
CRYSTALLOGRAPHY ONLINE 

on the use and applications of the structural 
and magnetic tools of the 

27 June -1 July 2022Leioa, 
BILBAO CRYSTALLOGRAPHIC SERVER

Workshop



SPACE-GROUP SYMMETRY 

SYMMETRY DATABASES OF 
BILBAO CRYSTALLOGRAPHIC SERVER

Mois I.  Aroyo
Universidad del Pais Vasco, Bilbao, Spain

Bilbao Crystallographic Server

http://www.cryst.ehu.es

César Capillas, UPV/EHU 1



Crystal Symmetry

Real crystal Real crystals are finite objects in physical space which due 
to static (impurities and structural imperfections like 
disorder, dislocations, etc) or dynamic (phonons) defects 
are not perfectly symmetric.

Infinite periodic spatial arrangement of the 
atoms (ions, molecules) with no static or 
dynamic defects

Ideal crystal
(ideal crystal structures)

Crystal pattern: A model of the ideal crystal (crystal structure) in 
point space consisting of a strictly 3-dimensional 
periodic set of points  

An abstraction of the atomic nature of the ideal 
structure, perfectly periodic 



SPACE GROUPS

Space group G: 

The set of all symmetry 
operations (isometries) 
of a crystal pattern

The infinite set of all translations that 
are symmetry operations of the 
crystal pattern

Translation subgroup T: 
T     G   

Point group of the 
space groups PG: 

The factor group of the space group G with 
respect to the translation subgroup T: PG ≅ G/H

(W,w)—>W PG={W|(W,w)∈G}



INTERNATIONAL TABLES FOR 
CRYSTALLOGRAPHY

VOLUME A: SPACE-GROUP SYMMETRY

•headline with the relevant group symbols;
•diagrams of the symmetry elements and of the 
  general position;
•specification of the origin and the asymmetric 
  unit;
•list of symmetry operations;
•generators;
•general and special positions with multiplicities, 
  site symmetries, coordinates and reflection 
  conditions;
•symmetries of special projections;

Extensive tabulations and illustrations
 of the 17 plane groups and 

of the 230 space groups



GENERAL  LAYOUT: LEFT-HAND PAGE



General Layout: Right-hand page



HEADLINE BLOCK



Number of 
space group 

Schoenflies 
symbol

Full Hermann-
Mauguin symbol

Crystal class
(point group) Crystal 

system

Patterson
symmetry

Short Hermann-
Mauguin symbol



HERMANN-MAUGUIN 
SYMBOLISM



Hermann-Mauguin symbols for space groups

The Hermann–Mauguin symbol for a space group consists of a sequence of 
letters and numbers, here called the constituents of the HM symbol.

(i) The first constituent is always a symbol for the conventional cell of the 
translation lattice of the space group 

(ii) The second part of the full HM symbol of a space group consists of one position 
for each of up to three representative symmetry directions. To each position belong 
the generating symmetry operations of their representative symmetry direction. The 
position is thus occupied either by a rotation, screw rotation or rotoinversion and/
or by a reflection or glide reflection. 

(iii) Simplest-operation rule: 
pure rotations > screw rotations;
pure rotations > rotoinversions
reflection m > a; b; c > n

‘>’ means 
‘has priority’



Lattice systems: classification based on the 
symmetry of the lattice



Symmetry directions

A direction is called a symmetry direction of a crystal 
structure if it is parallel to an axis of rotation, screw 
rotation or rotoinversion or if it is parallel to the normal 
of a reflection or glide-reflection plane.  A symmetry 
direction is thus the direction of the geometric element of 
a symmetry operation, when the normal of a symmetry 
plane is used for the description of its orientation. 



Hermann-Mauguin symbols for space groups



primary
direction

tertiary
direction

secondary
direction

Hermann-Mauguin symbols for space groupsExample: 



SPACE-GROUP 
SYMMETRY 

OPERATIONS



Symmetry Operations Characteristics

TYPE of the symmetry operation

ORIENTATION of the geometric element

LOCATION of the geometric element

SCREW/GLIDE component

preserve or not handedness

GEOMETRIC ELEMENT 



Crystallographic symmetry operations

identity: the whole space fixed

translation t:                                        no fixed point x̃ = x + t

rotation: one line fixed
rotation axis φ = k × 360

◦/N

Types of isometries preserve handedness

screw rotation: no fixed point
screw axis screw vector

fixed points of isometries characteristics:
geometric elements 

(W,w)Xf=Xf



Crystallographic symmetry operations

Screw rotation

n-fold rotation followed 
by a fractional 

translation      t parallel 
to the rotation axis

p
n

Its application n times 
results in a translation 
parallel to the rotation 

axis



roto-inversion:
centre of roto-inversion fixed

roto-inversion axis

reflection: plane fixed
reflection/mirror plane 

Types of isometries do not
preserve handedness

glide reflection: no fixed point
glide plane glide vector

inversion: centre of inversion fixed

fixed points of isometries characteristics: (W,w)Xf=Xf
geometric elements 



Crystallographic symmetry operations

Glide plane

reflection followed by a 
fractional translation

   t parallel to the plane

Its application 2 times 
results in a translation 
parallel to the plane

1
2



Description of isometries: 3D

coordinate system: {O,a,b, c}

isometry:
X X

~

=  F1(x,y,z)~x

(W,w)



Matrix formalism

linear/matrix
 part

translation
column part

matrix-column
pair

Seitz symbol



-1

1

-1

1/2

0

1/2

Referred to an ‘orthorhombic’ coordinated system (a≠b≠c; 
α=β=γ=90) two symmetry operations are represented by the 
following matrix-column pairs: 

EXERCISES Problem 1.6.2.1 

(W2,w2)=

Determine the images Xi of a 
point X under the symmetry 
operations (Wi,wi) where

-1

1

-1

0

0

0

(W1,w1)=

0,70

0,31

0,95

X=

Can you guess what is the 
geometric ‘nature’ of (W1,w1)? 
And of (W2,w2)? 

A drawing could be rather helpful  
Hint: 

( ) ( )



Combination of isometries

(U,u)
X X

~

(V,v)

~
X
~

(W,w)



-1

1

-1

1/2

0

1/2

Consider the matrix-column pairs of the two symmetry operations: 

EXERCISES

(W2,w2)=
0 -1

1 0

-1

0

0

0

(W1,w1)=( ) ( )
Determine and compare the matrix-column pairs of the combined 
symmetry operations: 

(W,w)=(W1,w1)(W2,w2)

(W,w)’=(W2,w2)(W1,w1)

combination of isometries:

Problem 1.6.2.1 



Inverse isometries

X
~

(C,c)=(W,w)-1

(W,w)
X

~~
X

(C,c)(W,w) = (I,o)
= 3x3 identity matrix I

o = zero translation column 

(C,c)(W,w) = (CW, Cw+c)

C=W-1

Cw+c=o

c=-Cw=-W-1w

CW=I



-1

1

-1

1/2

0

1/2

EXERCISES

(W2,w2)=
0 -1

1 0

-1

0

0

0

(W1,w1)=( ) ( )
Determine the inverse symmetry operation (W,w)-1

(W,w)=(W1,w1)(W2,w2)

Determine the inverse symmetry operations (W1,w1)-1 and 
(W2,w2)-1 where

inverse of isometries:

Problem 1.6.2.1 



Short-hand notation for the description 
of isometries

isometry: X X
~

-left-hand side: omitted 
-coefficients 0, +1, -1
-different rows in one line

notation rules:

examples: -1

1

-1

1/2

0

1/2

-x+1/2, y, -z+1/2

(W,w)

x+1/2, y, z+1/2{



Problem 1.6.2.3

EXERCISES

Construct the matrix-column pair (W,w) of the 
following coordinate triplets:

(1) x,y,z (2) -x,y+1/2,-z+1/2

(3) -x,-y,-z (4) x,-y+1/2, z+1/2



PRESENTATION OF 
SPACE-GROUP SYMMETRY 

OPERATIONS

IN 
INTERNATIONAL TABLES 
FOR CRYSTALLOGRAPHY, 

VOL. A



Space group Cmm2 (No. 35) How are the symmetry 
operations 

represented in ITA ?

Diagram of 
general position points

General Position

Diagram of symmetry elements

0 b

a



General position

coordinate triplets of an image point X of 
the original point X=     under (W,w) of G

(i)
~

x

y

z

-presentation of infinite image points X under the 
action of (W,w) of G

~

short-hand notation of the matrix-column pairs 
(W,w) of the symmetry operations of G

-presentation of infinite symmetry operations of G
(W,w) = (I,tn)(W,w0), 0≤wi0<1

(ii)



Space Groups: infinite order

Coset decomposition G:TG

Factor group G/TG

isomorphic to the point group PG of G

(I,0)     (W2,w2)     ...   (Wm,wm)       ...   (Wi,wi)

(I,t1)     (W2,w2+t1) ...  (Wm,wm+t1)  ...   (Wi,wi+t1)
(I,t2)     (W2,w2+t2) ...  (Wm,wm+t2)  ...   (Wi,wi+t2)

(I,tj)     (W2,w2+tj) ...   (Wm,wm+tj)  ...    (Wi,wi+tj)
...               ...        ...         ...           ...       ...

...               ...        ...         ...           ...       ...

Point group PG = {I, W2, W3,…,Wi}

General position



n1/2

n2/2

n3/2

n1

n2

n3

-1

-1

-1inversion centres (1,t):

1 at

General position

(I,0)     (2,0)     (  ,0)    (m,0)

(I,t1)     (2,t1)    (  , t1)  (m, t1)

(I,t2)     (2,t2)    (  , t2)  (m,t2)

(I,tj)      (2,tj)     (  , tj)   (m, tj)
...         ...          ...         ...

...           ...        ...         ...    

1̄

1̄

1̄

1̄

TG TG 2 TG TG m1̄

Coset decomposition G:TGExample: P12/m1

Point group  PG = {1, 2, 1, m}



inversion
centers ( ,p q r):    at p/2,q/2,r/21 1

(I,t1)     (2,0 ½ ½+t1)    ( ,t1)     (m,0 ½ ½ +t1)
(I,t2)     (2,0 ½ ½ +t2)   ( ,t2)     (m,0 ½ ½ +t2)

(I,tj)     (2,0 ½ ½ +tj)    ( ,tj)       (m,0 ½ ½ +tj)
...               ...        ...      ...           ...       ...

...               ...        ...                 ...           ...       ...

(I,0)     (2,0 ½ ½)        (1,0)     (m,0 ½ ½)

1

1
1

21screw
axes (2,u ½+v ½ +w)

(2,0 ½+v ½)

(2,u ½ ½ +w)

Coset decomposition P121/c1:TEXAMPLE

General position
Point group ?



TYPE of the symmetry operation

ORIENTATION of the geometric element

LOCATION of the geometric element

Symmetry Operations Block

GEOMETRIC INTERPRETATION OF  THE MATRIX-
COLUMN PRESENTATION OF
THE SYMMETRY OPERATIONS

SCREW/GLIDE component



Diagram of symmetry elements

0 b

a

Diagram of 
general position points

General position

(I,0)     (2,0)     (my,0)    (mx,0)

(I,t1)     (2,t1)    (my,t1)  (mx, t1)

(I,t2)     (2,t2)    (my,t2)  (mx,t2)

(I,tj)      (2,tj)     (my,tj)   (mx, tj)
...         ...          ...         ...

TG TG 2 TG my TG mx

Example: Cmm2



EXAMPLE

Geometric 
interpretation

Matrix-column 
presentation

Space group P21/c (No. 14)



BILBAO 
CRYSTALLOGRAPHIC 

SERVER 



www
.cry

st.e
hu.e

s





space group

14

Bilbao Crystallographic Server

Problem:
GENPOSGeometrical interpretation

Matrix-column presentation



short-hand notation

matrix-column 
presentation

ITA
data

General positions

Space-group
symmetry operations

Example: Space group P21/c (14) BCS: GENPOS

Geometric interpretation

Seitz symbols



translation part t translation parts of the coordinate triplets of the General 
position blocks

identity and inversion
reflections
rotations
rotoinversions

1 and 1
m

 2, 3, 4 and 6
3, 4 and 6

short-hand description of the matrix-column presentations of 
the symmetry operations of the space groupsSeitz symbols { R | t }

- specify the type and the order of the symmetry 
operation; 

- orientation of the symmetry element by the direction of 
the axis for rotations and rotoinversions, or the direction 
of the normal to reflection planes.

rotation (or linear) 
part R

SEITZ SYMBOLS  FOR  SYMMETRY OPERATIONS 



Seitz symbols for symmetry 
operations of hexagonal and 

trigonal crystal systems

EXAMPLE

Glazer et al. Acta Cryst A 70, 300 (2014)



Seitz symbols (1) {1|0}   (2) {2010|01/21/2 }   (3) {1|0}    (4) {m010|01/21/2}  

EXAMPLE

Geometric 
interpretation

Matrix-column 
presentation

NOT in ITA



Geometric 
Interpretation of (W,w)

Problem: SYMMETRY
OPERATION

Bilbao Crystallographic Server



Problem 1.6.2.3 (cont.)EXERCISES

Construct the matrix-column pairs (W,w) of the 
following coordinate triplets:

(1) x,y,z (2) -x,y+1/2,-z+1/2
(3) -x,-y,-z (4) x,-y+1/2, z+1/2

Use the program SYMMETRY OPERATIONS for the 
geometric interpretation of the matrix-column pairs of 
the symmetry operations.

Characterize geometrically these matrix-column pairs 
taking into account that they refer to a monoclinic basis 
with unique axis b (type of operation, glide/screw 
component, location of the symmetry operation).



Problem 1.6.2.4

Determine the orientation and location of the three mutually 
perpendicular 2-fold rotation axes in the space groups P222, P2221, 
P21212 and P212121. 



1. Characterize geometrically the matrix-column pairs 
listed under General position of the space group 
P4mm in ITA. 

Consider the diagram of the symmetry elements of 
P4mm. Try to determine the matrix-column pairs of 
the symmetry operations whose symmetry 
elements are indicated on the unit-cell diagram. 

2.

Problem1.6.2.2

3. Compare your results with the results of the program 
SYMMETRY OPERATIONS 

EXERCISES



GENERAL 
AND 

SPECIAL WYCKOFF 
POSITIONS 

SITE-SYMMETRY



Oriented symbols of site-symmetry groups

 General and special Wyckoff positions

Orbit of a point Xo under G: G(Xo)={(W,w)Xo,(W,w)∈G} 
Multiplicity

Site-symmetry group So={(W,w)} of a point Xo 
(W,w)Xo = Xo

Multiplicity: |P|/|So|=
a b c

d e f

g h i

x0

y0

z0

x0

y0

z0

w
1w
2w
3

( )
General position Xo 

Multiplicity: |P|
S={(1,o)}≃ 1 

Multiplicity: |P|/|So|

Special position Xo 

S> 1 ={(1,o),...,}



short-hand notation of the matrix-column pairs 
(W,w) of the symmetry operations of G

-presentation of infinite symmetry operations of G
(W,w) = (I,tn)(W,w0), 0≤wi0<1

(ii)

General position

coordinate triplets of an image point X of 
the original point X=     under (W,w) of G

(i)
~

x

y

z

-presentation of infinite image points X under the 
action of (W,w) of G: 0≤xi<1

~



(I,0)X     (W2,w2)X     ...   (Wm,wm)X       ...   (Wi,wi)X

(I,t1)X     (W2,w2+t1)X ...  (Wm,wm+t1)X  ...   (Wi,wi+t1)X
(I,t2)X     (W2,w2+t2)X ...  (Wm,wm+t2)X  ...   (Wi,wi+t2)X

(I,tj)X     (W2,w2+tj)X ...   (Wm,wm+tj)X  ...    (Wi,wi+tj)X
...               ...        ...         ...           ...       ...

...               ...        ...         ...           ...       ...

General position

- the coordinate triplets of an image point X of the 
original point X=     under (W,w) of Gx

y

z

~
General Position of Space groups

- presentation of infinite image points X of X 
under the action of (W,w) of G: 0≤xi<1

~



S={(W,w), (W,w)Xo = Xo}

Sf={(1,0), (-1,000)Xf = Xf}
Sf≃{1, -1} isomorphic

Group P-1

0

0

0

-1

-1

-1

0

0

0

=
0

0

0( )

 Example: Calculation of the Site-symmetry groups 



Group P-1

QUIZ: Calculation of the Site-symmetry groups 

1/2

0

1/2

Determine the
site symmetry group 

of the point
Xo=

S={(W,w), (W,w)Xo = Xo}Hint:



 General and special Wyckoff positions of P4mm 

Space group P4mmProblem1.6.2.5



Problem: WYCKPOS

Transformation 
of the basis

ITA 
settings

space group

Wyckoff positions
Site-symmetry groups
Coordinate transformations

Bilbao Crystallographic Server

Standard basis



Bilbao Crystallographic
 Server



2 x,1/4,1/4

2 1/2,y,1/4

Example WYCKPOS:  Wyckoff Positions Ccce (68)



Problem 1.6.2.5 (cont.)EXERCISES

Consider the special Wyckoff positions of the 
the space group P4mm. 

Determine the site-symmetry groups of  Wyckoff 
positions 1a and 1b. Compare the results with the 
listed ITA data

The coordinate triplets (x,1/2,z) and (1/2,x,z), 
belong to Wyckoff position 4f.  Compare their 
site-symmetry groups.

Compare your results with the results of the 
program WYCKPOS.



SPACE-GROUPS 
DIAGRAMS 



Cmm2 (No. 35)

0 b

a

0

0

a

b

c

c

Diagram of general 
position points

Space-group diagrams 

three different settings
permutations of a,b,c

three different 
projections

Symmetry-element 
diagrams



Symmetry elements corresponding to operations of 
order 2 occur every half a period



Mirror and glide planes

Diagrams of symmetry elements



Mirror and glide planes



Rotation and screw-rotation axes



Rotation 
and 

screw-
rotation 

axes



Geometric 
interpretation

Space group Cmm2 (No. 35)EXAMPLE

General Position Matrix-column 
presentation 
of symmetry 
operations

0 b

a

at y=1/4, ⊥b
glide plane, t=1/2a

at x=1/4, ⊥a
glide plane, t=1/2b

x+1/2,-y+1/2,z -x+1/2,y+1/2,z



Diagram of general 
position points

Diagram of symmetry 
elements

Example: P4mm

⎬⎫ ⎭



Examples

All rotations and screw rotations 
with the same axis, the same 
angle and sense of rotation and 
the same screw vector (zero for 
rotation) up to a lattice translation 
vector.

1st, ..., (n-1)th powers + 
all coaxial equivalents 

Rotation axis
line}

Symmetry elements

Symmetry operations 
that share the same 
geometric element

}
Element set

Symmetry
 elements

Geometric 
element

Fixed points

+ }
All glide reflections with the same 
reflection plane, with glide of d.o. 
(taken to be zero for reflections) by 
a lattice translation vector. 

defining operation+ 
all coplanar equivalents 

Glide plane
plane}



Geometric elements and Element sets

Symmetry operations and symmetry elements

P. M. de Wolff et al.  Acta Cryst (1992) A48 727 



Diagram of symmetry elements
Example: P4mm

Symmetry operations 
that share (0,0,z) as 
geometric element

2 -x,-y,z

4+ -y,x,z

4- y,-x,z

2(0,0,1) -x,-y,z+1

... ...

A l l r o ta t i ons and sc rew 
rotations with the same axis, 
the same angle and sense of 
rotation and the same screw 
vector (zero for rotation) up to 
a lattice translation vector.

1st, 2nd, 3rd powers + 
all coaxial equivalents }

Element set of (0,0,z) line

Element set of (00z) line



Diagram of symmetry elements
Space group Cmm2 (No. 35)

conventional setting

How many 
general position 
points per unit 
cell are there?

0 b

a

Diagram of general position points

General Position



Diagram of general 
position points

Diagram of symmetry 
elements

Example: P121 Diagram of general position points



Diagram of general 
position points



Diagram of general 
position points

Diagram of symmetry 
elements

Example: P4mm



Diagrams of general position pointsExample: Ia3d (No. 230)

For the graphical presentation of the general-position points of cubic 
groups, the general-position points are grouped around points of higher site 
symmetry and represented in the form of polyhedra. 

orthogonal projection perspective projection

polyhedra (twisted trigonal antiprism) centres at (1/8,1/8,1/8) 
and its equivalent points, site symmetry .32.



Diagrams of general position pointsExample: Ia3d (No. 230)

polyhedra (twisted trigonal antiprism) centres at (0,0,0) and its equivalent 
points, site symmetry .-3.

orthogonal projection perspective projection



ORIGINS 
AND

ASYMMETRIC UNITS  



Space group Cmm2 (No. 35): left-hand page ITA

The site symmetry of the origin is stated, 
if different from the identity. 
A further symbol indicates all symmetry 
elements (including glide planes and 
screw axes) that pass through the origin, if any. 

Origin statement

For each of the two origins the location 
relative to the other origin is also given.

Space groups with two origins



 Example: Different origins for Pnnn



An asymmetric unit of a space group is a (simply connected) 
smallest closed part of space from which, by application of all 
symmetry operations of the space group, the whole of space is filled.

ITA:



(output cctbx: Ralf Grosse-Kustelve)

ITA:

To avoid the overlap between the boundaries of the asymmetric units 
covering the unit cell (and the whole space), obtained by the application 
of the space-group symmetry operations, part of the boundaries have to 
be excluded from the asymmetric unit.

NOT 
in 

ITA:

 Example: Asymmetric unit Cmm2 (No. 35)



(output cctbx: Ralf Grosse-Kustelve)

Asymmetric units for the space group P121

c

a

b

 Example:
non-uniqueness



CO-ORDINATE 
TRANSFORMATIONS 

IN 
CRYSTALLOGRAPHY



Also, the inverse matrices of P and p are needed. They are

Q ! P"1

and

q ! "P"1p!

The matrix q consists of the components of the negative shift vector
q which refer to the coordinate system a#, b#, c#, i.e.

q ! q1a# $ q2b# $ q3c#!

Thus, the transformation (Q, q) is the inverse transformation of
(P, p). Applying (Q, q) to the basis vectors a#, b#, c# and the origin
O#, the old basis vectors a, b, c with origin O are obtained.

For a two-dimensional transformation of a# and b#, some
elements of Q are set as follows: Q33 ! 1 and
Q13 ! Q23 ! Q31 ! Q32 ! 0.

The quantities which transform in the same way as the basis
vectors a, b, c are called covariant quantities and are written as row
matrices. They are:

the Miller indices of a plane (or a set of planes), (hkl), in direct
space and

the coordinates of a point in reciprocal space, h, k, l.

Both are transformed by

%h#, k#, l#& ! %h, k, l&P!

Usually, the Miller indices are made relative prime before and after
the transformation.

The quantities which are covariant with respect to the basis
vectors a, b, c are contravariant with respect to the basis vectors
a', b', c' of reciprocal space.

The basis vectors of reciprocal space are written as a column
matrix and their transformation is achieved by the matrix Q:

a'#

b'#

c'#

!

"#

$

%& ! Q

a'

b'

c'

!

"#

$

%&

!
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

!

"#

$

%&
a'

b'

c'

!

"#

$

%&

!
Q11a' $ Q12b' $ Q13c'

Q21a' $ Q22b' $ Q23c'

Q31a' $ Q32b' $ Q33c'

!

"#

$

%&!

The inverse transformation is obtained by the inverse matrix

P ! Q"1:

a'

b'

c'

!

#

$

& ! P
a'#

b'#

c'#

!

#

$

&!

These transformation rules apply also to the quantities covariant
with respect to the basis vectors a', b', c' and contravariant with
respect to a, b, c, which are written as column matrices. They are the
indices of a direction in direct space, [uvw], which are transformed
by

u#

v#

w#

!

#

$

& ! Q
u
v
w

!

#

$

&!

In contrast to all quantities mentioned above, the components of a
position vector r or the coordinates of a point X in direct space
x, y, z depend also on the shift of the origin in direct space. The
general (affine) transformation is given by

x#

y#

z#

!

"#

$

%& ! Q

x

y

z

!

"#

$

%&$ q

!
Q11x $ Q12y $ Q13z $ q1

Q21x $ Q22y $ Q23z $ q2

Q31x $ Q32y $ Q33z $ q3

!

"#

$

%&!

Example

If no shift of origin is applied, i.e. p ! q ! o, the position vector
r of point X is transformed by

r# ! %a, b, c&PQ
x
y
z

!

#

$

& ! %a#, b#, c#&
x#

y#

z#

!

#

$

&!

In this case, r ! r#, i.e. the position vector is invariant, although
the basis vectors and the components are transformed. For a pure
shift of origin, i.e. P ! Q ! I , the transformed position vector r#
becomes

r# ! %x $ q1&a $ %y $ q2&b $ %z $ q3&c
! r $ q1a $ q2b $ q3c
! %x " p1&a $ %y " p2&b $ %z " p3&c
! r " p1a " p2b " p3c!

Here the transformed vector r# is no longer identical with r.

It is convenient to introduce the augmented %4 ( 4& matrix !
which is composed of the matrices Q and q in the following manner
(cf. Chapter 8.1):

! ! Q q
o 1

' (
!

Q11 Q12 Q13 q1

Q21 Q22 Q23 q2

Q31 Q32 Q33 q3

0 0 0 1

!

""#

$

%%&

with o the %1 ( 3& row matrix containing zeros. In this notation, the
transformed coordinates x#, y#, z# are obtained by

Fig. 5.1.3.1. General affine transformation, consisting of a shift of origin
from O to O# by a shift vector p with components p1 and p2 and a change
of basis from a, b to a#, b#. This implies a change in the coordinates of
the point X from x, y to x#, y#.
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3-dimensional space
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Transformation matrix-column pair (P,p)

5.1. Transformations of the coordinate system (unit-cell transformations)
BY H. ARNOLD

5.1.1. Introduction

There are two main uses of transformations in crystallography.
(i) Transformation of the coordinate system and the unit cell

while keeping the crystal at rest. This aspect forms the main topic of
the present part. Transformations of coordinate systems are useful
when nonconventional descriptions of a crystal structure are
considered, for instance in the study of relations between different
structures, of phase transitions and of group–subgroup relations.
Unit-cell transformations occur particularly frequently when
different settings or cell choices of monoclinic, orthorhombic or
rhombohedral space groups are to be compared or when ‘reduced
cells’ are derived.

(ii) Description of the symmetry operations (motions) of an
object (crystal structure). This involves the transformation of the
coordinates of a point or the components of a position vector while
keeping the coordinate system unchanged. Symmetry operations are
treated in Chapter 8.1 and Part 11. They are briefly reviewed in
Chapter 5.2.

5.1.2. Matrix notation

Throughout this volume, matrices are written in the following
notation:

As (1 ! 3) row matrices:

(a, b, c) the basis vectors of direct space
(h, k, l) the Miller indices of a plane (or a set of

planes) in direct space or the coordinates
of a point in reciprocal space

As (3 ! 1) or (4 ! 1) column matrices:
x " #x!y!z$ the coordinates of a point in direct space
#a%!b%!c%$ the basis vectors of reciprocal space
(u!v!w) the indices of a direction in direct space
p " #p1!p2!p3$ the components of a shift vector from

origin O to the new origin O &

q " #q1!q2!q3$ the components of an inverse origin
shift from origin O & to origin O, with
q " 'P'1p

w " #w1!w2!w3$ the translation part of a symmetry
operation ! in direct space

! " #x!y!z!1$ the augmented #4 ! 1$ column matrix of
the coordinates of a point in direct space

As (3 ! 3) or (4 ! 4) square matrices:
P, Q " P'1 linear parts of an affine transformation;

if P is applied to a #1 ! 3$ row matrix,
Q must be applied to a #3 ! 1$ column
matrix, and vice versa

W the rotation part of a symmetry
operation ! in direct space

" " P p
o 1

! "
the augmented affine #4 ! 4$ trans-
formation matrix, with o " #0, 0, 0$

# " Q q
o 1

! "
the augmented affine #4 ! 4$ trans-
formation matrix, with # " "'1

$ " W w
o 1

! "
the augmented #4 ! 4$ matrix of a
symmetry operation in direct space (cf.
Chapter 8.1 and Part 11).

5.1.3. General transformation

Here the crystal structure is considered to be at rest, whereas the
coordinate system and the unit cell are changed. Specifically, a
point X in a crystal is defined with respect to the basis vectors a, b, c
and the origin O by the coordinates x, y, z, i.e. the position vector r
of point X is given by

r " xa ( yb ( zc

" #a, b, c$
x

y

z

#

$%

&

'("

The same point X is given with respect to a new coordinate system,
i.e. the new basis vectors a&, b&, c& and the new origin O& (Fig.
5.1.3.1), by the position vector

r& " x&a& ( y&b& ( z&c&"

In this section, the relations between the primed and unprimed
quantities are treated.

The general transformation (affine transformation) of the
coordinate system consists of two parts, a linear part and a shift
of origin. The #3 ! 3$ matrix P of the linear part and the #3 ! 1$
column matrix p, containing the components of the shift vector p,
define the transformation uniquely. It is represented by the symbol
(P, p).

(i) The linear part implies a change of orientation or length or
both of the basis vectors a, b, c, i.e.

#a&, b&, c&$ " #a, b, c$P

" #a, b, c$
P11 P12 P13

P21 P22 P23

P31 P32 P33

#

$%

&

'(

" #P11a ( P21b ( P31c,

P12a ( P22b ( P32c,

P13a ( P23b ( P33c$"

For a pure linear transformation, the shift vector p is zero and the
symbol is (P, o).

The determinant of P, det#P$, should be positive. If det#P$ is
negative, a right-handed coordinate system is transformed into a
left-handed one (or vice versa). If det#P$ " 0, the new basis vectors
are linearly dependent and do not form a complete coordinate
system.

In this chapter, transformations in three-dimensional space are
treated. A change of the basis vectors in two dimensions, i.e. of the
basis vectors a and b, can be considered as a three-dimensional
transformation with invariant c axis. This is achieved by setting
P33 " 1 and P13 " P23 " P31 " P32 " 0.

(ii) A shift of origin is defined by the shift vector

p " p1a ( p2b ( p3c"

The basis vectors a, b, c are fixed at the origin O; the new basis
vectors are fixed at the new origin O& which has the coordinates
p1, p2, p3 in the old coordinate system (Fig. 5.1.3.1).

For a pure origin shift, the basis vectors do not change their lengths
or orientations. In this case, the transformation matrix P is the unit
matrix I and the symbol of the pure shift becomes (I, p).
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5.1. Transformations of the coordinate system (unit-cell transformations)
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5.1.1. Introduction

There are two main uses of transformations in crystallography.
(i) Transformation of the coordinate system and the unit cell

while keeping the crystal at rest. This aspect forms the main topic of
the present part. Transformations of coordinate systems are useful
when nonconventional descriptions of a crystal structure are
considered, for instance in the study of relations between different
structures, of phase transitions and of group–subgroup relations.
Unit-cell transformations occur particularly frequently when
different settings or cell choices of monoclinic, orthorhombic or
rhombohedral space groups are to be compared or when ‘reduced
cells’ are derived.

(ii) Description of the symmetry operations (motions) of an
object (crystal structure). This involves the transformation of the
coordinates of a point or the components of a position vector while
keeping the coordinate system unchanged. Symmetry operations are
treated in Chapter 8.1 and Part 11. They are briefly reviewed in
Chapter 5.2.

5.1.2. Matrix notation

Throughout this volume, matrices are written in the following
notation:

As (1 ! 3) row matrices:

(a, b, c) the basis vectors of direct space
(h, k, l) the Miller indices of a plane (or a set of

planes) in direct space or the coordinates
of a point in reciprocal space

As (3 ! 1) or (4 ! 1) column matrices:
x " #x!y!z$ the coordinates of a point in direct space
#a%!b%!c%$ the basis vectors of reciprocal space
(u!v!w) the indices of a direction in direct space
p " #p1!p2!p3$ the components of a shift vector from

origin O to the new origin O &

q " #q1!q2!q3$ the components of an inverse origin
shift from origin O & to origin O, with
q " 'P'1p

w " #w1!w2!w3$ the translation part of a symmetry
operation ! in direct space

! " #x!y!z!1$ the augmented #4 ! 1$ column matrix of
the coordinates of a point in direct space

As (3 ! 3) or (4 ! 4) square matrices:
P, Q " P'1 linear parts of an affine transformation;

if P is applied to a #1 ! 3$ row matrix,
Q must be applied to a #3 ! 1$ column
matrix, and vice versa

W the rotation part of a symmetry
operation ! in direct space

" " P p
o 1

! "
the augmented affine #4 ! 4$ trans-
formation matrix, with o " #0, 0, 0$

# " Q q
o 1

! "
the augmented affine #4 ! 4$ trans-
formation matrix, with # " "'1

$ " W w
o 1

! "
the augmented #4 ! 4$ matrix of a
symmetry operation in direct space (cf.
Chapter 8.1 and Part 11).

5.1.3. General transformation

Here the crystal structure is considered to be at rest, whereas the
coordinate system and the unit cell are changed. Specifically, a
point X in a crystal is defined with respect to the basis vectors a, b, c
and the origin O by the coordinates x, y, z, i.e. the position vector r
of point X is given by

r " xa ( yb ( zc

" #a, b, c$
x

y

z

#

$%

&

'("

The same point X is given with respect to a new coordinate system,
i.e. the new basis vectors a&, b&, c& and the new origin O& (Fig.
5.1.3.1), by the position vector

r& " x&a& ( y&b& ( z&c&"

In this section, the relations between the primed and unprimed
quantities are treated.

The general transformation (affine transformation) of the
coordinate system consists of two parts, a linear part and a shift
of origin. The #3 ! 3$ matrix P of the linear part and the #3 ! 1$
column matrix p, containing the components of the shift vector p,
define the transformation uniquely. It is represented by the symbol
(P, p).

(i) The linear part implies a change of orientation or length or
both of the basis vectors a, b, c, i.e.

#a&, b&, c&$ " #a, b, c$P

" #a, b, c$
P11 P12 P13

P21 P22 P23

P31 P32 P33

#

$%

&

'(

" #P11a ( P21b ( P31c,

P12a ( P22b ( P32c,

P13a ( P23b ( P33c$"

For a pure linear transformation, the shift vector p is zero and the
symbol is (P, o).

The determinant of P, det#P$, should be positive. If det#P$ is
negative, a right-handed coordinate system is transformed into a
left-handed one (or vice versa). If det#P$ " 0, the new basis vectors
are linearly dependent and do not form a complete coordinate
system.

In this chapter, transformations in three-dimensional space are
treated. A change of the basis vectors in two dimensions, i.e. of the
basis vectors a and b, can be considered as a three-dimensional
transformation with invariant c axis. This is achieved by setting
P33 " 1 and P13 " P23 " P31 " P32 " 0.

(ii) A shift of origin is defined by the shift vector

p " p1a ( p2b ( p3c"

The basis vectors a, b, c are fixed at the origin O; the new basis
vectors are fixed at the new origin O& which has the coordinates
p1, p2, p3 in the old coordinate system (Fig. 5.1.3.1).

For a pure origin shift, the basis vectors do not change their lengths
or orientations. In this case, the transformation matrix P is the unit
matrix I and the symbol of the pure shift becomes (I, p).
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(i) linear part: change of orientation or length:

the origin O’ has 
coordinates (p1,p2,p3) in 
the old coordinate system 

O’ = O + p
(ii) origin shift by a shift vector p(p1,p2,p3): 



EXAMPLE



EXAMPLE



1/2 1/2 0
-1/2 1/2 0
0 0 1

1/2
1/4
0

(P,p)=( ) 1 -1 0
1 1 0
0 0 1

-1/4

-3/4

0

(P,p)-1=( )
Transformation matrix-column pair (P,p)

a’=1/2a-1/2b
b’=1/2a+1/2b

c’=c

O’=O+
1/2
1/4
0

a=a’+b’
b=-a’+b’
c=c’
O=O’+

-1/4

-3/4

0



atomic coordinates X(x,y,z):

=
P11 P12 P13

P21 P22 P23

P31 P32 P33

x
y
z

p1
p2
p3( )

(X’)=(P,p)-1(X)
           =(P-1, -P-1p)(X)

x´

y
z

-1

Co-ordinate transformations in crystallography

Transformation of space-group operations (W,w) by (P,p):

(W’,w’)=(P,p)-1(W,w)(P,p)

unit cell parameters: G:    G´=Pt G P

Structure-description transformation by (P,p)

metric 
tensor



Covariant and contravariant crystallographic quantities

)P11 P12 P13

P21 P22 P23

P31 P32 P33
((a’,b’,c’)=(a, b, c)P =(a, b, c)

direct or crystal basis

=
P11 P12 P13

P21 P22 P23

P31 P32 P33
( )-1a*’

b*’
c*’

a*
b*
c*

= P-1
a*
b*
c*

reciprocal or dual basis

covariant to crystal basis: Miller indices
(h’,k’,l’)=(h, k, l)P

contravariant to crystal basis: indices of a direction [u]

u

v

w

u´

v´
w´

P11 P12 P13

P21 P22 P23

P31 P32 P33

-1)(=



Short-hand notation for the description 
of transformation matrices

Transformation matrix:

-coefficients 0, +1, -1
-different columns in one line 

notation rules:

example: 1 -1

1 1

1

-1/4

-3/4

0

a+b, -a+b, c;-1/4,-3/4,0{

Also, the inverse matrices of P and p are needed. They are

Q ! P"1

and

q ! "P"1p!

The matrix q consists of the components of the negative shift vector
q which refer to the coordinate system a#, b#, c#, i.e.

q ! q1a# $ q2b# $ q3c#!

Thus, the transformation (Q, q) is the inverse transformation of
(P, p). Applying (Q, q) to the basis vectors a#, b#, c# and the origin
O#, the old basis vectors a, b, c with origin O are obtained.

For a two-dimensional transformation of a# and b#, some
elements of Q are set as follows: Q33 ! 1 and
Q13 ! Q23 ! Q31 ! Q32 ! 0.

The quantities which transform in the same way as the basis
vectors a, b, c are called covariant quantities and are written as row
matrices. They are:

the Miller indices of a plane (or a set of planes), (hkl), in direct
space and

the coordinates of a point in reciprocal space, h, k, l.

Both are transformed by

%h#, k#, l#& ! %h, k, l&P!

Usually, the Miller indices are made relative prime before and after
the transformation.

The quantities which are covariant with respect to the basis
vectors a, b, c are contravariant with respect to the basis vectors
a', b', c' of reciprocal space.

The basis vectors of reciprocal space are written as a column
matrix and their transformation is achieved by the matrix Q:

a'#

b'#

c'#

!

"#

$

%& ! Q

a'

b'

c'

!

"#

$

%&

!
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

!

"#

$

%&
a'

b'

c'

!

"#

$

%&

!
Q11a' $ Q12b' $ Q13c'

Q21a' $ Q22b' $ Q23c'

Q31a' $ Q32b' $ Q33c'

!

"#

$

%&!

The inverse transformation is obtained by the inverse matrix

P ! Q"1:

a'

b'

c'

!

#

$

& ! P
a'#

b'#

c'#

!

#

$

&!

These transformation rules apply also to the quantities covariant
with respect to the basis vectors a', b', c' and contravariant with
respect to a, b, c, which are written as column matrices. They are the
indices of a direction in direct space, [uvw], which are transformed
by

u#

v#

w#

!

#

$

& ! Q
u
v
w

!

#

$

&!

In contrast to all quantities mentioned above, the components of a
position vector r or the coordinates of a point X in direct space
x, y, z depend also on the shift of the origin in direct space. The
general (affine) transformation is given by

x#

y#

z#

!

"#

$

%& ! Q

x

y

z

!

"#

$

%&$ q

!
Q11x $ Q12y $ Q13z $ q1

Q21x $ Q22y $ Q23z $ q2

Q31x $ Q32y $ Q33z $ q3

!

"#

$

%&!

Example

If no shift of origin is applied, i.e. p ! q ! o, the position vector
r of point X is transformed by

r# ! %a, b, c&PQ
x
y
z

!

#

$

& ! %a#, b#, c#&
x#

y#

z#

!

#

$

&!

In this case, r ! r#, i.e. the position vector is invariant, although
the basis vectors and the components are transformed. For a pure
shift of origin, i.e. P ! Q ! I , the transformed position vector r#
becomes

r# ! %x $ q1&a $ %y $ q2&b $ %z $ q3&c
! r $ q1a $ q2b $ q3c
! %x " p1&a $ %y " p2&b $ %z " p3&c
! r " p1a " p2b " p3c!

Here the transformed vector r# is no longer identical with r.

It is convenient to introduce the augmented %4 ( 4& matrix !
which is composed of the matrices Q and q in the following manner
(cf. Chapter 8.1):

! ! Q q
o 1

' (
!

Q11 Q12 Q13 q1

Q21 Q22 Q23 q2

Q31 Q32 Q33 q3

0 0 0 1

!

""#

$

%%&

with o the %1 ( 3& row matrix containing zeros. In this notation, the
transformed coordinates x#, y#, z# are obtained by

Fig. 5.1.3.1. General affine transformation, consisting of a shift of origin
from O to O# by a shift vector p with components p1 and p2 and a change
of basis from a, b to a#, b#. This implies a change in the coordinates of
the point X from x, y to x#, y#.
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P11 P12 P13

P21 P22 P23

P31 P32 P33

p1
p2

p3

(P,p)=

(a,b,c), origin O

(a’,b’,c’), origin O’

( )
-written by columns

-origin shift 



Problem 1.6.2.6EXERCISES

The following matrix-column pairs (W,w) are 
referred with respect to a basis (a,b,c):

(1) x,y,z (2) -x,y+1/2,-z+1/2
(3) -x,-y,-z (4) x,-y+1/2, z+1/2

(i) Determine the corresponding matrix-column pairs 
(W’,w’) with respect to the basis (a’,b’,c’)= (a,b,c)P, 
with P=c,a,b.  
(ii) Determine the coordinates X’ of a  point 
with respect to the new basis (a’,b’,c’).

0,70

0,31

0,95

X=

(W’,w’)=(P,p)-1(W,w)(P,p)

(X’)=(P,p)-1(X)

Hints



ITA-settings
symmetry data

Transformation 
of the basis

Generators
General positions

GENPOS

space group

Bilbao Crystallographic Server

Co-ordinate transformations 
in crystallography

Problem:



Example GENPOS: 

default setting C12/c1

final setting A112/a

(W,w)A112/a=
(P,p)-1(W,w)C12/c1(P,p)



Example GENPOS: ITA settings of C2/c(15)

default setting A112/a setting



Problem: WYCKPOS

Transformation 
of the basis

ITA 
settings

space group

Coordinate transformations
Wyckoff positions

Bilbao Crystallographic Server



Problem 1.6.2.7EXERCISES

Consider the space group P21/c (No. 14). Show that the 
relation between the General and Special position data of 
P1121/a (setting unique axis c ) can be obtained from the data 
P121/c1(setting unique axis b ) applying the transformation 
(a’,b’,c’)c = (a,b,c)bP, with P= c,a,b.

Use the retrieval tools GENPOS (generators and general 
positions) and  WYCKPOS (Wyckoff positions) for 
accessing the space-group data. Get the data on general 
and special positions in different settings either by 
specifying transformation matrices to new bases, or by 
selecting one of the 530 settings of the monoclinic and 
orthorhombic groups listed in ITA.



Problem 1.2.6.8EXERCISES

Apart from the translation generators, the space group Im-3m (No. 229) 
can be generated by the following five generators (-x, -y, z), (-x, y, -z), 
(z,x,y), ( y,x,-z) and  (-x, -y, -z), where the matrix-column presentations of 
the generators are given with respect to the conventional I-centred basis.

1. Define a transformation matrix from the conventional to a primitive basis

3. Consider the lattice points inside and at the border of the conventional 
unit cell: what are the coordinates of these points with respect to the 
chosen primitive basis? 

2. What are the matrix-column pairs of the generators with respect to the 
primitive basis? 


