

International Union of Crystallography Commission on Mathematical and Theoretical Crystallography



# International School on Fundamental Crystallography Sixth MaThCryst school in Latin America Workshop on the Applications of Group Theory in the Study of Phase Transitions

Bogotá, Colombia, 26 November - 1<sup>st</sup> December 2018









CRYSTALLOGRAPHIC POINT GROUPS II (further developments)

### Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain



Universidad Eusk del País Vasco Unib

Euskal Herriko Unibertsitatea

# CRYSTALLOGRAPHIC POINT GROUPS IN THE PLANE

# Crystallographic symmetry operations

Crystallographic restriction theorem

The rotational symmetries of a crystal pattern are limited to 2-fold, 3-fold, 4-fold, and 6-fold.

Matrix proof:

Rotation with respect to orthonormal basis



Rotation with respect to lattice basis

R: integer matrix

In a lattice basis, because the rotation must map lattice points to lattice points, each matrix entry — and hence the trace — must be an integer.

|                                | т  | $m/2 = \cos\theta$ | θ (°)   | $n = 360^{\circ}/\Theta$ |
|--------------------------------|----|--------------------|---------|--------------------------|
|                                | 0  | 0                  | 90      | Fourfold                 |
| Tr R = $2\cos\theta$ = integer | 1  | 1/2                | 60      | Sixfold                  |
|                                | 2  | 1                  | 0 = 360 | Identity (onefold)       |
|                                | -1 | -1/2               | 120     | Threefold                |
|                                | -2 | -1                 | 180     | Twofold                  |

## Symmetry operations in the plane Matrix representations

2-fold rotation







**3-fold rotation** 



# Crystallographic symmetry operations in the plane

# **Mirror symmetry operation Fixed points** $\mathbf{X}_{\mathbf{f}}$ my

Mirror line m<sub>y</sub> at 0,y



#### Matrix representation





Crystallographic symmetry operations in 2D

Operations of the first kind (no change of handedness)

| Operation |
|-----------|
| Rotation  |
| $2\pi/1$  |
| $2\pi/2$  |
| $2\pi/3$  |
| $2\pi/4$  |
| $2\pi/6$  |
|           |

Operations of the second kind (change of handedness)

Element Reflection line (mirror)

т

#### Operation

т

# Crystallographic point groups in 2D?

Point group  $\mathbf{1} = \{1\}$ 

Motif with symmetry of **1** 



-order of 1?

-multiplication table

-generators of 1?



Point group 
$$2 = \{1, 2\}$$

Motif with symmetry of **2** 



-order of 2?

-multiplication table



-generators of 2?



Where is the two-fold point?

Point group  $\mathbf{m} = \{1, m\}$ 

Motif with symmetry of **m** 





-order of **m**?

Where is the mirror line?

-multiplication table  $\times$  1 m

| ~     | -     | <u>y</u> |
|-------|-------|----------|
| 1     | 1     | $m_y$    |
| $m_y$ | $m_y$ | 1        |

-generators of **m**?



-group axioms?



-multiplication table

-generators of **mm2**?

| ×     | 1     | 2     | $m_x$ | $m_y$ |
|-------|-------|-------|-------|-------|
| 1     | 1     | 2     | $m_x$ | $m_y$ |
| 2     | 2     | 1     | $m_y$ | $m_x$ |
| $m_x$ | $m_x$ | $m_y$ | 1     | 2     |
| $m_y$ | $m_y$ | $m_x$ | 2     | 1     |

EXAMPLE

# Stereographic Projections of **3m**



Point group **3m** = {1,3+,3<sup>-</sup>,m<sub>10</sub>, m<sub>01</sub>, m<sub>11</sub>}

#### Stereographic projections diagrams

general position



symmetry elements

# Example



1



XX

Symmetry-elements diagrams and General-positions diagrams of the plane point groups.













Hermann-Mauguin symbolism (International Tables A)

-symmetry elements along primary, secondary and ternary symmetry directions

#### **rotations**: by the axes of rotation **reflections**: by the normals to the planes

|                | Symmetry direction (position in Hermann–<br>Mauguin symbol) |                                                                               |                                                                                     |  |
|----------------|-------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|
| Lattice        | Primary                                                     | Secondary                                                                     | Tertiary                                                                            |  |
| Two dimensions |                                                             |                                                                               |                                                                                     |  |
| Oblique        | Rotation                                                    |                                                                               |                                                                                     |  |
| Rectangular    | in plane                                                    | [10]                                                                          | [01]                                                                                |  |
| Square         |                                                             | $\left\{ \begin{bmatrix} 10\\ [01] \end{bmatrix} \right\}$                    | $\left\{ \begin{bmatrix} 1\bar{1}\\ 11 \end{bmatrix} \right\}$                      |  |
| Hexagonal      |                                                             | $\left\{ \begin{bmatrix} 10\\ [01]\\ [\bar{1}\bar{1}] \end{bmatrix} \right\}$ | $\left\{ \begin{matrix} [1\bar{1}]\\ [12]\\ [\bar{2}\bar{1}] \end{matrix} \right\}$ |  |

# CRYSTALLOGRAPHIC POINT GROUPS IN 3D (brief overview)

Symmetry operations in 3D Rotations



#### Symmetry operations in 3D Rotoinvertions



Symmetry operations in 3D Rotoinversions



#### Symmetry operations in 3D Rotoinvertions



### Symmetry operations in 3D3 Roto-inversion



Proper rotations: det =+1: 1 2 3 4 6



chirality preserving

# Improper rotations: det =-1:12=m346

chirality non-preserving



|                                            |                                                                                                |                                                                                                                                                                                                             |                                                                                                                                        | Trigonal  | 3                                                         | 3                                                                                                                                | <i>C</i> <sub>3</sub>                                          |
|--------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| System used in<br>this volume<br>Triclinic | Point group<br>International sy<br>Short<br>1<br>1                                             | mbol<br>Full<br>1<br>1                                                                                                                                                                                      | Schoenflies<br>symbol<br>$C_1$<br>$C_i(S_2)$                                                                                           |           | 3<br>32<br>3 <i>m</i><br>3 <i>m</i>                       | $3 = 32$ $3m$ $\overline{3}\frac{2}{m}$                                                                                          | $C_{3i}(S_6)$ $D_3$ $C_{3v}$ $D_{3d}$                          |
| Monoclinic<br>Orthorhombic                 | 2<br>m<br>2/m<br>222<br>mm2<br>mmm                                                             | $2$ $m$ $\frac{2}{m}$ $222$ $mm2$ $\frac{2}{2} \frac{2}{2} \frac{2}{m} mm$                                                                                                                                  | $ \begin{array}{c} C_2 \\ C_s(C_{1h}) \\ C_{2h} \\ \end{array} $ $ \begin{array}{c} D_2(V) \\ C_{2\nu} \\ D_{2h}(V_h) \\ \end{array} $ | Hexagonal | 6<br><del>6</del><br>6/m<br>622<br>6mm<br><del>6</del> 2m | $ \begin{array}{c} 6\\ \overline{6}\\ 6\\ \overline{m}\\ 622\\ 6mm\\ \overline{6}2m\\ 622 \end{array} $                          | $C_6$<br>$C_{3h}$<br>$C_{6h}$<br>$D_6$<br>$C_{6v}$<br>$D_{3h}$ |
| Tetragonal                                 | $ \begin{array}{c} 4\\ \overline{4}\\ 4/m\\ 422\\ 4mm\\ \overline{4}2m\\ 4/mmm\\ \end{array} $ | $ \begin{array}{c} \frac{4}{\overline{4}} \\ \frac{4}{\overline{m}} \\ \frac{4}{22} \\ \frac{4mm}{\overline{4}2m} \\ \frac{4}{\overline{2}2} \\ \frac{2}{\overline{mmm}} \\ \overline{mmm} \\ \end{array} $ | $C_4 \\ S_4 \\ C_{4h} \\ D_4 \\ C_{4v} \\ D_{2d}(V_d) \\ D_{4h}$                                                                       | Cubic     | 6/mmm<br>23<br>m3<br>432<br>43m<br>                       | $\overline{m}  \overline{m}  \overline{m}$ 23 $\frac{2}{\overline{m}}  \overline{3}$ 432 $\overline{4}  3m$ $4  \overline{2}  2$ | $D_{6h}$ $T$ $T_h$ $O$ $T_d$                                   |
| Internation                                | nal Tables for                                                                                 | Crystallograp                                                                                                                                                                                               | hy, Vol. A                                                                                                                             |           | m3m                                                       | $\frac{1}{m}3\frac{-}{m}$                                                                                                        | $O_{\hbar}$                                                    |

141 1 41

- -

. . . . .

. . .

. . . . .

. . .

#### Hermann-Mauguin symbolism (International Tables A)

- -symmetry elements along *primary*, secondary and ternary symmetry directions rotations: by the axes of rotation planes: by the normals to the planes
  - rotations/planes along the same direction
  - full/short Hermann-Mauguin symbols

## Crystal systems and Crystallographic point groups

| Crystal system | Crystallographic<br>point groups†                              | Restrictions on cell<br>parameters                      | primary       | secondary                                                   | ternary                                                           |
|----------------|----------------------------------------------------------------|---------------------------------------------------------|---------------|-------------------------------------------------------------|-------------------------------------------------------------------|
| Triclinic      | 1, 1                                                           | None                                                    | None          |                                                             |                                                                   |
| Monoclinic     | 2, <i>m</i> , 2/ <i>m</i>                                      | <i>b</i> -unique setting $\alpha = \gamma = 90^{\circ}$ | [010] ('uniqu | e axis b')                                                  |                                                                   |
|                |                                                                | <i>c</i> -unique setting $\alpha = \beta = 90^{\circ}$  | [001] ('uniqu | e axis c')                                                  |                                                                   |
| Orthorhombic   | 222, mm2, mmm                                                  | $lpha=eta=\gamma=90^\circ$                              | [100]         | [010]                                                       | [001]                                                             |
|                |                                                                |                                                         |               |                                                             |                                                                   |
| Tetragonal     | $4, \overline{4}, 4/m$<br>$422, 4mm, \overline{4}2m,$<br>4/mmm | $egin{array}{llllllllllllllllllllllllllllllllllll$      | [001]         | $\left\{ \begin{bmatrix} 100 \\ 010 \end{bmatrix} \right\}$ | $\left\{ \begin{bmatrix} 1\bar{1}0 \\ 110 \end{bmatrix} \right\}$ |

### Crystal systems and Crystallographic point groups

| Crystal system | Crystallographic<br>point groups†                                                                        | Restrictions on cell<br>parameters                                            | primary                                                                               | secondary                                                                                                                                        | ternary                                                                                                         |
|----------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Trigonal       | $3, \overline{3}$ $32, 3m, \overline{3m}$                                                                | a = b<br>$\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$<br>a = b = c   |                                                                                       |                                                                                                                                                  |                                                                                                                 |
|                |                                                                                                          | $\alpha = \beta = \gamma$ (rhombohedral axes,<br>primitive cell) $\alpha = b$ | [111]                                                                                 | $\left\{ \begin{array}{c} [1\bar{1}0]\\ [01\bar{1}]\\ [\bar{1}01] \end{array} \right\}$                                                          |                                                                                                                 |
|                | a = b<br>$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$<br>(hexagonal axes,<br>triple obverse cell) | [001]                                                                         | $ \left\{ \begin{array}{c} [100] \\ [010] \\ [\bar{1}\bar{1}0] \end{array} \right\} $ |                                                                                                                                                  |                                                                                                                 |
| Hexagonal      | $6, \overline{6}, 6/m$<br>$622, 6mm, \overline{6}2m,$<br>6/mmm                                           | $egin{array}{llllllllllllllllllllllllllllllllllll$                            | [001]                                                                                 | $ \left\{ \begin{array}{c} [100] \\ [010] \\ [\bar{1}\bar{1}0] \end{array} \right\} $                                                            | $\left\{\begin{array}{c} [1\bar{1}0]\\ [120]\\ [\bar{2}\bar{1}0] \end{array}\right\}$                           |
| Cubic          | 23, $m\overline{3}$<br>432, $\overline{4}3m$ , $m\overline{3}m$                                          | a = b = c<br>$\alpha = \beta = \gamma = 90^{\circ}$                           | $ \left\{ \begin{array}{c} [100] \\ [010] \\ [001] \end{array} \right\} $             | $\left\{ \begin{array}{c} [111] \\ [1\bar{1}\bar{1}\bar{1}] \\ [\bar{1}1\bar{1}] \\ [\bar{1}1\bar{1}] \\ [\bar{1}\bar{1}1] \end{array} \right\}$ | $\left\{\begin{array}{c} [1\bar{1}0] & [110] \\ [01\bar{1}] & [011] \\ [\bar{1}01] & [101] \end{array}\right\}$ |

Rotation Crystallographic Point Groups in 3D

## Cyclic: I (C<sub>1</sub>), 2(C<sub>2</sub>), 3(C<sub>3</sub>), 4(C<sub>4</sub>), 6(C<sub>6</sub>)

### Dihedral: 222(D<sub>2</sub>), 32(D<sub>3</sub>), 422(D<sub>4</sub>), 622(D<sub>6</sub>)

Cubic: 23 (T), 432 (O)



#### **Dihedral Point Groups**





# $\{e, 6_z, 6_{\overline{z}}, 3_z, 3_{\overline{z}}, 2_z, 2_1, 2_2, 2_3, 2_1, 2_2, 2_3\}$



#### Direct-product groups

Let G<sub>1</sub> and G<sub>2</sub> are two groups. The set of all pairs  $\{(g_1,g_2), g_1 \in G_1, g_2 \in G_2\}$  forms a group  $G_1 \otimes G_2$  with respect to the product:  $(g_1,g_2)$  $(g'_1,g'_2) = (g_1g'_1, g_2g'_2)$ .

The group  $G = G_1 \otimes G_2$  is called a **direct-product** group

**Point group mm2** =  $\{1, 2_{001}, m_{100}, m_{010}\}$ 

**Centro-symmetrical groups** 

G<sub>1</sub>: rotational groups  $G_2=\{I,\overline{I}\}$  group of inversion G<sub>1</sub>  $\otimes$   $\{I,\overline{I}\}=G_1+\overline{I},G_1$ 

 $\{1,2_{001},m_{100},m_{010}\} \bigotimes \{I,\overline{I}\} = \\ \{1.1,2_{001}.1,m_{100}.1,m_{010}.1,1.\overline{1},2_{001}.\overline{1},m_{100}.\overline{1},m_{y}.\overline{1}\} \\ \{1,2_{001},m_{100},m_{010},\overline{1},m_{001},2_{100},2_{010}\} = 2/m2/m2/m \text{ or } mmm \}$ 

| G                   | G+ĪG                                                                 | G(G') | G'+Ī(G-G')                  |
|---------------------|----------------------------------------------------------------------|-------|-----------------------------|
| I (C <sub>1</sub> ) | $I + \overline{I} \cdot I = \overline{I} (C_i)$                      |       |                             |
| 2 (C <sub>2</sub> ) | 2+1.2=2/m (C <sub>2h</sub> )                                         | 2(1)  | m (C <sub>s</sub> )         |
| 3 (C <sub>3</sub> ) | $3+\overline{1}.3=\overline{3}$ (C <sub>3i</sub> or S <sub>6</sub> ) |       |                             |
| 4 (C <sub>4</sub> ) | 4+T.4=4/m (C <sub>4h</sub> )                                         | 4(2)  | <b>4</b> (S <sub>4</sub> )  |
| 6 (C <sub>6</sub> ) | 6+1.6=6/m (C <sub>6h</sub> )                                         | 6(3)  | <u>6</u> (C <sub>3h</sub> ) |



| G                     | G+ĪG                                                      | G(G') (            | G'+Ī(G-G')                                       |
|-----------------------|-----------------------------------------------------------|--------------------|--------------------------------------------------|
| 222 (D <sub>2</sub> ) | 222+T.222=2/m2/m2/m<br>mmm (D <sub>2h</sub> )             | 222(2)             | 2mm (C <sub>2v</sub> )                           |
| 32 (D <sub>3</sub> )  | 32+1.32=32/m 3m(D <sub>3d</sub> )                         | 32(3)              | 3m (C <sub>3v</sub> )                            |
| 422 (D4)              | 422+T.422=4/m2/m2/m<br>4/mmm(D <sub>4h</sub> )            | 422(4)<br>422(222) | 4mm (C <sub>4v</sub> )<br>42m (D <sub>2d</sub> ) |
| 622 (D <sub>6</sub> ) | 622+T.622=6/m2/m2/m<br>6/mmm(D <sub>6h</sub> )            | 622(6)<br>622(32)  | 6mm (C <sub>6v</sub> )<br>62m (D <sub>3h</sub> ) |
| 23 (T)                | $23 + \overline{1}.23 = 2/m3 \text{ m}\overline{3} (T_h)$ |                    |                                                  |
| 432 (O)               | 432+T.432=4/m32/m<br>m3m(O <sub>h</sub> )                 | 432(23)            | 43m (Td)                                         |







222(2) 2mm (C<sub>2v</sub>)





| Groups isomorphic to 422 |   |                         |                       |                               |      |
|--------------------------|---|-------------------------|-----------------------|-------------------------------|------|
| 422                      | е | $4_{z} 4_{z}^{-}$       | <b>2</b> <sub>z</sub> | 2 <sub>x</sub> 2 <sub>y</sub> | 2+2- |
| 4mm                      | е | $4_{z} 4_{z}^{-}$       | <b>2</b> <sub>z</sub> | m <sub>x</sub> m <sub>y</sub> | m+m- |
| <b>4</b> 2m              | е | $\bar{4}_z \bar{4}_z^-$ | $2_z$                 | 2 <sub>x</sub> 2 <sub>y</sub> | m+m- |
| <b>4</b> m2              | е | $\bar{4}_z \bar{4}_z^-$ | $2_z$                 | m <sub>x</sub> m <sub>y</sub> | 2+2- |
|                          |   |                         |                       |                               |      |



Groups isomorphic to 622

| 622                     | е | $6_z 6_z$            | $3_z 3_z^-$ | <b>2</b> <sub>z</sub> | $2_{1}2_{2}2_{3}$ | $2_{1}^{\prime}2_{2}^{\prime}2_{3}^{\prime}$ |
|-------------------------|---|----------------------|-------------|-----------------------|-------------------|----------------------------------------------|
| 6mm                     | e | $6_z \overline{6_z}$ | $3_z 3_z$   | <b>2</b> <sub>z</sub> | $m_1m_2m_3$       | mí1mí2mí3                                    |
| <u>-</u><br><u>6</u> 2m | е | $\bar{6}_z\bar{6}_z$ | $3_z 3_z^-$ | mz                    | $2_12_22_3$       | mí1m2m3                                      |
| <u>6</u> m2             | e | $\bar{6}_z\bar{6}_z$ | $3_z 3_z^-$ | mz                    | $m_1m_2m_3$       | $2'_{1}2'_{2}2'_{3}$                         |







#### Problem 2.11



Consider the following three pairs of stereographic projections. Each of them correspond to a crystallographic point group isomorphic to **4mm**:



(i) Determine those point groups by indicating their symbols, symmetry operations and possible sets of generators;
(ii) For each of the isomorphic point groups indicate the one-to-one correspondence with the symmetry operations of **4mm**.

# MOLECULAR POINT-GROUP SYMMETRY

Example

Determine the symmetry elements and the corresponding point groups for the molecule of water



molecule of water

#### Example

SOLUTION

# Molecular Point-group Symmetry



# molecule of water symmetry group: mm2

Example

Determine the symmetry elements and the corresponding point groups for the molecule of ammonia



ammonia molecule

Example

SOLUTION



### ammonia molecule symmetry group: 3m

# Example Determine the symmetry elements and the corresponding point groups for the molecule of SF<sub>6</sub>



Example

## Molecular Point-group Symmetry

#### SOLUTION









Determine the symmetry elements and the corresponding point groups for each of the following models of molecules:



# GENERATION OF CRYSTALLOGRAPHIC POINT GROUPS

Generation of point groups

Crystallographic groups are **solvable** groups **Composition series**:  $I \triangleleft Z_2 \triangleleft Z_3 \triangleleft ... \triangleleft G$ index 2 or 3

**Set of generators** of a group is a set of group elements such that each element of the group can be obtained as an ordered product of the generators

$$W = (g_{h})^{k_{h}} * (g_{h-1})^{k_{h-1}} ... * (g_{2})^{k_{2}} * g_{1}$$

g<sub>1</sub> - identity g<sub>2</sub>, g<sub>3</sub>, ... - generate the rest of elements

#### Generation of the group of the square

|                                             |                     | 2 <sub>z</sub>      | 4                   | Z                   | $m_{10}$            |                     |                     |                     |                     |
|---------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| <b>Composition series</b>                   | 5:   <              | $\triangleleft$     | 2 <                 | ] 4                 | $\triangleleft$     | 4m                  | nm                  |                     |                     |
| Step I:                                     |                     | [2]                 | [2                  | 2]                  | [2]                 |                     |                     |                     |                     |
| <b>I</b> ={I}                               |                     |                     |                     |                     |                     |                     |                     |                     |                     |
|                                             |                     | 1                   | 2                   | $4^{+}$             | 4-                  | $m_{10}$            | $m_{01}$            | $m_{11}$            | $m_{1\overline{1}}$ |
| Step 2:                                     | 1                   | 1                   | 2                   | $4^{+}$             | 4-                  | $m_{10}$            | $m_{01}$            | $m_{11}$            | $m_{1\overline{1}}$ |
| $\mathbf{a} = (1) + 2 (1)$                  | 2                   | 2                   | 1                   | $4^{-}$             | $4^{+}$             | $m_{01}$            | $m_{10}$            | $m_{1\overline{1}}$ | $m_{11}$            |
| $\mathbf{Z} = \{1\} + \mathbf{Z}_{z} \{1\}$ | 4+                  | 4+                  | 4-                  | 2                   | 1                   | $m_{11}$            | $m_{1\overline{1}}$ | $m_{01}$            | $m_{10}$            |
|                                             | 4-                  | 4-                  | $4^{+}$             | 1                   | 2                   | $m_{1\overline{1}}$ | $m_{11}$            | $m_{10}$            | $m_{01}$            |
| Step 3:                                     | $m_{10}$            | $m_{10}$            | $m_{01}$            | $m_{1\overline{1}}$ | $m_{11}$            | 1                   | 2                   | $4^{-}$             | $4^{+}$             |
| $A = \int  2\rangle + A \int  2\rangle$     | $m_{01}$            | $m_{01}$            | $m_{10}$            | $m_{11}$            | $m_{1\overline{1}}$ | 2                   | 1                   | $4^{+}$             | $4^{-}$             |
| ╋ ─\',∠j ' ┭z \',∠j                         | $m_{11}$            | $m_{11}$            | $m_{1\overline{1}}$ | $m_{10}$            | $m_{01}$            | $4^{+}$             | $4^{-}$             | 1                   | 2                   |
|                                             | $m_{1\overline{1}}$ | $m_{1\overline{1}}$ | $m_{11}$            | $m_{01}$            | $m_{10}$            | 4-                  | $4^+$               | 2                   | 1                   |

Step 4:

Example

 $4mm = 4 + m_{10} 4$ 

#### Generation of sub-cubic point groups



# Composition series of cubic point groups and their subgroups

| HM Symbol        | SchoeSy            | generators                                    | compos. series                                                 |  |  |
|------------------|--------------------|-----------------------------------------------|----------------------------------------------------------------|--|--|
| 1                | ${\mathcal C}_1$   | 1                                             | 1                                                              |  |  |
| $\overline{1}$   | $\mathcal{C}_i$    | $1, \overline{1}$                             | $\overline{1} \vartriangleright 1$                             |  |  |
| 2                | $C_2$              | 1, 2                                          | $2 \vartriangleright 1$                                        |  |  |
| m                | $C_s$              | 1, m                                          | $m \triangleright 1$                                           |  |  |
| 2/m              | ${\cal C}_{2h}$    | $1, 2, \overline{1}$                          | $2/m \rhd 2 \rhd 1$                                            |  |  |
| 222              | $\mathcal{D}_2$    | $1, 2_z, 2_y$                                 | $222 \vartriangleright 2 \vartriangleright 1$                  |  |  |
| mm2              | $C_{2v}$           | $1, 2_z, m_y$                                 | $mm2 \vartriangleright 2 \vartriangleright 1$                  |  |  |
| mmm              | ${\cal D}_{2h}$    | $1, 2_z, 2_y, \overline{1}$                   | $mmm \vartriangleright 222 \vartriangleright \dots$            |  |  |
| 4                | $\mathcal{C}_4$    | $1, 2_z, 4$                                   | $4 \vartriangleright 2 \vartriangleright 1$                    |  |  |
| $\overline{4}$   | ${\mathcal S}_4$   | $1, 2_z, \overline{4}$                        | $\overline{4} \vartriangleright 2 \vartriangleright 1$         |  |  |
| 4/m              | ${\cal C}_{4h}$    | $1, 2_z, 4, \overline{1}$                     | $4/m \triangleright 4 \triangleright \dots$                    |  |  |
| 422              | $\mathcal{D}_4$    | $1, 2_z, 4, 2_y$                              | $422 \vartriangleright 4 \vartriangleright \dots$              |  |  |
| 4mm              | ${\cal C}_{4v}$    | $1, 2_z, 4, m_y$                              | $4mm \triangleright 4 \triangleright \dots$                    |  |  |
| $\overline{4}2m$ | $\mathcal{D}_{2d}$ | $1, 2_z, \overline{4}, 2_y$                   | $\overline{4}2m \rhd \overline{4} \vartriangleright \dots$     |  |  |
| 4/mmm            | ${\cal D}_{4h}$    | $1, 2_z, 4, 2_y, \overline{1}$                | $4/mmm \rhd 422 \rhd \dots$                                    |  |  |
| 23               | $\mathcal{T}$      | $1, 2_z, 2_y, 3_{111}$                        | $23 \vartriangleright 222 \vartriangleright \dots$             |  |  |
| $m\overline{3}$  | ${\cal T}_h$       | $1, 2_z, 2_y, 3_{111}, \overline{1}$          | $m\overline{3} \rhd 23 \rhd \ldots$                            |  |  |
| 432              | 0                  | $1, 2_z, 2_y, 3_{111}, 2_{110}$               | $432 \triangleright 23 \triangleright \ldots$                  |  |  |
| $\overline{4}3m$ | ${\cal T}_d$       | $1, 2_z, 2_y, 3_{111}, m_{1\overline{1}0}$    | $\overline{4}3m \rhd 23 \vartriangleright \dots$               |  |  |
| $m\overline{3}m$ | $\mathcal{O}_h$    | $1, 2_z, 2_y, 3_{111}, 2_{110}, \overline{1}$ | $m\overline{3}m \vartriangleright 432 \vartriangleright \dots$ |  |  |

#### Generation of sub-hexagonal point groups



# Composition series of hexagonal point groups and their subgroups

| HM Symbol        | SchoeSy            | generators                         | compos. series                                             |
|------------------|--------------------|------------------------------------|------------------------------------------------------------|
| 1                | $\mathcal{C}_1$    | 1                                  | 1                                                          |
| 3                | $C_3$              | 1, 3                               | $3 \triangleright 1$                                       |
| 3                | ${\mathcal S}_6$   | $1, 3, \overline{1}$               | $\overline{3} \vartriangleright 3 \vartriangleright 1$     |
| 32               | $\mathcal{D}_3$    | $1, 3, 2_{110}$                    | $32 \vartriangleright 3 \trianglerighteq 1$                |
| 3m               | $C_{3v}$           | $1, 3, m_{110}$                    | $3m \rhd 3 \rhd 1$                                         |
| $\overline{3}m$  | $\mathcal{D}_{3d}$ | $1,  3,  2_{110},  \overline{1}$   | $\overline{3}m \rhd 32 \rhd \dots$                         |
| 6                | $C_6$              | $1, 3, 2_z$                        | $6 \vartriangleright 3 \vartriangleright 1$                |
| $\overline{6}$   | $C_{3h}$           | $1, 3, m_z$                        | $\overline{6} \vartriangleright 3 \vartriangleright 1$     |
| 6/m              | $\mathcal{C}_{6h}$ | $1, 2, 2_z, \overline{1}$          | $6/m \rhd 6 \vartriangleright \dots$                       |
| 622              | $\mathcal{D}_6$    | $1, 3, 2_z, 2_{110}$               | $622 \vartriangleright 6 \vartriangleright \dots$          |
| 6mm              | $C_{6v}$           | $1, 3, 2_z, m_{110}$               | $6mm \triangleright 6 \triangleright \dots$                |
| $\overline{6}2m$ | $\mathcal{D}_{3h}$ | $1, 3, m_z, 2_{110}$               | $\overline{6}2m \rhd \overline{6} \vartriangleright \dots$ |
| 6/mmm            | ${\cal D}_{6h}$    | $1, 3, 2_z, 2_{110}, \overline{1}$ | $6/mmm \rhd 622 \rhd \dots$                                |

Generate the symmetry operations of the group **4/mmm** following its composition series.

Generate the symmetry operations of the group  $\overline{3m}$  following its composition series.

# GROUP-SUPERGROUP RELATIONS

Supergroups: Some basic results (summary)

# Supergroup G>H

 $\textbf{H=}\{e,h_1,h_2,...,h_k\} \subset \textbf{G}$ 

Proper supergroups G>H, and trivial supergroup: H

Index of the group H in supergroup G: [i]=|G|/|H| (order of G)/(order of H)

Minimal supergroups G of H

NO subgroup Z exists such that: H < Z < G The Supergroup Problem

Given a group-subgroup pair G>H of index [i]

Determine: all  $G_k > H$ of index [i],  $G_i \simeq G$ 





all G<sub>k</sub>>H contain H as subgroup

 $G_k = H + g_2 H + \dots + g_{ik} H$ 

Example: Supergroup problem

### Group-subgroup pair 422>222



How many are the subgroups 222 of 422? Supergroups 422 of the group 222



222

How many are the supergroups 422 of 222? Example: Supergroup problem

## Group-subgroup pair 422>222



 $4_z 22 = 2_z 2_x 2_y + 4_z (2_z 2_x 2_y)$  $4_z 22 = 2_z 2_+ 2_- + 4_z (2_z 2_+ 2_-)$  Supergroups 422 of the group 222



 $4_z 22 = 222 + 4_z 222$  $4_y 22 = 222 + 4_y 222$  $4_x 22 = 222 + 4_x 222$ 



Normalizer of H < G



Normalizer of H in G

Normal subgroup

 $H \triangleleft G$ , if  $g^{-1}Hg = H$ , for  $\forall g \in G$ 

Normalizer of H in G, H<G

 $N_G(H) = \{g \in G, \text{ if } g^{-1}Hg = H\}$  $G \ge N_G(H) \ge H$ 

What is the normalizer  $N_G(H)$  if  $H \triangleleft G$ ? Number of subgroups  $H_i < G$  in a conjugate class  $n=[G:N_G(H)]$ 

#### Problem 2.10

Consider the group 4mm and its subgroups of index 4. Determine their **normalizers** in 4mm. Comment on the relation between the distribution of subgroups into conjugacy classes and their normalizers.



Hint: The stereographic projections could be rather helpful

