) $\bar{x}, y + \frac{1}{2}, \bar{z} + \frac{1}{2}$

(3) $\bar{x}, \bar{y}, \bar{z}$

(4) $x, \bar{y} + \frac{1}{2}, z + \frac{1}{2}$

Geometric interpretation **Symmetry operations**

(1) 1

(2) $2(0,\frac{1}{2},0)$ $0,y,\frac{1}{4}$

 $(3) \bar{1} 0,0,0$

(4) $c x, \frac{1}{4}, z$

Seitz symbols

(1) $\{110\}$ (2) $\{2_{010}101/21/2\}$ (3) $\{\overline{110}\}$ (4) $\{m_{010}101/21/2\}$

EXERCISES

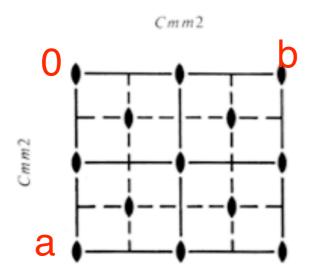
Problem 2.16 (b)

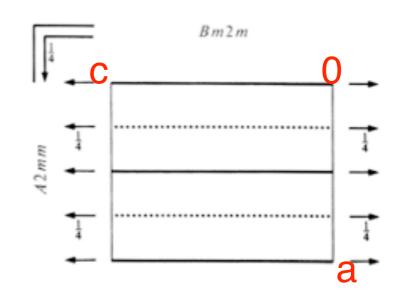
- 1. Characterize geometrically the matrix-column pairs listed under *General position* of the space group *P4mm* in ITA.
- 2. Consider the diagram of the symmetry elements of *P4mm*. Try to determine the matrix-column pairs of the symmetry operations whose symmetry elements are indicated on the unit-cell diagram.
- 3. Compare your results with the results of the program SYMMETRY OPERATIONS

SPACE-GROUPS DIAGRAMS

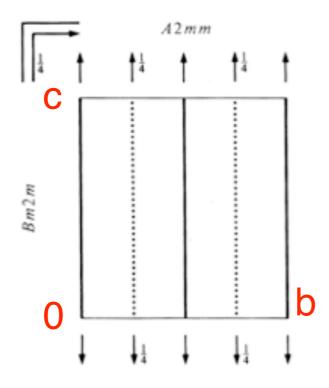
Diagrams of symmetry elements

three different settings





permutations of **a,b,c**



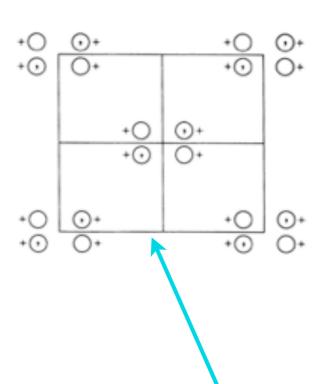


Diagram of general position points

The various rotation and screw axes and their symbol

printed symbol	symmetry axis	graphic symbol	nature of the screw translation	printed symbol	symmetry axis	graphic symbol	nature of the screw translation
1	Identity	none	none	4	Rotation tetrad	♦	none
1	Inversion	0	none	41		*	c/4
2	Rotation diad or twofold rotation axis	(⊥ paper) (// paper)	110110	4 ₂	Screw tetrads	*	2 <i>c</i> /4 3 <i>c</i> /4
	Screw diad	6	c/2	4	Inverse tetrad	•	none
21	or twofold	y (⊥ paper)		6	Rotation hexad	•	none
	screw axis	(// paper)	<i>a</i> /2 or <i>b</i> /2	61			<i>c</i> /6
3	Rotation triad	⊥ paper ▲	none	62			2 <i>c</i> /6 3 <i>c</i> /6
3 ₁		À	<i>c</i> /3	6 ₃	Screw hexads		4 <i>c</i> /6
32	Screw triad		2 <i>c</i> /3	6 ₅			5 <i>c</i> /6
3	Inverse triad	Δ	none	6	Inverse hexad	(a)	none

The various symmetry planes and their symbol

nnintad	symmetry plane	graphica	symbol	
printed symbol		normal to plane of projection	parallel to plane of projection	nature of glide translation
m	reflection plane (mirror)			none
a, b	axial		$\neg \leftarrow \neg \leftarrow$	a/2 or b/2
С	glide plane		none	c/2
n	diagonal glide plane (<i>net</i>)			(a+b)/2, (b+c)/2 or (c+a)/2; OR (a+b+c)/2 for t and c systems
d	"diamond" glide plane	- ← · - · - ·	$\frac{\frac{1}{8}}{\frac{3}{8}}$	(a±b)/4, (b±c)/4 or (c±a)/4; OR (a±b±c)/4 for t and c systems

Space group Cmm2 (No. 35)

Diagram of symmetry elements

Symmetry operations

For (0,0,0) + set

(1) 1

(2) 2 0,0,z

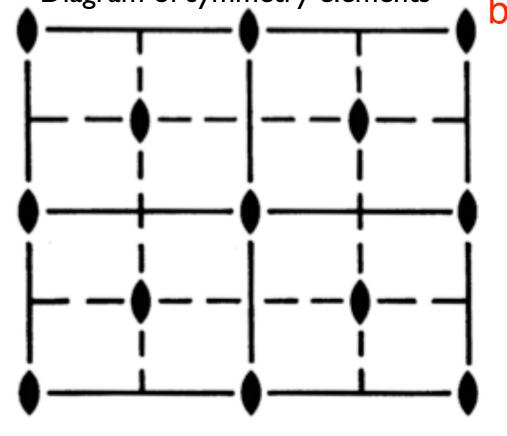
(3) m x, 0, z

(4) m = 0, y, z

For $(\frac{1}{2}, \frac{1}{2}, 0)$ + set

(1) $t(\frac{1}{2},\frac{1}{2},0)$

(2) $2 \quad \frac{1}{4}, \frac{1}{4}, z$ (3) $a \quad x, \frac{1}{4}, z$ (4) $b \quad \frac{1}{4}, y, z$



General Position

Coordinates

$$(0,0,0)+(\frac{1}{2},\frac{1}{2},0)+$$

f

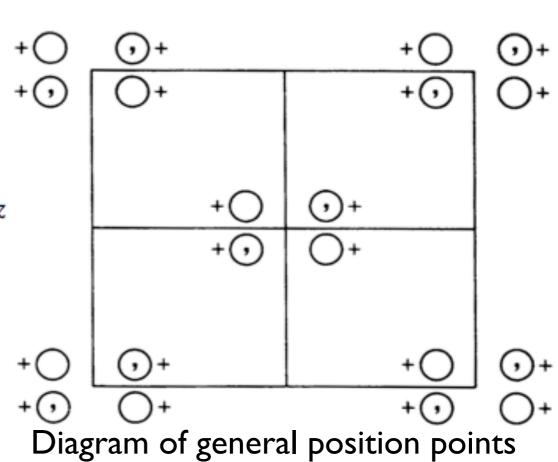
(1) x, y, z

(2) \bar{x}, \bar{y}, z

(3) x, \bar{y}, z

(4) \bar{x}, y, z

How many general position points per unit cell are there?



Space group Cmm2 (No. 35)

6 Symmetry operations

For (0,0,0) + set

(1) 1

- (2) 2 0,0,z
- (3) m x, 0, z
- (4) m = 0, y, z

For $(\frac{1}{2}, \frac{1}{2}, 0)$ + set

(1)
$$t(\frac{1}{2}, \frac{1}{2}, 0)$$

(2) 2
$$\frac{1}{4}, \frac{1}{4}, z$$

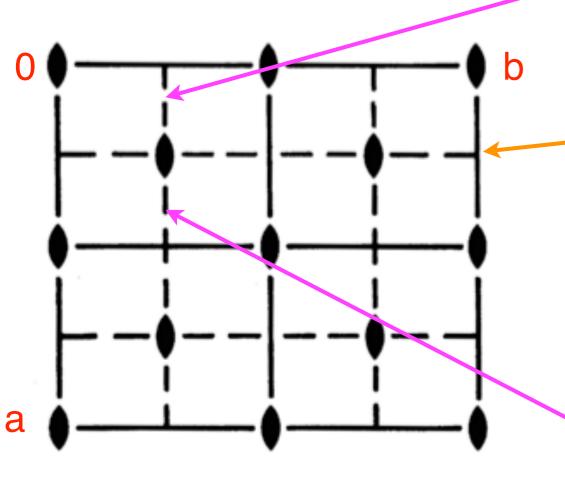
(3)
$$(a \ x, \frac{1}{4}, z)$$

(4)
$$b = \frac{1}{4}, y, z$$

glide plane, $\mathbf{t} = 1/2\mathbf{a}$ at y=1/4, $\perp \mathbf{b}$ glide plane, $\mathbf{t}=1/2\mathbf{b}$ at $\mathbf{x}=1/4$, $\perp \mathbf{a}$

Geometric

interpretation



General Position

Coordinates

$$(0,0,0)+(\frac{1}{2},\frac{1}{2},0)+$$

Matrix-column presentation of symmetry operations

8 f 1

(2)
$$\bar{x}, \bar{y}, z$$

(3)
$$x, \bar{y}, z$$

(4)
$$\bar{x}, y, z$$

Example: P4mm

(1) 1

Diagram of symmetry elements

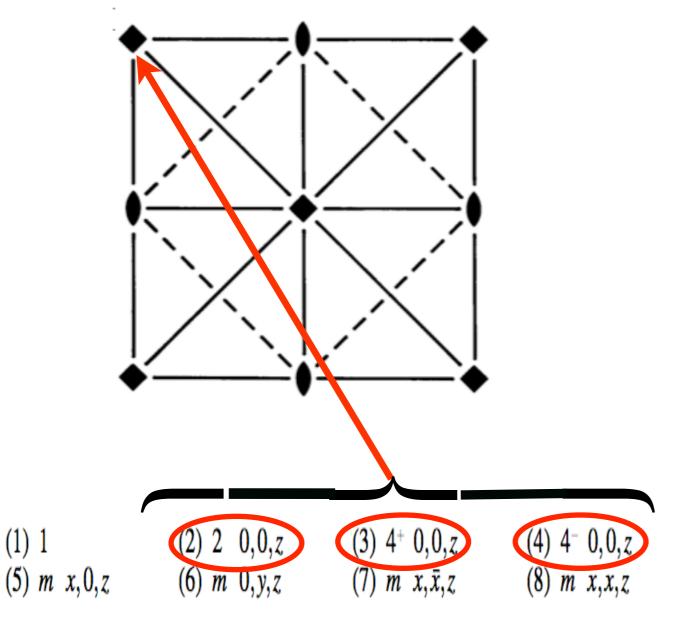
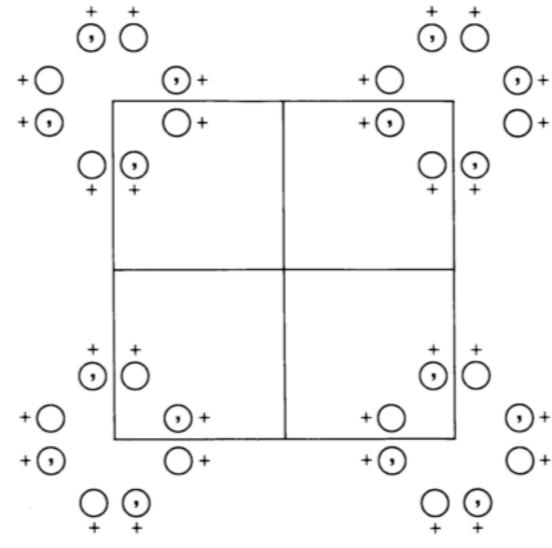


Diagram of general position points



(2) \bar{x}, \bar{y}, z

(6) \bar{x}, y, z

(3) \bar{y}, x, z

(7) \bar{y}, \bar{x}, z

(4) y, \bar{x}, z

(8) y, x, z

(1) x,y,z

(5) x, \bar{y}, z

Symmetry elements

Symmetry element +

Geometric

Fixed points

+ Element set Symmetry operations that share the same geometric element

Examples

Rotation axis

| St, ..., (n-1)th powers + all coaxial equivalents

All rotations and screw rotations with the same axis, the same angle and sense of rotation and the same screw vector (zero for rotation) up to a lattice translation vector.

Glide plane

plane

defining operation+ all coplanar equivalents

All glide reflections with the same reflection plane, with glide of d.o. (taken to be zero for reflections) by a lattice translation vector.

Symmetry operations and symmetry elements

Geometric elements and Element sets

Name of symmetry element	Geometric element	Defining operation (d.o)	Operations in element set
Mirror plane	Plane A	Reflection in A	D.o. and its coplanar equivalents*
Glide plane	Plane A	Glide reflection in $A; 2\nu \pmod{\nu}$ a lattice translation	D.o. and its coplanar equivalents*
Rotation axis	Line b	Rotation around b , angle $2\pi/n$ $n=2,3,4$ or 6	1st,, $(n-1)$ th powers of d.o. and their coaxial equivalents [†]
Screw axis	Line b	Screw rotation around b , angle $2\pi/n$, $u=j/n$ times shortest lattice translation along b , right-hand screw, $n=2,3,4$ or $6,j=1,\ldots,(n-1)$	1st,, $(n-1)$ th powers of d.o. and their coaxial equivalents [†]
Rotoinversion axis	$\begin{array}{c} \text{Line } b \\ \text{and point} \\ P \text{ on } b \end{array}$	Rotoinversion: rotation around b , angle $2\pi/n$, and inversion through P , $n=3$, 4 or 6	D.o. and its inverse
Center	Point P	Inversion through P	D.o. only

Example: P4mm

Element set of (00z) line

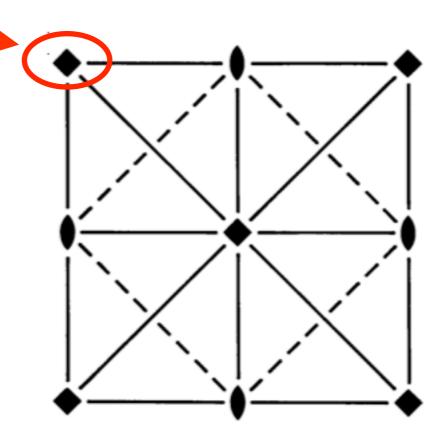
Symmetry operations that share (0,0,z) as geometric element

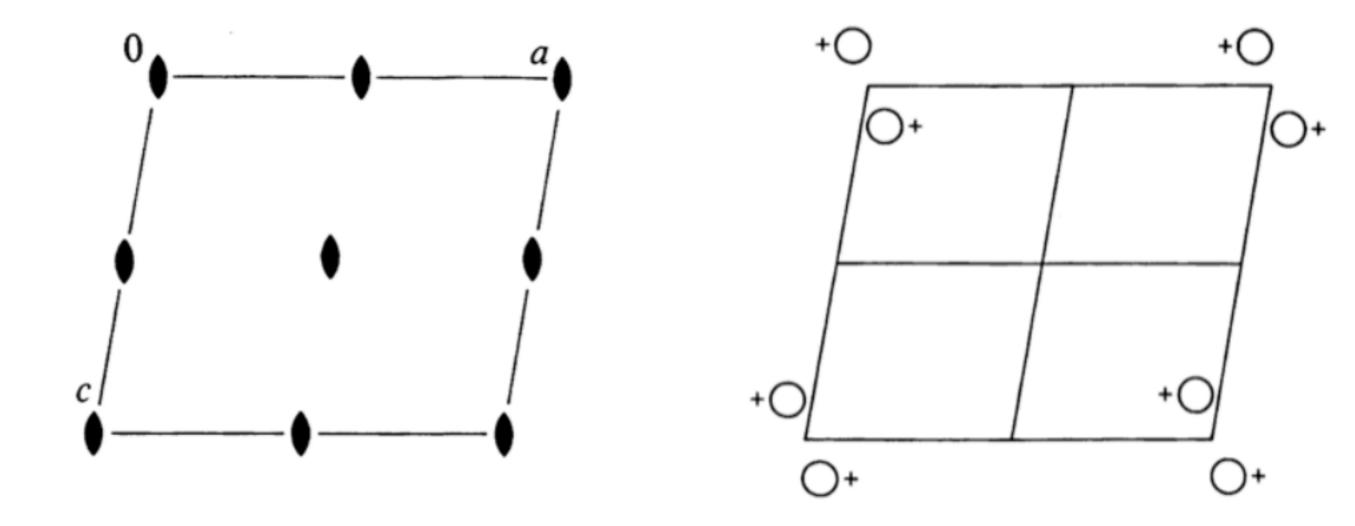
Ist, 2nd, 3rd powers + all coaxial equivalents

All rotations and screw rotations with the same axis, the same angle and sense of rotation and the same screw vector (zero for rotation) up to a lattice translation vector.

Element set of (0,0,z) line

2	-x,-y,z
4+	-y,x,z
4-	y,-x,z
2(0,0,1)	-x,- v.z+1
•••	•••





Symmetry element diagram (left) and General position diagram (right) of the space group P2, No. 3 (unique axis b, cell choice 1).

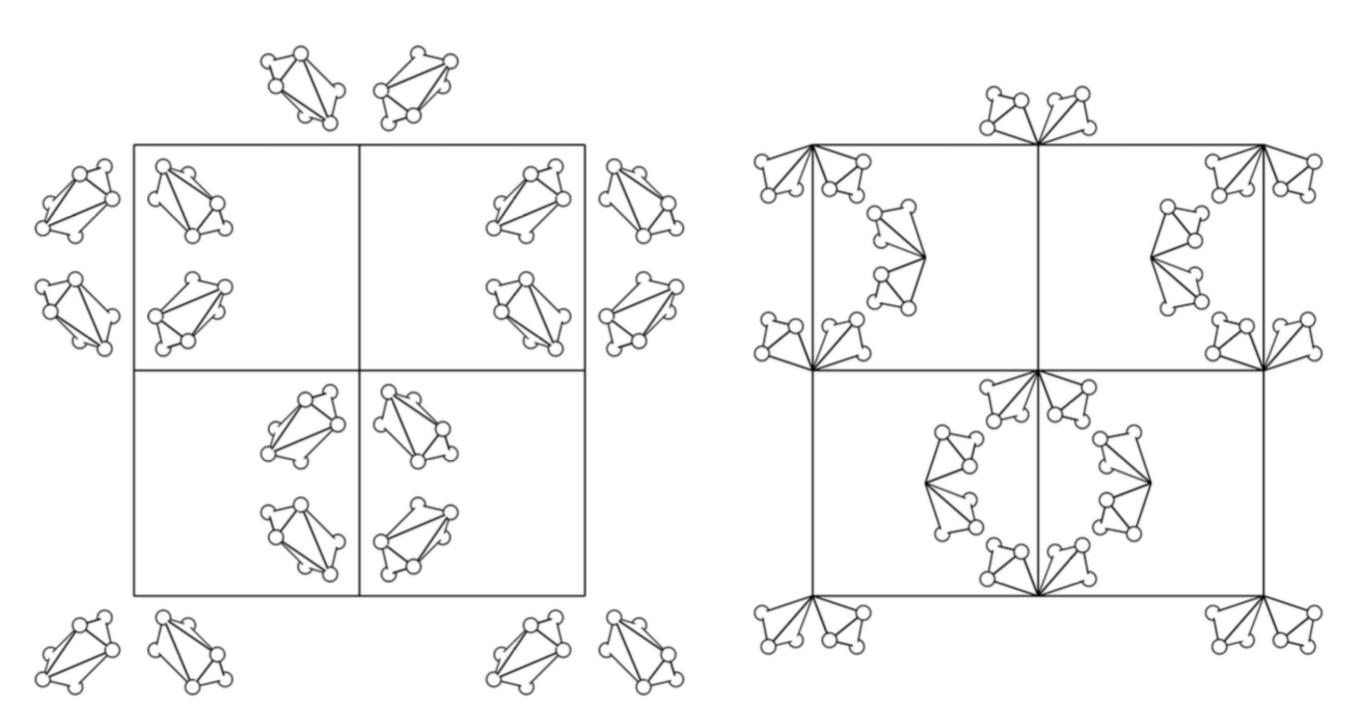


Figure 2.5 General position diagrams of the space group $I4_132$, No. 214. Left diagram: polyhedra (twisted trigonal antiprisms) centres at $(\frac{1}{8}, \frac{1}{8}, \frac{1}{8})$ and its equivalent points, site-symmetry group . 32. Right diagram: polyhedra (sphenoids) attached to (0, 0, 0) and its equivalent points, site-symmetry group . 3..

ORIGINS AND ASYMMETRIC UNITS

Space group Cmm2 (No. 35): left-hand page ITA

Cmm2

No. 35

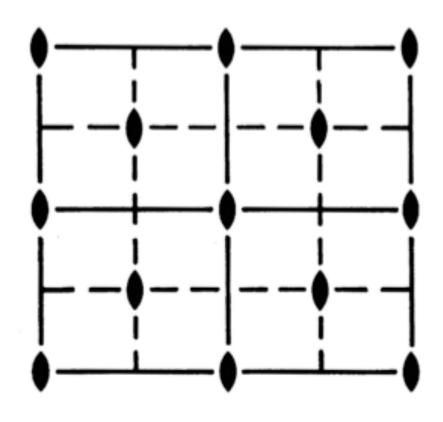
 $C_{2\nu}^{11}$

Cmm2

mm2

Orthorhombic

Patterson symmetry Cmmm



Origin on mm2

Origin statement

The site symmetry of the origin is stated, if different from the identity.

A further symbol indicates all symmetry elements (including glide planes and screw axes) that pass through the origin, if any.

Space groups with two origins

For each of the two origins the location relative to the other origin is also given.

Example: Different origins for Pnnn

Pnnn

 D_{2h}^2

mmm

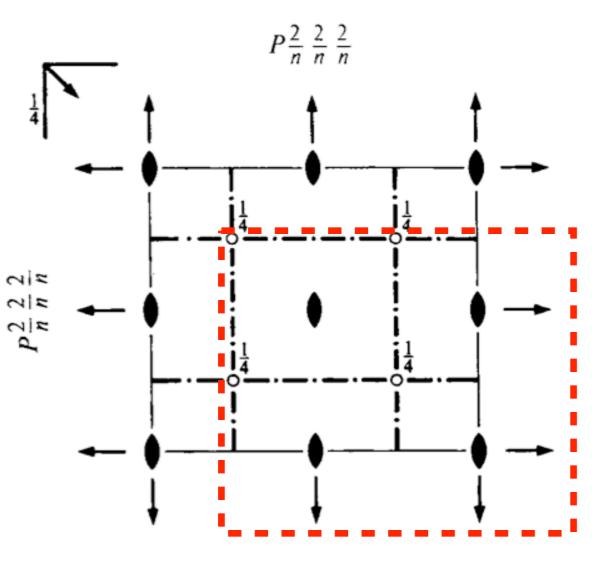
Orthorhombic

No. 48

 $P \ 2/n \ 2/n \ 2/n$

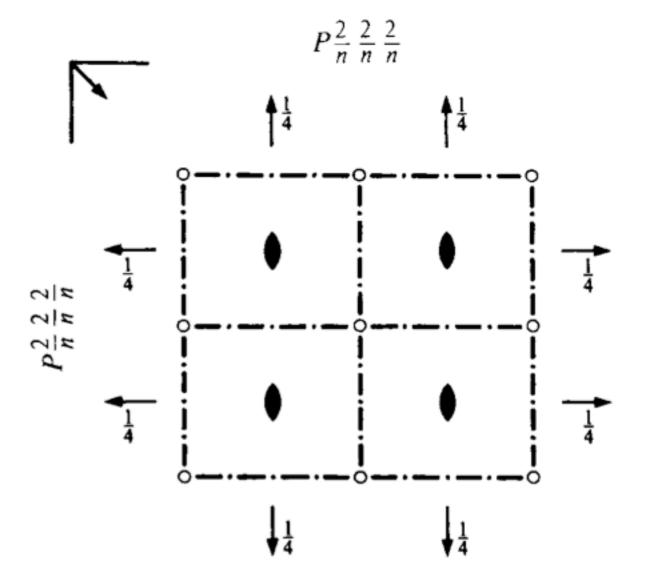
Patterson symmetry Pmmm

ORIGIN CHOICE 1



Origin at 222, at $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{4}$ from $\overline{1}$

ORIGIN CHOICE 2

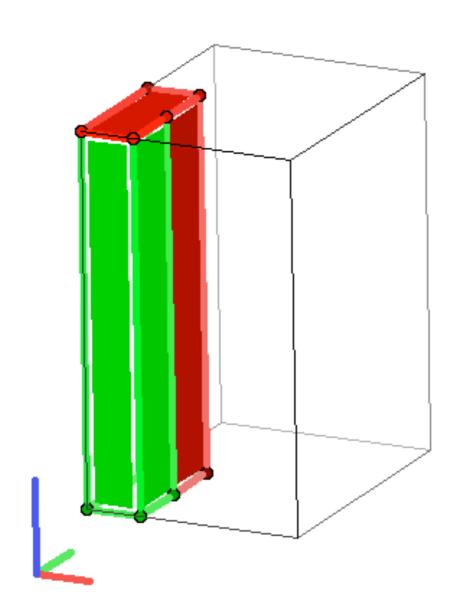


Origin at $\overline{1}$ at nnn, at $-\frac{1}{4}$, $-\frac{1}{4}$, $-\frac{1}{4}$ from 222

Example: Asymmetric unit Cmm2 (No. 35)

ITA:

Asymmetric unit
$$0 \le x \le \frac{1}{4}$$
; $0 \le y \le \frac{1}{2}$; $0 \le z \le 1$



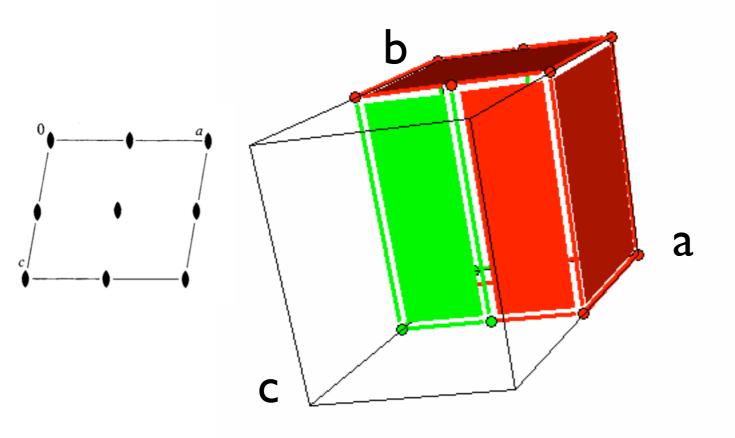
Surface area: green = inside the asymmetric unit, red = outside Basis vectors: a = red, b = green, c = blue

```
Number of facets: 6
Number of vertices: 8
  0, 1/2, 0
                             x \ge 0
                             x \le 1/4 [y \le 1/4]
  0, 1/2, 1
  1/4, 1/2, 1
                             y>=0
  1/4, 0, 1
                             y <= 1/2
  0, 0, 0
                             z \ge 0
  1/4, 1/2, 0
  0, 0, 1
  1/4, 0, 0
                           Guide to notatio
```

(output cctbx: Ralf Grosse-Kustelve)

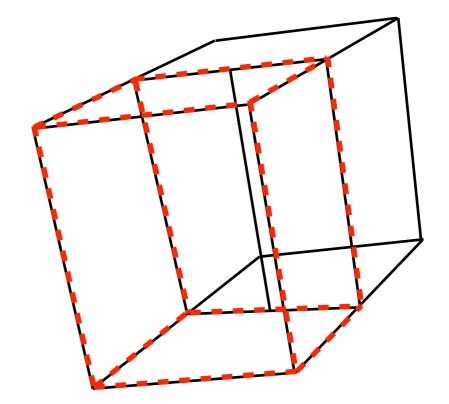
An asymmetric unit of a space group is a (simply connected) smallest closed part of space from which, by application of all symmetry operations of the space group, the whole of space is filled.

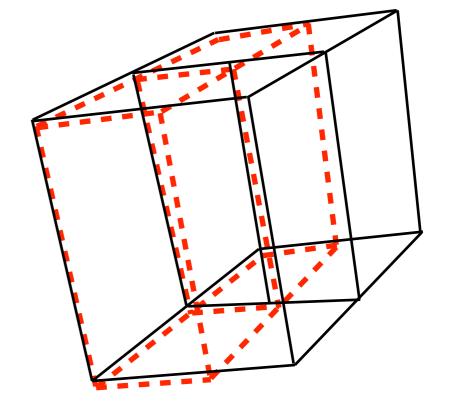
Example: Asymmetric units for the space group P121



```
Number of vertices: 8
0, 1, 1/2
1, 1, 0
1, 0, 0
0, 0, 1/2
1, 0, 1/2
0, 0, 0
0, 1, 0
1, 1, 1/2

| Number of facets: 6
| x>=0
| x<1
| y>=0
| y<1
| z>=0 [x<=1/2]
| z<=1/2 [x<=1/2]
| Cuide to notation]
```





(output cctbx: Ralf Grosse-Kustelve)

GENERAL AND SPECIAL WYCKOFF POSITIONS SITE-SYMMETRY

Group Actions

Actions A group action of a group \mathcal{G} on a set $\Omega = \{\omega \mid \omega \in \Omega\}$ assigns to each pair (g, ω) an object $\omega' = g(\omega)$ of Ω such that the following hold:

- (i) applying two group elements g and g' consecutively has the same effect as applying the product g'g, i.e. $g'(g(\omega)) = (g'g)(\omega)$
- (ii) applying the identity element e of G has no effect on ω , i.e. $e(\omega) = \omega$ for all ω in Ω .

Orbit and Stabilizer

The set $\omega^{\mathcal{G}} := \{g(\omega) \mid g \in \mathcal{G}\}\$ of all objects in the orbit of ω is called the *orbit of* ω *under* \mathcal{G} .

The set $S_{\mathcal{G}}(\omega) := \{g \in \mathcal{G} \mid g(\omega) = \omega\}$ of group elements that do not move the object ω is a subgroup of \mathcal{G} called the *stabilizer* of ω in \mathcal{G} .

Equivalence classes

Via this equivalence relation, the action of \mathcal{G} partitions the objects in Ω into equivalence classes

General and special Wyckoff positions

Orbit of a point X_o under $G: G(X_o) = \{(W,w)X_o,(W,w) \in G\}$ Multiplicity

Site-symmetry group $S_o = \{(W, w)\}$ of a point X_o $(W, w)X_o = X_o$

Multiplicity: |P|/|S_o|

General position X_o

$$S=\{(I,o)\}\simeq 1$$

Multiplicity: |P|

Special position X_o

$$S>1 = \{(I,o),...,\}$$

Multiplicity: |P|/|S_o|

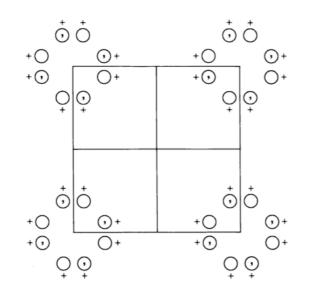
Site-symmetry groups: oriented symbols

General position

- (i) coordinate triplets of an image point X of the original point $X = \prod_{x} under (W,w)$ of G
 - -presentation of infinite image points \widetilde{X} under the action of (W,w) of G: $0 \le x_i < I$

- (ii) short-hand notation of the matrix-column pairs (W,w) of the symmetry operations of G
 - -presentation of infinite symmetry operations of G $(W,w) = (I,t_n)(W,w_0), 0 \le w_{i0} < I$

General Position of Space groups



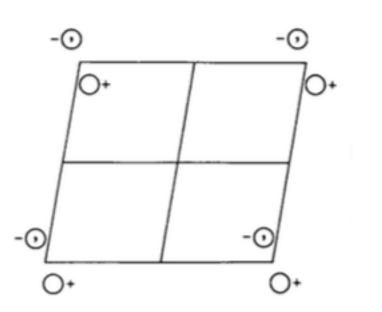
As coordinate triplets of an image point X of the original point $X = \begin{bmatrix} x \\ y \end{bmatrix}$ under (W,w) of G

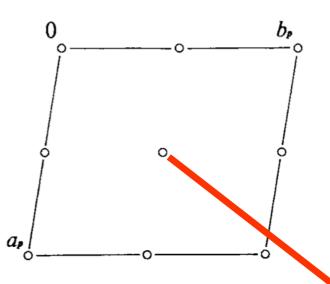
General position

-presentation of infinite image points X of X under the action of (W,w) of G: $0 \le x_i < I$

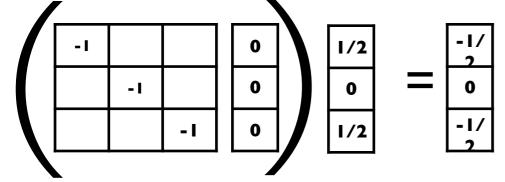
Example: Calculation of the Site-symmetry groups

Group P-1





$S=\{(W,w), (W,w)X_o = X_o\}$



$$S_f = \{(1,0), (-1,101)X_f = X_f\}$$

 $S_f = \{1,-1\}$ isomorphic

Positions

Multiplicity, Wyckoff letter, Site symmetry

(1)
$$x, y, z$$

 $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$

 $0, \frac{1}{2}, \frac{1}{2}$

 $\frac{1}{2}$, 0, $\frac{1}{2}$

 $\frac{1}{2},0,0$

 $0, \frac{1}{2}, 0$

$$x, y, z$$
 (2) $\bar{x}, \bar{y}, \bar{z}$

$$h$$
 1

$$e^{-\frac{1}{2}}$$

$$1 \quad d$$

$$1 \quad c$$

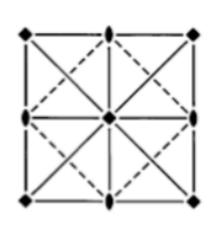
$$1 \quad b \quad \bar{1}$$

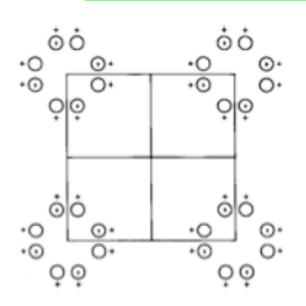
$$0,0,\frac{1}{2}$$

Coordinate

Example

Space group P4mm





No. 99

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5)

Positions

Multiplicity, Wyckoff letter, Site symmetry

Coordinates

- 8 g 1
- (1) x, y, z
- (2) \bar{x}, \bar{y}, z
- (3) \bar{y}, x, z
- (4) y, \bar{x}, z

- $(5) x, \bar{y}, z$
- (6) \bar{x}, y, z
- (7) \bar{y}, \bar{x}, z
- (8) y,x,z

- 4 f .m.
- $x, \frac{1}{2}, z$
- $\bar{x}, \frac{1}{2}, z$
- $\frac{1}{2}, x, z$
- $\frac{1}{2}$, \bar{x} ,z

- 4 e .m.
- x,0,z
- $\bar{x},0,z$
- 0, x, z
- $0, \bar{x}, z$

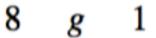
- $4 \quad d \quad \dots m$
- x, x, z
- \bar{x}, \bar{x}, z
- \bar{x}, x, z
- x, \bar{x}, z

- $2 \quad c \quad 2mm.$
- $\frac{1}{2}, 0, z$
- $0, \frac{1}{2}, z$

- $1 \quad b \quad 4 \, m \, m$
- $\frac{1}{2}, \frac{1}{2}, Z$
- $1 \quad a \quad 4mm$
- 0, 0, z

Space group P4mm

General and special Wyckoff positions of P4mm



(1)
$$x, y, z$$

$$(2) \ \bar{x}, \bar{y}, z \qquad (3) \ \bar{y}, x, z$$

(3)
$$\bar{y}, x, z$$

(4)
$$y, \bar{x}, z$$

(5)
$$x, \bar{y}, z$$

(6)
$$\bar{x}, y, z$$
 (7) \bar{y}, \bar{x}, z

(7)
$$\bar{y}, \bar{x}, z$$

(8)
$$y, x, z$$

.m.

$$x, \frac{1}{2}, z$$

$$x, \frac{1}{2}, z$$
 $\bar{x}, \frac{1}{2}, z$

$$\frac{1}{2}, x, z$$

$$\frac{1}{2}, \bar{x}, z$$

.m.

$$\bar{x},0,z$$

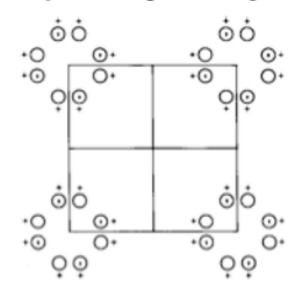
$$0, \bar{x}, z$$

. . m

$$\bar{x}, \bar{x}, z$$

$$\bar{x}, x, z$$

$$x, \bar{x}, z$$



2mm.

 $\frac{1}{2}, 0, z$

 $0, \frac{1}{2}, z$

$$1 \quad b \quad 4mm$$

$$\frac{1}{2}, \frac{1}{2}, Z$$

Symmetry operations

(1) 1

(2) 2 0,0,z

- $(3) 4^+ 0,0,z$
- $(4) 4^{-} 0,0,z$

(5) $m \ x, 0, z$

(6) m = 0, y, z

- (7) $m x, \bar{x}, z$
- (8) m x, x, z

Bilbao Crystallographic Server

Problem:

Wyckoff positions
Site-symmetry groups
Coordinate transformations

WYCKPOS

Wyckoff Positions

space group

ITA Settings

How to select the group

The space groups are specified by their number as given in the International Tables for Crystallography, Vol. A. You can give this number, if you know it, or you can choose it from the table with the space group numbers and symbols if you click on the link choose it.

If you are using this program in the preparation of a paper, please cite it in the following form:

Aroyo, et. al. Zeitschrift fuer Kristallographie (2006), 221, 1, 15-27.

Please, enter the sequential number of group as given in *International Tables for Crystallography*, Vol. A or choose it:

Standard basis

Transformation of the basis

ITA-Settings for the Space Group 68

ces must be read by columns. P is the transformation f

$$(a, b, c)_n = (a, b, c)_s P$$

ITA number	Setting	P	P ⁻¹
68	Ccce [origin 1]	a,b,c	a,b,c
68	A e a a [origin 1]	c,a,b	b,c,a
68	Bbeb [origin 1]	b,c,a	c,a,b
68	Ccce [origin 2]	a,b,c	a,b,c
68	A e a a [origin 2]	c,a,b	b,c,a
68	B b e b [origin 2]	b,c,a	c,a,b

mmm

Orthorhombic erson symmetry Cmmm $\bar{z} + \frac{1}{2}$ $z + \frac{1}{2}$ for CRYSTALLOGRAPHY

No. 68

 $C \ 2/c \ 2/c \ 2/e$

Patterson symmetry Cmmm

16 *i* 1

(1)
$$x, y, z$$

(2)
$$\bar{x} + \frac{1}{2}, \bar{y}, z$$
 (3) $\bar{x}, y, \bar{z} + \frac{1}{2}$ (4) $x + \frac{1}{2}, \bar{y}, \bar{z} + \frac{1}{2}$

(5)
$$\bar{x}, \bar{y}, \bar{z}$$

(6)
$$x + \frac{1}{2}, y, \bar{z}$$

(6)
$$x + \frac{1}{2}, y, \bar{z}$$

$$\bar{z}$$

(7)
$$x, \bar{y}, z +$$

(6)
$$x + \frac{1}{2}, y, \bar{z}$$
 (7) $x, \bar{y}, z + \frac{1}{2}$ (8) $\bar{x} + \frac{1}{2}, y, z + \frac{1}{2}$

 $h \dots 2$

g ...2

e 2...

$$\frac{1}{4}, 0, z$$

$$\frac{3}{4}$$
, 0, $\bar{z} + \frac{1}{2}$ $\frac{3}{4}$, 0, \bar{z}

 $0, \frac{1}{4}, z$ $0, \frac{1}{4}, \bar{z} + \frac{1}{2}$ $0, \frac{3}{4}, \bar{z}$

$$\frac{3}{4}, 0, \bar{z}$$

$$\frac{1}{4}$$
, 0, $z + \frac{1}{2}$

$$0, \frac{3}{4}, z + \frac{1}{2}$$

f . 2.

$$0, y, \frac{1}{4}$$
 $\frac{1}{2}, \bar{y}, \frac{1}{4}$

$$\frac{1}{2}$$
, \bar{v} , $\frac{1}{4}$

$$0, \bar{y}, \frac{3}{4}$$

$$x, \frac{1}{2}, \frac{1}{2}$$

$$x, \frac{1}{4}, \frac{1}{4}$$
 $\bar{x} + \frac{1}{2}, \frac{3}{4}, \frac{1}{4}$

$$\bar{x}, \frac{3}{4}, \frac{3}{4}$$

0, 0, 0

 $\frac{1}{2}$, 0, 0

 $0,0,\frac{1}{2}$

 $\frac{1}{4}, \frac{3}{4}, 0$

 $\frac{1}{4}, \frac{1}{4}, 0$

 $\frac{3}{4}, \frac{3}{4}, \frac{1}{2}$

222

 $0, \frac{1}{4}, \frac{3}{4}$

 $0, \frac{3}{4}, \frac{1}{4}$

222

 $0, \frac{1}{4}, \frac{1}{4}$

 $0, \frac{3}{4}, \frac{3}{4}$

Space Group: 68 (Ccce) [origin choice 2 Point: (0,1/4,1/4) Wyckoff Position: 4a

Site Symmetry Group 222

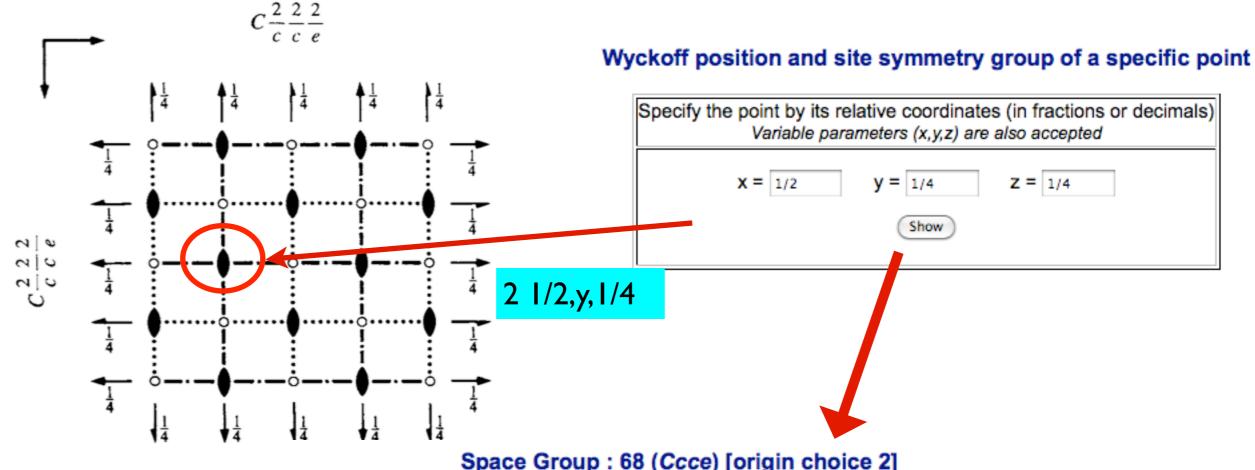
x,y,z	$\left(\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$	4	а
-x,y,-z+1/2	$\left(\begin{array}{ccccc} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1/2 \end{array}\right)$	2 0,y,1/4	
-x,-y+1/2,z	$\left(\begin{array}{ccccc} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & 1 & 0 \end{array}\right)$	2 0,1/4,z	
x,-y+1/2,-z+1/2	$\left(\begin{array}{cccccc} & 1 & 0 & 0 & 0 \\ & 0 & -1 & 0 & 1/2 \\ & 0 & 0 & -1 & 1/2 \end{array}\right)$	2 x,1/4,1/4	

Wyckoff Positions of Group 68 (Ccce) [origin choice 2]

Multiplicity	Wyckoff letter	Site symmetry	Coordinates		
Multiplicity			(0,0,0) + (1/2,1/2,0) +		
16	i	1	(x,y,z) (-x+1/2,-y,z) (-x,y,-z+1/2) (x+1/2,-y,-z+1/2) (-x,-y,-z) (x+1/2,y,-z) (x,-y,z+1/2) (-x+1/2,y,z+1/2)		
8	h	2	(1/4,0,z) (3/4,0,-z+1/2) (3/4,0,-z) (1/4,0,z+1/2)		
8	g	2	(0,1/4,z) (0,1/4,-z+1/2) (0,3/4,-z) (0,3/4,z+1/2)		
8	f	.2.	(0,y,1/4) (1/2,-y,1/4) (0,-y,3/4) (1/2,y,3/4)		
8	е	2	(x,1/4,1/4) (-x+1/2,3/4,1/4) (-x,3/4,3/4) (x+1/2,1/4,3/4)		
8	d	-1	(0,0,0) (1/2,0,0) (0,0,1/2) (1/2,0,1/2)		
8	С	-1	(1/4,3/4,0) (1/4,1/4,0) (3/4,3/4,1/2) (3/4,1/4,1/2)		
4	b	222	(0,1/4,3/4) (0,3/4,1/4)		
4	а	222	(0,1/4,1/4) (0,3/4,3/4)		

Bilbao Crystallographic Server

Example WYCKPOS: Wyckoff Positions Ccce (68)



 $2 \times 1/4, 1/4$

Space Group: 68 (Ccce) [origin choice 2]

Point: (1/2,1/4,1/4) Wyckoff Position: 4b

Site Symmetry Group 222

x,y,z	$\left(\begin{array}{cccccc} & 1 & & 0 & & 0 & & & 0 \\ & 0 & & 1 & & 0 & & & 0 \\ & & 0 & & 0 & & 1 & & & 0 \end{array}\right)$	1
-x+1,y,-z+1/2	$\left(\begin{array}{ccccc} -1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1/2 \end{array}\right)$	2 1/2,y,1/4
-x+1,-y+1/2,z	$\left(\begin{array}{ccccc} -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & 1 & 0 \end{array}\right)$	2 1/2,1/4,z
x,-y+1/2,-z+1/2	$\left(\begin{array}{cccccc} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & -1 & 1/2 \end{array}\right)$	2 x,1/4,1/4

Consider the special Wyckoff positions of the the space group *P4mm*.

Determine the site-symmetry groups of Wyckoff positions *I a* and *I b*. Compare the results with the listed ITA data

The coordinate triplets (x, I/2, z) and (I/2, x, z), belong to Wyckoff position 4f. Compare their site-symmetry groups.

Compare your results with the results of the program WYCKPOS.

Problem 2.18

Consider the Wyckoff-positions data of the space group $14_1/amd$ (No. 141), origin choice 2.

Determine the site-symmetry groups of Wyckoff positions 4a, 4c, 8d and 8e. Compare the results with the listed ITA data.

Compare your results with the results of the program WYCKPOS.

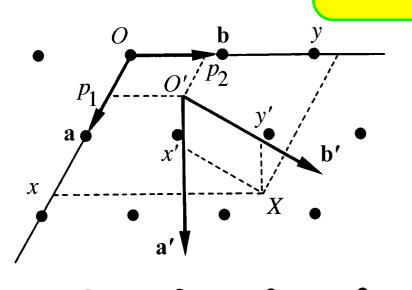
Characterize geometrically the isometries (3), (7), (12), (13) and (16) as listed under General Position. Compare the results with the corresponding geometric descriptions listed under Symmetry operations block in ITA. Comment on the differences between the corresponding symmetry operations listed under the sub-blocks (0,0,0) and (1/2,1/2,1/2).

Compare your results with the results of the program SYMMETRY OPERATIONS.

How do the above results change if origin choice I setting of $I4_I$ /amd is considered?

CO-ORDINATE TRANSFORMATIONS IN CRYSTALLOGRAPHY

Co-ordinate transformation



3-dimensional space

 $(\mathbf{a}, \mathbf{b}, \mathbf{c})$, origin O: point X(x, y, z)

 $(\mathbf{a}', \mathbf{b}', \mathbf{c}')$, origin O': point X(x', y', z')

Transformation matrix-column pair (P,p)

(i) linear part: change of orientation or length:

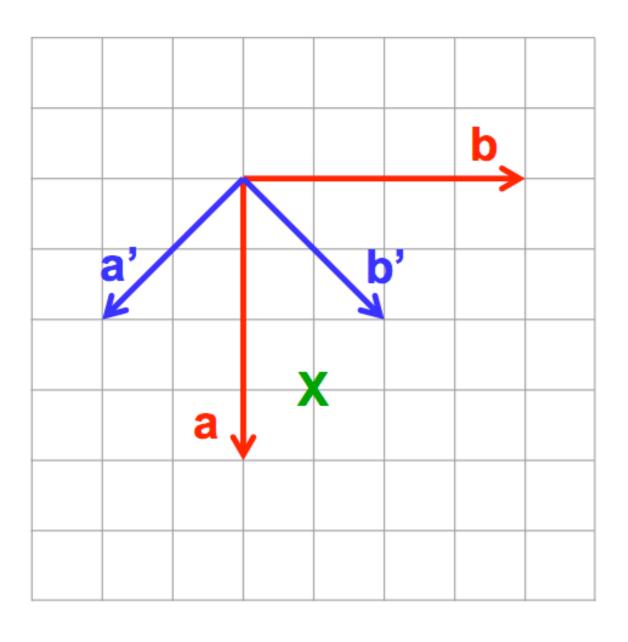
$$(\mathbf{a}',\mathbf{b}',\mathbf{c}')=(\mathbf{a},\mathbf{b},\mathbf{c})P$$

$$= (\mathbf{a}, \mathbf{b}, \mathbf{c}) \begin{pmatrix} P_{11} & P_{12} & P_{13} \\ P_{21} & P_{22} & P_{23} \\ P_{31} & P_{32} & P_{33} \end{pmatrix} = (P_{11}\mathbf{a} + P_{21}\mathbf{b} + P_{31}\mathbf{c}, P_{12}\mathbf{a} + P_{22}\mathbf{b} + P_{32}\mathbf{c}, P_{13}\mathbf{a} + P_{23}\mathbf{b} + P_{33}\mathbf{c}).$$

(ii) origin shift by a shift vector $\mathbf{p}(p_1,p_2,p_3)$:

$$O' = O + p$$

the origin O' has coordinates (p_1,p_2,p_3) in the old coordinate system

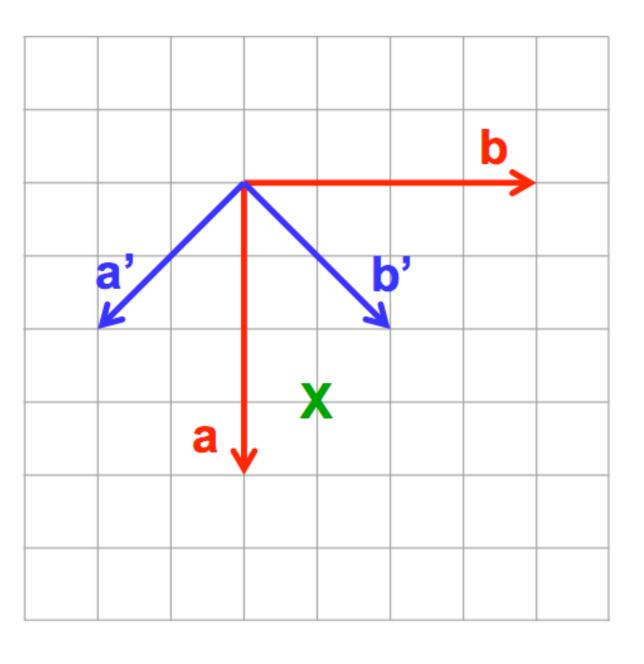


$$(a',b',c') = (a,b,c)$$

$$(a,b,c) = (a',b',c')$$

$$X' = ($$
?

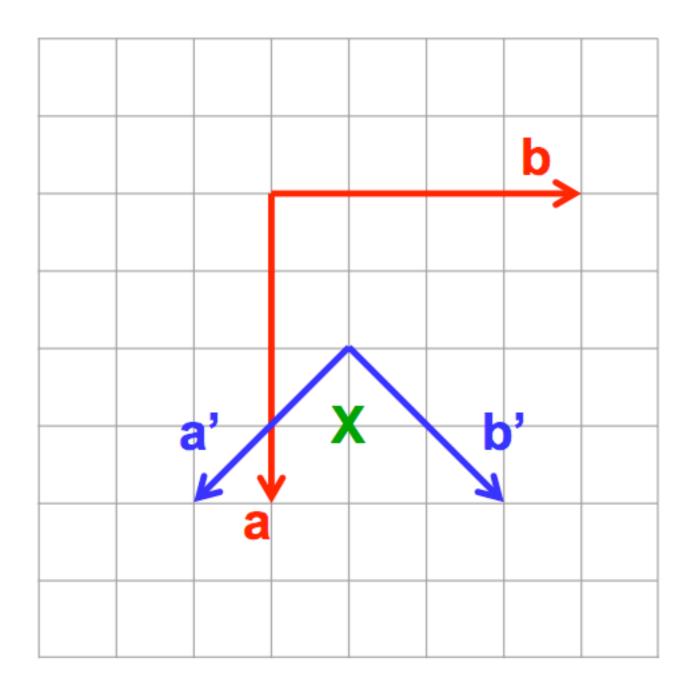
Write "new in terms of old" as column vectors.



$$(a',b',c') = (a,b,c) \begin{pmatrix} 1/2 & 1/2 & 0 \\ -1/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(\mathbf{a}, \mathbf{b}, \mathbf{c}) = (\mathbf{a}', \mathbf{b}', \mathbf{c}') \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\mathbf{X} = (3/4, 1/4, 0)$$

$$X' = (1/2,1,0)$$



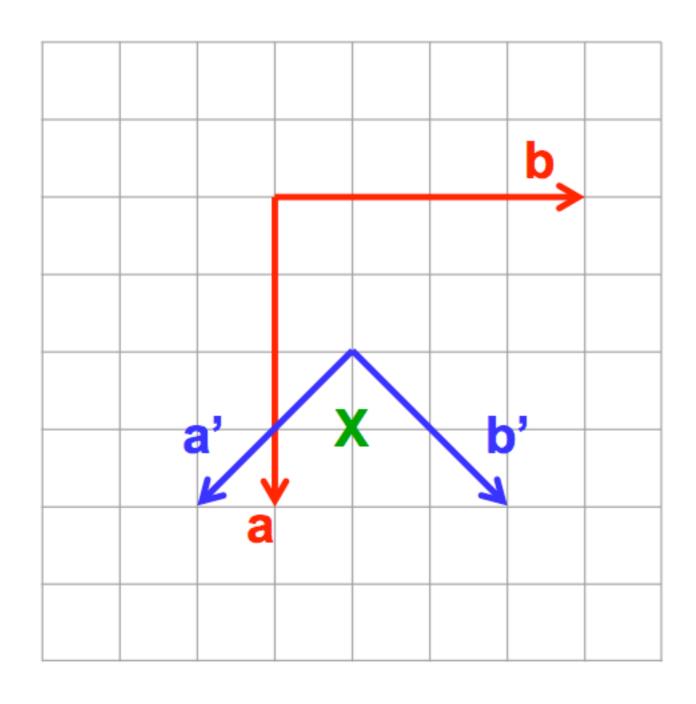
$$q = \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}$$

$$X = (3/4, 1/4, 0)$$

$$X' = ($$
?

Linear parts as before.

EXAMPLE



$$\boldsymbol{p} = \begin{pmatrix} 1/2 \\ 1/4 \\ 0 \end{pmatrix}$$

$$\boldsymbol{q} = \begin{pmatrix} -1/4 \\ -3/4 \\ 0 \end{pmatrix}$$

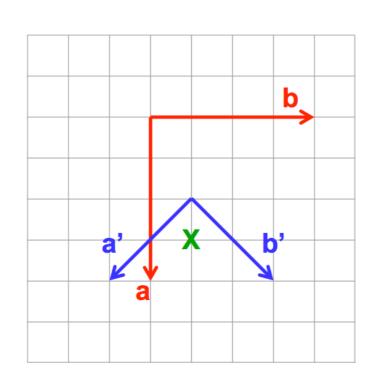
$$X = (3/4,1/4,0)$$

$$X' = (1/4, 1/4, 0)$$

Linear parts as before.

Transformation matrix-column pair (P,p)

$$(P,p) = \begin{pmatrix} 1/2 & 1/2 & 0 \\ -1/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$



$$a=a'+b'$$
 $b=-a'+b'$
 $c=c'$
 $-\frac{1}{4}$
 $-\frac{3}{4}$
 0

Short-hand notation for the description of transformation matrices

Transformation matrix:



(a,b,c), origin O

$$(P,p) = \begin{pmatrix} P_{11} & P_{12} & P_{13} & p_1 \\ P_{21} & P_{22} & P_{23} & p_2 \\ P_{31} & P_{32} & P_{33} & p_3 \end{pmatrix}$$

(a',b',c'), origin O'

notation rules:

- -written by columns
- -coefficients 0, + I, I
- -different columns in one line
- -origin shift

example:

I	-1		-1/4
I	I		-3/4
		Ι	0

$$\longrightarrow$$
 { a+b, -a+b, c;-1/4,-3/4,0

Transformation of the coordinates of a point X(x,y,z):

special cases

-origin shift (**P=I**):

-change of basis ($m{p}=m{o}$) : $m{x}'=m{P}^{-1}m{x}$

$$oldsymbol{x}' = oldsymbol{x} - oldsymbol{p}$$

$$oldsymbol{x}' = oldsymbol{P}^{-1}oldsymbol{x}$$

EXAMPLE

$$X' = (P,p)^{-1}X = \begin{pmatrix} \begin{vmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} -1/4 \\ -3/4 \\ 0 \end{vmatrix} \begin{pmatrix} 3/4 \\ 1/4 \\ 0 \end{vmatrix} = \begin{vmatrix} 1/4 \\ 1/4 \\ 0 \end{vmatrix}$$

Covariant and contravariant crystallographic quantities

direct or crystal basis

$$(a',b',c')=(a, b, c)P=(a, b, c)$$

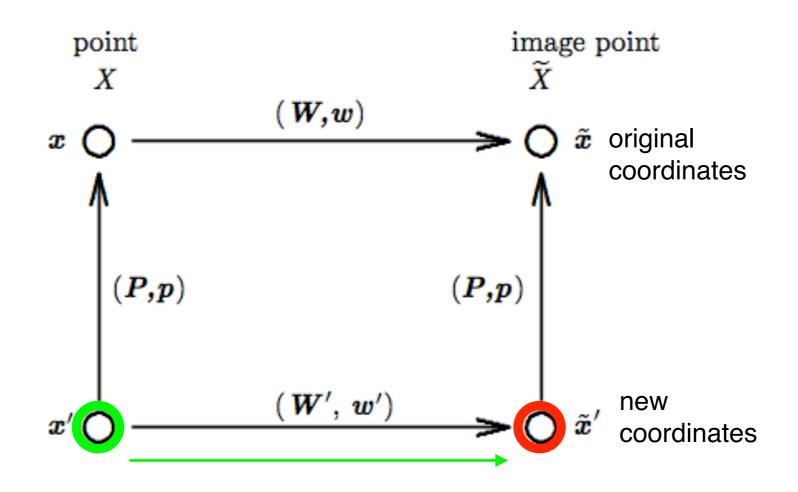
P₁₁ P₁₂ P₁₃
P₂₁ P₂₂ P₂₃
P₃₁ P₃₂ P₃₃

reciprocal or dual basis

covariant to crystal basis: Miller indices (h',k',l')=(h,k,l)P

contravariant to crystal basis: indices of a direction [u]

Transformation of symmetry operations (W,w)



i.
$$\tilde{m{x}}'=(m{W}',m{w}')m{x}'$$

ii. $\tilde{m{x}}'=(m{P},m{p})^{-1}\tilde{m{x}}=(m{P},m{p})^{-1}(m{W},m{w})m{x}=(m{P},m{p})^{-1}(m{W},m{w})(m{P},m{p})m{x}'$

$$(W',w')=(P,p)^{-1}(W,w)(P,p)$$

Transformation of the coordinates of a point X(x,y,z):

special cases

-origin shift (**P=I**):

-change of basis ($m{p}=m{o}$): $m{x}'=m{P}^{-1}m{x}$

$$oldsymbol{x}' = oldsymbol{x} - oldsymbol{p}$$

$$oldsymbol{x}' = oldsymbol{P}^{-1}oldsymbol{x}$$

Transformation of symmetry operations (W,w):

$$(W',w')=(P,p)^{-1}(W,w)(P,p)$$

Transformation by (\mathbf{P}, \mathbf{p}) of the unit cell parameters:

metric tensor $G: G'=P^tGP$

$$G'=P^tGP$$

Problem 2.19

The following matrix-column pairs (W,w) are referred with respect to a basis (a,b,c):

(1)
$$x,y,z$$
 (2) $-x,y+1/2,-z+1/2$

(3)
$$-x,-y,-z$$
 (4) $x,-y+1/2, z+1/2$

- (i) Determine the corresponding matrix-column pairs (W',w') with respect to the basis (a',b',c')=(a,b,c)P, with P=c,a,b.
- (ii) Determine the coordinates X' of a point X=0,31 with respect to the new basis (a',b',c').

Hints

$$(W',w')=(P,p)^{-1}(W,w)(P,p)$$

$$(X')=(P,p)^{-1}(X)$$

Problem: SYMMETRY DATA ITA SETTINGS

530 ITA settings of orthorhombic and monoclinic groups

4. SYNOPTIC TABLES OF SPACE-GROUP SYMBOLS

MONOCLINIC SYSTEM

Table 4.3.1 (cont.)

No. of	Schoenflies symbol	Standard short Hermann- Mauguin symbol	Extended Hermann-Mauguin symbols for various settings and cell choices						to belogible
space group			a <u>b</u> c	c <u>b</u> a	ab <u>c</u>	ba <u>č</u>	<u>a</u> bc	<u>ā</u> cb	Unique axis b Unique axis c Unique axis a
3	C_2^1	P2	P121	P121	P112	P112	P211	P211	01870G 570 S
4	C2 2	P2,	P12,1	P12,1	P112,	P112,	P2,11	P2,11	1 1. (sec Sect o
5	C ₂ ³	C2	C121 2, A121	A121 21 C121	A112 2 ₁ B112	B112 2 ₁ A112	B211 2 ₁ C211	C211 2 ₁ B211	Cell choice 1 Cell choice 2
ins_Lin	1000 ii 20 158000 bai	nital setting a be show clade	1121 2 ₁	1121 2 ₁	11121 21	1112	121 ¹ 1 2 ₁	1211 2 ₁	Cell choice 3
6	C_s^1	Pm	P1m1	P1m1	Pllm	P11m	Pm11	Pm11	- COMMON
7	C,2	Pc	Plcl Plnl Plal	Plal Plnl Plcl	P11a P11n P11b	P11b P11n P11a	Pb11 Pn11 Pc11	Pc11 Pn11 Pb11	Cell choice 1 Cell choice 2
8	C _s ³	Cm	Clml a Alml c Ilml	Alm1 c Clm1 a Ilm1	Allm b Bllm a Illm	B11m a A11m b	Bm11 c Cm11 b Im11	Cm11 b Bm11 c Im11	Cell choice 3 Cell choice 1 Cell choice 2 Cell choice 3
9	C;	Cc	Clcl	Alal	n Alla n	n B11b n	n Bb11 n	n Ccll n	Cell choice 1
dieg			Alnl a Ilal c	Clnl c Ilcl a	B11n b 111b a	Alln a Illa b	Cnll c Icll b	Bn11 b Ib11 c	Cell choice 2 Cell choice 3
10	C1 2h	P2/m	$P1\frac{2}{m}1$	$P1\frac{2}{m}1$	$P11\frac{2}{m}$	$P11\frac{2}{m}$	$P\frac{2}{m}$ 11	$P\frac{2}{m}$ 11	for the second
11	C2.	P2 /m	P1 211	p, 2, ,	2, 2,	2. 2.	2	2	COAS PARISON

Monoclinic descriptions

		abc	${ m cba}$					Monoclinic axis b
	Transf.			abc	ba c			Monoclinic axis c
						abc	ācb	Monoclinic axis a
		C12/c1	A12/a1	A112/a	B112/b	B2/b11	C2/c11	Cell type 1
HM	C2/c	A12/n1	C12/n1	B112/n	A112/n	C2/n11	B2/n11	Cell type 2
		I12/a1	I12/c1	I112/b	I112/a	I2/c11	I2/b11	Cell type 3

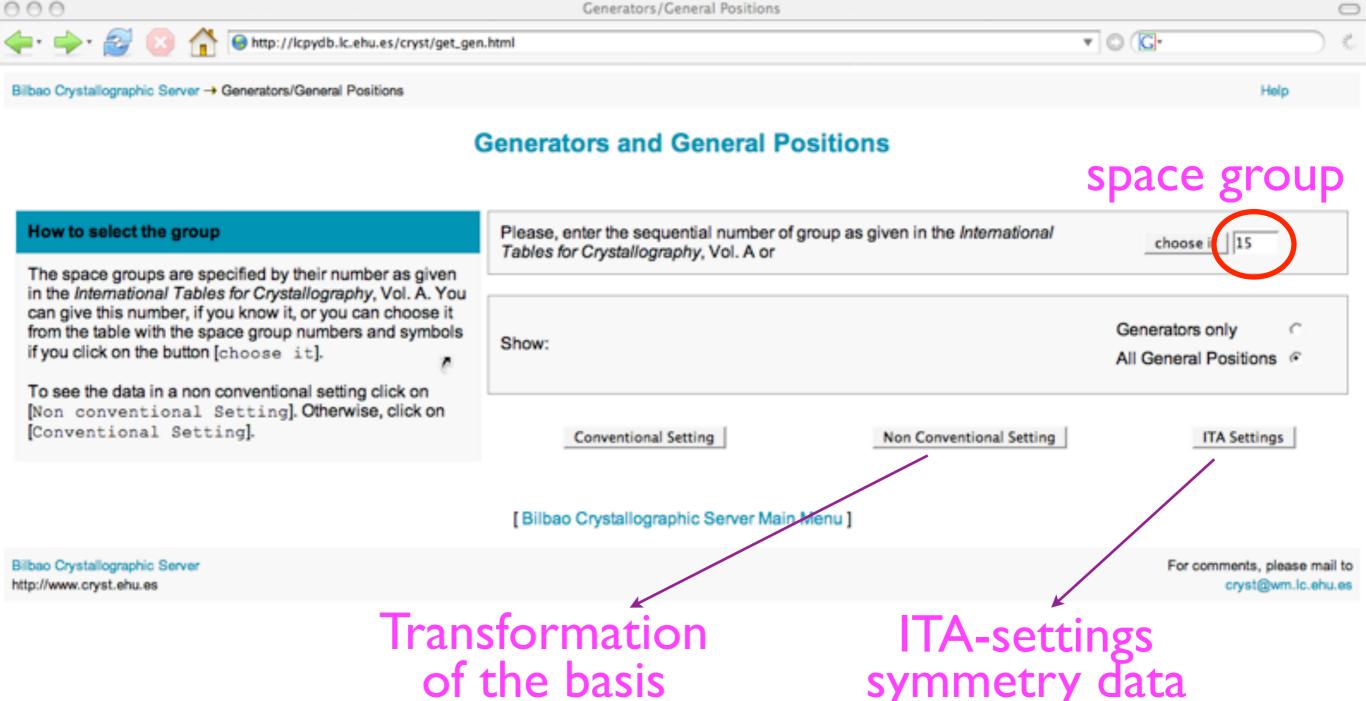
Orthorhombic descriptions

No.	HM	abc	ba c	cab	c ba	bca	a c b
33	$Pna2_1$	$Pna2_1$	$Pbn2_1$	$P2_1nb$	$P2_1cn$	$Pc2_1n$	$Pn2_1a$

Bilbao Crystallographic Server

Problem: Coordinate transformations
Generators
General positions

GENPOS



ITA-Settings for the Space Group 15

Note: The transformation matrices must be read by columns. P is the transformation from standard to the ITA-setting.

Example GENPOS:

default setting CI2/cI

$$(W,w)_{A112/a} = (P,p)^{-1}(W,w)_{C12/c1}(P,p)$$

final setting A112/a

ITA number	Setting	Р	P ⁻¹
15	C 1 2/c 1	a,b,c	a,b,c
15	A 1 2/n 1	-a-c,b,a	c,b,-a-c
15	I 1 2/a 1	c,b,-a-c	-a-c,b,a
15	A 1 2/a 1	c,-b,a	c,-b,a
15	C 1 2/n 1	a,-b,-a-c	a,-b,a-c
15	/ 1 2/c 1	-a-c,-b,c	-a-c,-b,c
15	A 1 1 2/a	c,a,b	b,c,a
15	B 1 1 2/n	a,-a-c,b	a,c,-a-b
15	I 1 1 2/b	-a-c,c,b	-a-b,c,b
15	B 1 1 2/b	a,c,-b	a,-c,b
15	A 1 1 2/n	-a-c,a,-b	b,-c,-a-b
15	I 1 1 2/a	c,-a-c,-b	-a-b,-c,a
15	<i>B</i> 2/ <i>b</i> 1 1	b,c,a	c,a,b
15	C 2/n 1 1	b,a,-a-c	b,a,-b-c
15	/ 2/c 1 1	b,-a-c,c	-b-c,a,c
15	C 2/c 1 1	-b,a,c	b,-a,c
15	<i>B</i> 2/ <i>n</i> 1 1	-b,-a-c,a	c,-a,-b-c
15	<i>l</i> 2/b 1 1	-b,c,-a-c	-b-c,-a,b

Example GENPOS: ITA settings of C2/c(15)

The general positions of the group 15 (A 1 1 2/a)

N	Standard/Default Setting C2/c			ITA-Setting A 1 1 2/a			
	(x,y,z) form	matrix form	symmetry operation	(x,y,z) form	matrix form	symmetry operation	
1	x, y, z	$ \left(\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right) $	1	x, y, z	$\left(\begin{array}{ccccc} & 1 & 0 & 0 & & 0 \\ & 0 & 1 & 0 & & 0 \\ & 0 & 0 & 1 & & 0 \end{array}\right)$	1	
2	-x, y, -z+1/2	$ \left(\begin{array}{ccccc} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1/2 \end{array}\right) $	2 0,y,1/4	-x+1/2, -y, z	$\left(\begin{array}{ccccc} -1 & 0 & 0 & 1/2 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$	2 1/4,0,z	
3	-x, -y, -z	$ \left(\begin{array}{ccccc} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{array}\right) $	-1 0,0,0	-x, -y, -z	$\left(\begin{array}{ccccc} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{array}\right)$	-1 0,0,0	
4	x, -y, z+1/2	$ \left(\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1/2 \end{array}\right) $	c x,0,z	x+1/2, y, -z	$\left(\begin{array}{ccccc} 1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{array}\right)$	a x,y,0	
5	x+1/2, y+1/2, z	$\left(\begin{array}{ccccc} 1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & 1 & 0 \end{array}\right)$	t (1/2,1/2,0)	x, y+1/2, z+1/2	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	t (0,1/2,1/2)	
6	-x+1/2, y+1/2, -z+1/2	$\left(\begin{array}{ccccc} -1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & -1 & 1/2 \end{array}\right)$	2 (0,1/2,0) 1/4,y,1/4	-x+1/2, -y+1/2, z+1/2	$ \left(\begin{array}{ccccccc} -1 & 0 & 0 & 1/2 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & 1 & 1/2 \end{array}\right) $	2 (0,0,1/2) 1/4,1/4,z	
7	-x+1/2, -y+1/2, -z	$\left(\begin{array}{cccc} -1 & 0 & 0 & 1/2 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & -1 & 0 \end{array}\right)$	-1 1/4,1/4,0	-x, -y+1/2, -z+1/2	$ \left(\begin{array}{ccccccc} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & -1 & 1/2 \end{array}\right) $	-1 0,1/4,1/4	
8	x+1/2, -y+1/2, z+1/2	$ \left(\begin{array}{cccccc} 1 & 0 & 0 & 1/2 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & 1 & 1/2 \end{array}\right) $	n (1/2,0,1/2) x,1/4,z	x+1/2, y+1/2, -z+1/2	$ \left(\begin{array}{ccccccc} 1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & -1 & 1/2 \end{array}\right) $	n (1/2,1/2,0) x,y,1/4	

A112/a setting

Bilbao Crystallographic Server

Problem: Coordinate transformations WYCKPOS Wyckoff positions

space group

ITA Settings

How to select the group

The space groups are specified by their number as given in the International Tables for Crystallography, Vol. A. You can give this number, if you know it, or you can choose it from the table with the space group numbers and symbols if you click on the link choose it.

If you are using this program in the preparation of a paper, please cite it in the following form:

Aroyo, et. al. Zeitschrift fuer Kristallographie (2006), 221, 1, 15-27.

Please, enter the sequential number of group as given in *International Tables for Crystallography*, Vol. A or choose it:

ITA-Settings for the Space Group 68

ces must be read by columns. P is the transformation f

$$(a, b, c)_n = (a, b, c)_s P$$

ITA number	Setting	Р	P ⁻¹
68	Ccce [origin 1]	a,b,c	a,b,c
68	A e a a [origin 1]	c,a,b	b,c,a
68	Bbeb [origin 1]	b,c,a	c,a,b
68	Ccce [origin 2]	a,b,c	a,b,c
68	A e a a [origin 2]	c,a,b	b,c,a
68	B b e b [origin 2]	b,c,a	c,a,b

Transformation of the basis

Consider the space group $P2_1/c$ (No. 14). Show that the relation between the General and Special position data of $P112_1/a$ (setting unique axis c) can be obtained from the data $P12_1/c1$ (setting unique axis b) applying the transformation $(\mathbf{a',b',c'})_c = (\mathbf{a,b,c})_b P$, with P = c,a,b.

Use the retrieval tools GENPOS (generators and general positions) and WYCKPOS (Wyckoff positions) for accessing the space-group data. Get the data on general and special positions in different settings either by specifying transformation matrices to new bases, or by selecting one of the 530 settings of the monoclinic and orthorhombic groups listed in *ITA*.

Use the retrieval tools GENPOS or Generators and General positions, WYCKPOS (or Wyckoff positions) for accessing the space-group data on the Bilbao Crystallographic Server or Symmetry Database server. Get the data on general and special positions in different settings either by specifying transformation matrices to new bases, or by selecting one of the 530 settings of the monoclinic and orthorhombic groups listed in ITA.

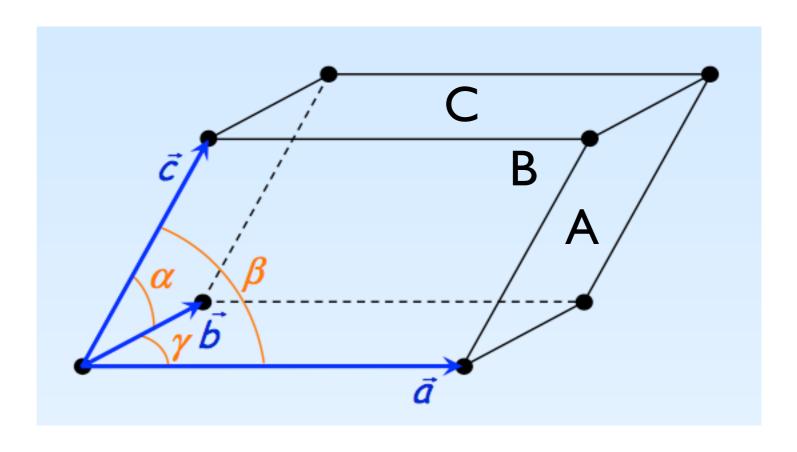
Consider the General position data of the space group Im-3m (No. 229). Using the option Non-conventional setting obtain the matrix-column pairs of the symmetry operations with respect to a primitive basis, applying the transformation $(\mathbf{a}', \mathbf{b}', \mathbf{c}') = 1/2(-\mathbf{a}+\mathbf{b}+\mathbf{c}, \mathbf{a}-\mathbf{b}+\mathbf{c}, \mathbf{a}+\mathbf{b}-\mathbf{c})$

METRIC TENSOR

3D-unit cell and lattice parameters

lattice basis: {a, b, c}

unit cell:
the parallelepiped
defined by the
basis vectors



primitive P and centred unit cells: A,B,C,F, I, R

number of lattice points per unit cell

Lattice parameters

lengths of the unit translations:

a

b

C

angles between them:

$$\alpha = (\overrightarrow{b}, \overrightarrow{c})$$

$$\beta = (\widehat{c}, \widehat{a})$$

$$\gamma = (\widehat{\vec{a}}, \widehat{\vec{b}})$$

Lattice parameters (3D)

An alternative way to define the metric properties of a lattice L

Given a lattice L of V^3 with a lattice basis: $\{a_1, a_2, a_3\}$

Definition (D 1.5.3) The quantities

$$a_1 = |\mathbf{a}_1| = +\sqrt{(\mathbf{a}_1\,,\,\mathbf{a}_1)}, \qquad a_2 = |\mathbf{a}_2| = +\sqrt{(\mathbf{a}_2\,,\,\mathbf{a}_2)}, \ a_3 = |\mathbf{a}_3| = +\sqrt{(\mathbf{a}_3\,,\,\mathbf{a}_3)},$$

$$\alpha_1 = \arccos(|\mathbf{a}_2|^{-1}|\mathbf{a}_3|^{-1}(\mathbf{a}_2, \mathbf{a}_3)), \qquad \alpha_2 = \arccos(|\mathbf{a}_3|^{-1}|\mathbf{a}_1|^{-1}(\mathbf{a}_3, \mathbf{a}_1)),$$
 and $\alpha_3 = \arccos(|\mathbf{a}_1|^{-1}|\mathbf{a}_2|^{-1}(\mathbf{a}_1, \mathbf{a}_2))$

are called the *lattice parameters* of the lattice.

Remark: the lengths of basis vectors are measured in $nm (lnm=10^{-9} \text{ m}) \quad \text{Å} (l\text{Å}=10^{-10} \text{ m}) \quad pm (lpm=10^{-12} \text{ m})$

Metric tensor **G** in terms of lattice parameters

$$G = \begin{pmatrix} \mathbf{a} \cdot \mathbf{a} & \mathbf{a} \cdot \mathbf{b} & \mathbf{a} \cdot \mathbf{c} \\ \mathbf{b} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b} & \mathbf{b} \cdot \mathbf{c} \\ \mathbf{c} \cdot \mathbf{a} & \mathbf{c} \cdot \mathbf{b} & \mathbf{c} \cdot \mathbf{c} \end{pmatrix} G = \begin{pmatrix} a^2 & ab \cos \gamma & ac \cos \beta \\ ab \cos \gamma & b^2 & bc \cos \alpha \\ ac \cos \beta & bc \cos \alpha & c^2 \end{pmatrix}$$

METRIC TENSOR (FUNDAMENTAL MATRIX)

Given a lattice **L** of V^3 with a lattice basis: $\{a_1, a_2, a_3\}$

The lattice **L** inherits the metric properties of the Euclidean space and they are conveniently expressed with respect to a lattice basis (right-handed coordinate system)

Metric tensor **G** of **L**

$$G = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}^T . \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\} = \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \end{bmatrix}$$

 $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\} =$

GII	G ₁₂	G _{I3}
G ₂₁	G ₂₂	G ₂₃
G ₃₁	G ₃₂	G ₃₃

Metric tensor **G** is symmetric: $G_{ik} = G_{ki}$

$$G_{ik}=(\mathbf{a}_i,\mathbf{a}_k)=a_ia_k\cos\alpha_j,$$

Scalar product of arbitrary vectors:

$$(\mathbf{r},\mathbf{t})=\mathbf{r}^{\mathsf{T}}\mathbf{G}\mathbf{t}$$

Transformation properties of **G** under basis transformation

 \mathbf{a}_3

$${a'_1, a'_2, a'_3} = {a_1, a_2, a_3} P$$

$$G'=\{a'_1, a'_2, a'_3\}^T$$
. $\{a'_1, a'_2, a'_3\}=P^T\{a_1, a_2, a_3\}^T$. $\{a_1, a_2, a_3\}$ P

$$G'=P^TGP$$

Crystallographic calculations: Volume of the unit cell

The volume V of the unit cell of a crystal structure, i.e. the body containing all points with coordinates $0 \le x_1, x_2, x_3 < 1$, can be calculated by the formula

$$\det(\boldsymbol{G}) = V^2.$$

In the general case one obtains

$$V^2 = \left| egin{array}{cccc} G_{11} & G_{12} & G_{13} \ G_{21} & G_{22} & G_{23} \ G_{31} & G_{32} & G_{33} \end{array}
ight| =$$

$$= a^2 b^2 c^2 (1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2 \cos \alpha \cos \beta \cos \gamma).$$

Volume of the unit cell in terms of lattice parameters (Buerger, 1941)

Basis vectors with respect to Cartesian basis

$$\mathbf{a} = \mathbf{i}a_x + \mathbf{j}a_y + \mathbf{k}a_z,$$
 $\mathbf{b} = \mathbf{i}b_x + \mathbf{j}b_y + \mathbf{k}b_z,$
 $\mathbf{c} = \mathbf{i}c_x + \mathbf{j}c_y + \mathbf{k}c_z,$
 $V = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$

$det(A) = det(A^T)$

$$V^{2} = \begin{vmatrix} a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ c_{x} & c_{y} & c_{z} \end{vmatrix} \begin{vmatrix} a_{x} & b_{x} & c_{x} \\ a_{y} & b_{y} & c_{y} \\ a_{z} & b_{z} & c_{z} \end{vmatrix} = \begin{vmatrix} \mathbf{a} \cdot \mathbf{a} & \mathbf{a} \cdot \mathbf{b} & \mathbf{a} \cdot \mathbf{c} \\ \mathbf{b} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b} & \mathbf{b} \cdot \mathbf{c} \\ \mathbf{c} \cdot \mathbf{a} & \mathbf{c} \cdot \mathbf{b} & \mathbf{c} \cdot \mathbf{c} \end{vmatrix} = \det (\mathbf{G})$$

$$= \begin{vmatrix} a^{2} & ab \cos \gamma & ac \cos \beta \\ ba \cos \gamma & b^{2} & bc \cos \alpha \\ ca \cos \beta & cb \cos \alpha & c^{2} \end{vmatrix}$$

$$V = abc(1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2\cos \alpha \cos \beta \cos \gamma)^{1/2}$$

EXERCISE (Problem 2.20)

Write down the metric tensors of the seven crystal systems in parametric form using the general expressions for their lattice parameters. For each of the cases, express the volume of the unit cell as a function of the lattice parameters.

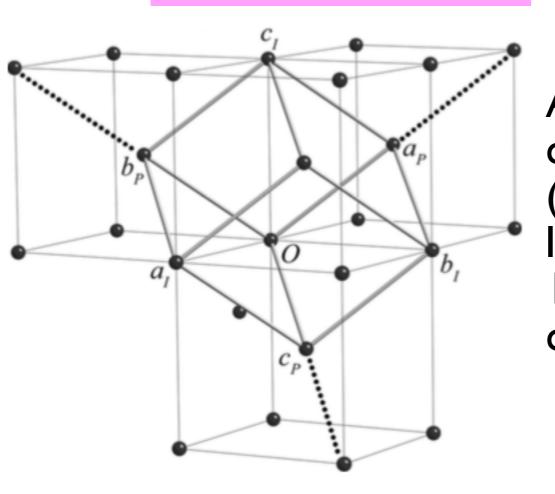
For example:

tetragonal crystal system: a=b, c, $\alpha=\beta=\gamma=90$

$$\mathbf{G} = \begin{bmatrix} a^2 & 0 & 0 \\ 0 & a^2 & 0 \\ 0 & 0 & c^2 \end{bmatrix}$$

EXERCISES

Problem 2.21



A body-centred cubic lattice (cl) has as its conventional basis the conventional basis (**a**_P,**b**_P,**c**_P) of a primitive cubic lattice, but the lattice also contains the centring vector $1/2a_P+1/2b_P+1/2c_P$ which points to the centre of the conventional cell.

Calculate the coefficients of the metric tensor for the body-centred cubic lattice: (i) for the conventional basis (**a**_P,**b**_P,**c**_P);

(ii) for the primitive basis:

$$\mathbf{\hat{a}_{I}} = 1/2(-\dot{\mathbf{a}_{P}} + \mathbf{b}_{P} + \mathbf{c}_{P}), \mathbf{b}_{I} = 1/2(\mathbf{a}_{P} - \mathbf{b}_{P} + \mathbf{c}_{P}), \mathbf{c}_{I} = 1/2(\mathbf{a}_{P} + \mathbf{b}_{P} - \mathbf{c}_{I})$$

(iii) determine the lattice parameters of the primitive cell if $a_P=4$ Å

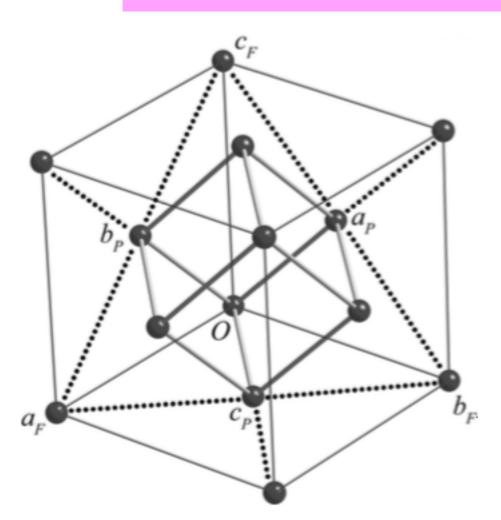
Hint

metric tensor transformation

$$G'=P^tGP$$

EXERCISES

Problem 2.22



A face-centred cubic lattice (cF) has as its conventional basis the conventional basis ($\mathbf{a_P}, \mathbf{b_P}, \mathbf{c_P}$) of a primitive cubic lattice, but the lattice also contains the centring vectors $1/2\mathbf{b_P}+1/2\mathbf{c_P}$, $1/2\mathbf{a_P}+1/2\mathbf{c_P}$, $1/2\mathbf{a_P}+1/2\mathbf{b_P}$, which point to the centres of the faces of the conventional cell.

Calculate the coefficients of the metric tensor for the face-centred cubic lattice:

- (i) for the conventional basis (a_P,b_P,c_P);
- (ii) for the primitive basis:

$$a_F = 1/2(b_P + c_P), b_F = 1/2(a_P + c_P), c_F = 1/2(a_P + b_P)$$

(iii) determine the lattice parameters of the primitive cell if a_P =4 Å