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GROUP THEORY

(brief introduction)



Crystallographic symmetry operations

Symmetry operations of an object

The symmetry operations are isometries, i.e. they are special kind of mappings
between an object and its image that leave all distances and angles invariant.

The isometries which map the object onto itself are called symmetry operations of this
object. The symmetry of the object is the set of all its symmetry operations.

Crystallographic symmetry operations

If the object is a crystal pattern, representing a real crystal, its symmetry operations are
called crystallographic symmetry operations.

The equilateral triangle allows six symmetry
operations: rotations by 120 and 240 around its
centre, reflections through the three thick lines
intersecting the centre, and the identity operation.




Mirror symmetry operation
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2. Group axioms

DEFINITION. The symmmetry operations of
an object constitute its

together with a product o, such that

i) G is "closed under o": if g1 and g» are any
two members of G then so are gi1o0g> and goo0g1;
ii) G contains an identity e: for any g in G,
eo0g=goe =g,

iii) o is associative: (g10g2)0g9g3 = g10(go093);
iv) Each g in G has an inverse g_l that is also

in G: gog =g log=ce.

DEFINITION. A isaset G =1{e,91,92,93...



Group properties

|.Order of a group | G | : number of elements

crystallographic point groups: | < | G | <48

space groups: | G | =00

2. Abelian group G:
8.8 =88 Vg,gel

3. Cyclic group G:
G={g, g2, g3, ..., g"} finite: | G | =n, gr=e
infinite: G= <g, g-!>

order of a group element: gn=e



Group Properties

4. How to define a group

Multiplication table

E A B
E|E A B
AlA B E
B| B E A

Group generators

a set of elements such that each element of

the group can be obtained as a product of the
generators



Crystallographic Point Groups in 2D
Point group 2 = {1,2}
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Crystallographic Point Groups in 2D

Point group 2 = {1,2}

-group axioms!

Motif with
symmetry of 2 2X2= X T 5T

drawing: M.M. Julian )
-senerators of 2’
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-order of 2?

-multiplication table




Crystallographic symmetry operations in

the plane
Mirror symmetry operation
Mirror line my at 0,y
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Crystallographic Point Groups in 2D

Point groupm = {1,m}

Motif with
symmetry of m -group axioms!
m x m = Ix'I - = ' |
-order of m!

-multiplication table

o ndizﬁx':%f%nstﬂ.'ﬁgggaph, -generators of m!

Taylor & Francis, 20



Isomorphic groups

®-1(g)=g
P(g1)P(g2)= P(g1 82)

Point group 2 = {1,2} Point groupm = {1,m}

|

l l

-groups with the same multiplication table



Isomorphic groups

homomorphic D(g1)P(g2)= P(g1g2)

condition

-groups with the same multiplication table



Crystallographic Point Groups in 2D

Point group1={1}

-group axioms?

Motif with

symmetry of 1 | x | = X
I I

-order of 1?

-multiplication table

drawing: M.M. Julian | |
Foundations of Crystall §8raphy
Taylor & Francis, 20

-generators of 1!



SEITZ SYMBOLS FOR SYMMETRY OPERATIONS

‘symmetry operation

- specify the type and the order of the symmetry

operation
1and1  identity and inversion
m reflections
2, i 4_ and g rotations
.4 and 6 rotoinversions

- orientation of the symmetry element by the direction of the
axis for rotations and rotoinversions, or the direction of the

normal to reflection planes.

SHORT-HAND NOTATION OF SYMMETRY

OPERATIONS

=R

Rii

Ri2

X notation:

Ra

R22

X' =R11X+R1 2y
y'=R21x+R22y

-left-hand side: omitted
-coefficients 0, +1, -1

-different rows in one line,
separated by commas

Y -xty
Y, Xty



Problem 2.1

Consider the model of the molecule of the organic
semiconductor pentacene (Cx2H4):

INCN NN mac

A /,L\ / K/ i:’fk—“ﬂ
i ’ Mo+

X

Determine:

-symmetry operations:
matrix and (X,y) presentation

-generators
-multiplication table



Problem 2.3

Consider the symmetry group of the equilateral
triangle. Determine:

-symmetry operations:
matrix and (X,y)
presentation

-generators

-multiplication table




Visualization of Crystallographic Point Groups

- general position diagram
- symmetry elements diagram

Stereographic Projections

Upper
hemisphere
Pole

N\
0

plane of
projection

Points P in the

'The stereographic S
projection plane

Lower yrojection of the
X hemisphere P1O] S

Pole line X-X'



Rotation axes Symmetry-elements diagrams

- -
o -
6-fold filled polygons
.' B a4 with the same
' ' . 4-told number
| | A 3-fold of sides as the
| ? foldness of the
REN ¥ 2-fold axes
222
Mirror planes
'
2mm
2/m 2/m 2/m

Combinations of symmetry elements

 line of intersection of any two mirror planes must be a rotation axis.



Stereographic Projections of

EXAMPLE
mm2

Point group mm2 = {1,2,m10,Mo1}

e, ) ) P ),

i ’ Mo
X

Stereographic projections diagrams

general position symmetry elements




EXAMPLE Stereographic Projections of
3m

Point group dm =
{1,3+,3",mM10, Mo1, M11}

Stereographic projections diagrams

general position ? ‘ ? symmetry elements




EXAMPLE Stereographic Projections of
3m

Point group dm =
{1,3+,37,mM10, Mo1, M11}

% symmetry elements







Conjugate elements

Conjugate elements & ~ g« if 3 g g'gig = g,
where g, g;, g, € G

Classes of conjugate L(g)={gi| g'gig = g, gcG}
elements

Conjugation-properties

(i) L(g) n L(gy) = {2} if g & L(g)
(ii) |L(g)| is a divisor of |G|  (iii) L(e)={e}
(iv) if g, g € L, then (g)=(g)*= e



Problem 2.3 (cont.) Classes of conjugate elements

Distribute the symmetry operations of the group of the
equilateral triangle 3m into classes of conjugate elements

Point group dm =

{1 ,3%,37,M10, Mo1, m11}

Multiplication table of 3m

1 3~ myg Mmor My
1 1 3% 3= myy mgr mp
3T 3 3~ 1 mi1 Mg Mol
3~ 3~ 1 3 mppr MMi11 Mo
mio | ™19 Mo1 M1 1 3T 3~
— e
™mol | Tl TNl ™o 3 1 3
mi1 | ™11 Mg Mol 3T 3~ 1




EXERCISES Problem 2.1 (cont)

Distribute the symmetry elements of the group
mm2 = {1,2,m10,Mo1} in classes of conjugate
elements.

inlicat 1 2 mi9g Mo
multiplication
P 1 1 2 Mmip Mo
table
2 2 1 mpr mio
mio | T TN 1 2
mo | o1 1o 2 1

/ ’\ stereographic
\—j projection



Problem 2.2

Consider the symmetry group of the square. Determine:

< My,

-1,-1

-1,1

3

2

m/

01

1,1

b My

-symmetry operations:
matrix and (Xx,y)
presentation

-general-position and symmetry-
elements stereographic
projection diagrams;

-generators

-multiplication table

-classes of conjugate elements



GROUP-SUBGROUP

RELATIONS

. Subgroups: index, coset decomposition
and normal subgroups

ll. Conjugate subgroups
lll. Group-subgroup graphs



Subgroups: Some basic results (summary)

Subgroup H < G

|. H={e,h,h,....h} c G
2. H satisfies the group axioms of G

Proper subgroups H < G, and
trivial subgroup: {e}, G
Index of the subgroup H in G: [i]=|G]/|H]|
(order of G)/(order of H)

Maximal subgroup H of G

NO subgroup Z exists such that:
H<Z<G



Example Subgroups of point groups

Molecule of pentacene i ;;/\\p
N

Subgroups of mm2

{1,2,m19,Mo1}
4, 2) % e

Subgroup graph Index
2 {1, 2} {1,m10} {1,mo1} 2

1 {1} 4



Problem 2.5

(i) Consider the group of the equilateral triangle and

determine its subgroups;

(i) Construct the maximal-subgroup graph of 3m

Multiplication table of 3m

1 3% 37 mi mo mn
1 1 3T 37 mip Mmo1 MmMi1
3T 3T 3~ 1 mi1 M1 Mol
3= | 3© 1 3T mgr mi1 mio
mio [ Mo mo1 mnn 1 3T 37
mo1 | mo1 m11 mie 3~ 1 3T
mi | mi3z mig mer 3T 37 1



Coset decomposition G:H

Group-subgroup pair H < G

left coset G=H+g2H+m+gmH, gigH’
decomposition m=index of H in G

right coset  G=H+Hg,+. . +Hgm, gizH
decomposition m=index of H in G

Coset decomposition-properties
(i) gH ngH ={2},if g ¢ gH
(i) |gH] = [H]
(i) gH =gH, g € gH



Coset decomposition G:H

Normal
subgroups

Theorem of Lagrange

group G of order |G
subgroup H<G of order |H

Corollary

then

ng= ng, for all gi— | o eoey [I]

IH| is a divisor of |G]
and [i]=|G:H|

The order k of any
element of G,
gk=e, is a divisor of |G|



Multiplication table of 3m

Consider the subgroup {/, m;o} of 3m of index 3. Write down
and compare the right and left coset decompositions of 3m

with respect to {/, mjq}.

Problem 2.7

Demonstrate that H is always a normal subgroup if |G:

37 mip moe1 ™M1
1 1 3" 37 mip mor Mmi1
3T 3T 3~ 1 mi1 M9 Mol
3 3 1 3T mo1 MMi11 M10
mio | mio mo1 min 1 3T 37
mo1 | mo1 m1i1 mip 3 1 3T
mi; | miy mig mer 37 37 1



Conjugate subgroups

Conjugate subgroups Let H|<G, H2<G
then, H| ~ Hy, if 3 geG: g''H ;g = H;
(i) Classes of conjugate subgroups: L(H)

(i) f Hi ~ Hy, then H| = H>
(iii) [L(H)| is a divisor of |G|/|H]

Normal subgroup

H1 G,if g'Hg = H, for vgeG



Problem 2.5 (cont.)

Consider the subgroups of 3m and distribute them into

classes of conjugate subgroups

(m1o)

(mo1)

<3+7 m10>

(m11)

(37)

1 3% 37 mi mu mn
1 1 3T 37 mio Mmo1 Mmi1
3T 3T 3~ 1 mi1 Mio0 Mol
3~ 3~ 1 3T mo1 ™11 Mio
mio | Mo mor mu1 1 3T 37
mo1 | mor m11 mie 3~ 1 3T
mi1 | min mipe men 3T 37 1

Multiplication table of 3m



Complete and contracted
group-subgroup graphs

™, m0)

mlO mOl mll

<1>

Complete graph of
maximal subgroups

(37)

Contracted graph of
maximal subgroups



International Tables for Crystallography,Vol. A, Chapter 3.2
Group-subgroup relations of point groups

. (53). Hahn and Klapper

[
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Order k of group
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| 4

Fig. 10.1.3.2. Maximal subgroups and minimal supergroups of the three-dimensional crystallographic point groups. Solid lines indicate maximal normal
subgroups; double or triple solid lines mean that there are two or three maximal normal subgroups with the same symbol. Dashed lines refer to sets of
maximal conjugate subgroups. The group orders are given on the left. Full Hermann—Mauguin symbols are used.



Problem 2.4

EXERCISES

(i) Consider the group of the square
and determine its subgroups

(ii) Distribute the subgroups into classes of conjugate

subgroups;

(iii) Construct the maximal-subgroup graph of 4mm

S

-1,-1

01

-1,1

3

10

2

m/

11

01

1,1

10

n =

Jmm || 1 2 47 47 |mg myp my7 my
1 1 2 47 4~ mo1 mip my; My
2| 2 1 47 47 |myp mor mip my

47| 47 47 2 1 |myg my my mo
4= || 4= 47 1 2 |my; myg mg myg
mo1 | mp1 Mg my1 myy | 1 2 4= 4+
myy || mygo mor my7; myp | 2 1 47 4~
my || my mip mey my | 47 47 1 2
miy || my myg my mey | 47 47 2 1




EXERCISES

Problem 2.6

Consider the subgroup {e,2} of 4mm, of index 4:

-Write down and compare the right and left
coset decompositions of 4mm with respect to

{e,2};

-Are the right and left coset decompositions of
4mm with respect to {e,2} equal or different?
Can you comment why?



FACTOR GROUP



Factor group

Ki={gi1,&2,--+&in}
product of sets: G={e, g2,....80} | K«={gk1,8x2,...,8km}

Ki Kik={ gipgra=2r | gip € Kj, 8kq €Kk} Each element g is taken
only once in the product

factor group G/H: H<G
G=H+gH+...+gnH, gigH,
G/H={H, g2H, ..., gnH}
group axioms:
(i) (&R)(gH) = giH
(i) (gH)H =H(giH)= gH

(iii) (gH)"' = (gr")H



Multiplication table of 3m

Consider the subgroup 3={1,3%,3-} of 3m

1 3 3 myp mo mn
1 1 3% 37 mig mo1 mu
3T 3T 3~ 1 mi11 M™Mi1o0 Mol
3 3 1 3T mo1 M™Mi11 Mmio
mio [ Mo mo1 minn 1 3T 37
mo1 | mo1 m1i1 mip 3~ 1 3T
my1 | min mip mor 3T 37 1

(i) Show that the cosets of the decomposition 3m:3 fulfil the group

axioms and form a factor group

(i) Construct the multiplication table of the factor group

(iii) A crystallographic point group isomorphic to the factor group!?



1 3% 37 mip mo mn
1 1 3% 37 mig mo1 mi
3T 3T 3~ 1 mi1 M9 Mol
3 3 1 3T mo1 M™Mi11 MmMio
mio [ Mo mo1 min 1 3T 37
mo1 | mo1 mi1 mipp 3~ 1 3T
my1 | mi1 mip mor 3T 37 1

Multiplication table of 3m

(i) cosEt decomposition

{I ’3+’3'}9 {m|0,m0|’m| |}

(i) factor group and m

= £ A
A WS

multiplication table




Problem 2.6 (cont)

Consider the normal subgroup {e,2} of 4mm, of
index 4, and the coset decomposition 4mm: {e,2}:

(3) Show that the cosets of the decomposition 4mm:{e,2}
fulfil the group axioms and form a factor group

(4) Multiplication table of the factor group

(5) A crystallographic point group isomorphic to the
factor group!?



GENERAL AND

SPECIAL WYCKOFF
POSITIONS




Group Actions

A%I:‘i%w:s) (A group action)of a group Gon aset 2 = {w | w € 2}

assigns to each pair (g, ) an object @ = g(w) of €2 such that the
following hold:

(i) applying two group elements g and g’ consecutively has the

same effect as applying the product g'g, i.e. (g(g(w)) = (g'g)(w)

(ii) applying the identity element e of G has no effect on w, Le.

r all w in .

Orbit and Stabilizer

The set w? := {g(w) | g € G} of all objects in the orbit of w is
called the lorbit of w under G

The set S;(w) := {g € G | g(w) = w} of group elements that do

not move the object w is a subgroup of G called the

Equivalence classes

Via this equivalence relation, the action of G partitions the

objects in {2 into(equivalence classes



General and special Wyckoff positions

Orbit of a point X, under P: P(X,)={W X, WEeP}
Multiplicity

Site-symmetry group So={W} of a point X,
WX, = Xo
o o e N Multiplicity: [P|/|So|

d e f Yo Yo

g h i Z0 Z0

General position X, Special position X,
So=1={1} So>1={l,...,}
Multiplicity: |P] Multiplicity: |P|/|So|

Site-symmetry groups: oriented symbols



Example General and special Wyckoff positions
Point group 2 = {1,2001}

Site-symmetry group So={W} of a point X,=(0,0,z)
S0 =12 20011 | : :

- | 0 — 0

WXo = Xo !

Multiplicity: |P|/|So]
\
2b 1{(xyz) (-x,-y,z) [ /7\ /

la 2 (0,0,2) | \L/ \/




Example General and special Wyckoff positions

Point group mm2 = {1,2100,M100,Mo10}

Site-symmetry group So={W} of a point X,=(0,0,0)

So = mm2 2001: - Z _
WX, = Xo
my: | - Z — Z
4d | (xyz2) (-%-%2) (X-%2z) (-XY,2)

2cm.. (0y,z) (0,-y,2)

2b.m. ((x02) (x,0,2) TN @
| a :11m2 (0,0,2) \'/




EXERCISES Problem 2.8

Consider the symmetry group of the square 4mm
and the point group 422 that is isomorphic to it.

Determine the general and special Wyckoff positions
of the two groups.

Hint: The stereographic projections could be rather helpful
T . [0 ~ T
NI \j I
o | Of » ' 4

~o—




EXAMPLE Wyckoff positions splitting schemes

Group-subgroup pair mm2 >2, [i]=2

mm2 )

AR ARYSR
e/ \e/ "/

X,Y,z= X1,y1,Z1 2b |
M
4d | (xyz) ¢ W -X,-Y,z="X1,~Y I, Z|
(-X,-y,Z) \
(X,-y,2) W X,-Y,Z=X2,y2,22 2 b |

(-X’Y’Z) -X’Y9Z='X2"y2122




EXERCISES Problem 2.9

Consider the general and special Wyckoff
positions of the symmetry group of the square
4mm and those of its subgroup mm2 of index 2.

Determine the splitting schemes of the general and
special Wyckoff positions for 4mm > mma2.

Hint: The stereographic projections could be rather helpful




