
Tutorial on the application of the tools of the Bilbao 
Crystallographic Server in the study of group-subgroup phase 
transitions. Part 2.  
 
THE PROGRAM AMPLIMODES 
(see also the other supplementary documentation on this program): 
 
We know since the works of Landau that the natural language to deal with the static 
frozen distortions present in displacively distorted structures is the one of modes. Modes 
are collective correlated atomic displacements fulfilling certain symmetry properties. 
Structural distortions in distorted structures can be decomposed into contributions of 
modes with different symmetries given by irreducible representations of the parent 
space group. One can then distinguish primary and secondary (induced) distortions, 
which will have in general quite different weights in the structure, and will respond 
differently to external perturbations.  
 In general, the use of symmetry-adapted modes in the description of distorted 
structures introduces a natural physical hierarchy among the structural parameters. This 
can be useful not only for investigating the physical mechanisms that stabilize these 
phases, but also for pure crystallographic purposes. The set of structural parameters 
used in a mode description of a distorted phase will in general be better adapted for a 
controlled refinement of the structure, or for instance for comparative studies between 
different materials or for ab-initio calculations. 
 
 AMPLIMODES is a computer program available on the Bilbao Crystallographic 
Server that can perform the symmetry-mode analysis of any distorted structure of 
displacive type. The analysis consists in decomposing the symmetry-breaking distortion 
present in the distorted structure into contributions from different symmetry-adapted 
modes. Given the high- and the low-symmetry structures, AMPLIMODES determines 
the atomic displacements that relate them, defines a basis of symmetry-adapted modes, 
and calculates the amplitudes and polarization vectors of the distortion modes of 
different symmetry frozen in the structure. The program uses a mode parameterization 
that is as close as possible to the crystallographic conventions, using an asymmetric unit 
of the low-symmetry structure for describing modes and distortions. 
  
 AMPLIMODES uses internally SYMMODES to produce the basis of 
symmetry-adapted modes to be used in the decomposition of the structural distortion, 
but instead of describing the modes in the high-symmetry setting, as SYMMODES,  
works in the setting of the subgroup.  
 
 Let us consider as an example the Amm2 structure of the ferroelectric distorted 
perovskite BaTiO3 at 190K (Kwei et al. (1993). The only data needed by 
AMPLIMODES are the parent structure and the distorted structure to be analyzed (both 
structures described in standard settings). This, together with the transformation relating 
the space groups of the two structures, is sufficient for running the program: 
 



                                      

                                       
 

   Figure 1: Structure of the Amm2 phase of BaTiO3 
 
This orthorhombic is one the three ferroelectric phases of BaTiO3, caused by the 
condensation at low temperatures of an unstable polar distortion. A three-fold 
degenerate polar instability associated with a single active 3-dim irrep produces three 
successive ferroelectric phases, by changing its direction within the 3-dim irrep space.  
 
 
Reference Structure: 
 The program first transforms the input high-symmetry parent structure into the 
setting of the low symmetry phase (using TRANSTRU). This structure is the so-called 
REFERENCE STRUCTURE. This structure, and in particular the specific asymmetric 
unit chosen by the program, will be used as the reference configuration for the atomic 
displacements describing the low-symmetry structure: 
 



Reference Structure 

 
 This listing describes the parent structure, but expressed in the low-symmetry 
space group. The number of atoms in the asymmetric unit increases in general with 
respect to the description in the high-symmetry group. Some Wyckoff orbits may split. 
In the present case, the number of independent atoms increases from 3 to 4, because the 
orbit of O1 splits into two. 
 Note that the cell parameters listed in the reference structure above correspond 
to the transformation of the unit cell associated with the parent structure. Thus, they 
fullfill exactly b = c = √2a, according to the group-subgroup transformation. If the mode 
analysis demanded to the program really makes sense, this unit cell should not differ 
much from the one of the input low-symmetry structure, and this should be checked by 
the user. 
 These idealized cell parameters of the reference structure will be used by the 
program for computing (when needed) the absolute values of the atomic displacements. 
In other words, the calculation of these displacements (in Å) is done disregarding the 
strain of the lattice of the low-symmetry structure with respect to the parent one. 
 
Atom Mapping: 
 Once the asymmetric unit of the reference structure has been defined, the 
program does an “atom mapping” or “pairing” identifying the atoms in the low 
symmetry structure that correspond to those listed in the asymmetric unit of the 
reference structure. From the comparison of these pairs of atomic positions in the high 
and low symmetry structures, the atomic displacements are calculated: 

                                 



 The pairing is only done if the magnitude of the atomic displacements (for all 
atoms) is smaller than a given tolerance.  This tolerance, which by default is 1 Å, can be 
increased by the user, but one should consider that a sucessful pairing with atomic 
displacements much larger than 1 Å may be nonsensical from a stereochemical 
viewpoint, and should be crosschecked carefully. 
 
 The displacements u for the atoms in the asymmetric unit of the reference 
structure, listed in the last table above defines completely the displacive distortion 
relating the two structures. The space group of the low symmetry structure forces that 
any atom not present in this asymmetric unit, but related by a space group operation 
(R,t) with one atom in it having a displacement u, must have a displacement given by 
the rotation or roto-inversion operation R: Ru.  
 
 Apart from the maximal atomic displacement, the output yields the amplitude of 
the total distortion, which is given by the square root of the sum of the square of all 
atomic displacements within a primitive unit cell of the reference structure. 
 
Polar structures:  
 The Amm2 structure is polar along the z direction. This means that the 
displacive distortion relating both structures may include some global translation of the 
structure as a whole, due to the arbitrary choice of the origin along z in the Amm2 
structure.  For polar structures, the program shifts its origin to eliminate this global 
displacement. If this shift is not desired, the user can put (0,0,0) as the polar direction in 
a second input menu, only appearing for polar structures. If we introduce the correct 
direction (0,0,1), the program does the mentioned origin shift, yielding the new 
displacive distortion without global displacement along z: 
 

                                      
 
Note that the origin shift done has slightly increased the maximal atomic displacement, 
but has decreased the total amplitude of the distortion. 
 
 One should take into account that in the case of polar structures, its origin 
choice, relative to the one of the high-symmetry configuration, may include such a large 



global displacement of the structure that AMPLIMODES can be unsuccessful to find an 
appropiate pairing of the two structures. In this case, one has two possibilities:  

i) Try AMPLIMODES with a series of equivalent low-symmetry structures with the 
origin shifted systematically (this shifted structures can be constructed automatically 
with TRANSTRU) until the program achieves a correct pairing or 
ii) Apply PSEUDO to the low-symmetry structure to get a first choice for the origin 
shift minimizing somehow the atomic displacements. 

 
Summary Output: 
 The program then calls the program SYMMODES to obtain a basis of 
symmetry-adapted modes for describing the displacive distortion, makes the mode 
decomposition of the distortion with this basis, and lists the results. First, a summary 
appears: 
 

                                           
 
 The basis of symmetry-adapted modes are chosen such that each mode is 
restricted to displacements within a single Wyckoff orbit of the high temperature 
structure. The first Table in this summary lists the number of basis symmetry modes 
and their irreps, that describe the atomic displacements of the atoms in each occupied 
Wyckoff orbit of the high symmetry phase. For each Wyckoff type, the table lists the 
relevant irreps and in parenthesis the number of basis modes corresponding to this irrep 
and this Wyckoff orbit. This information only depends on the type of Wyckoff orbit, 
therefore all atoms with the same type of orbit are included in a single row. 
 In our example, there are a total of five modes, four corresponding to irrep 
GM4- and one to irrep GM5-. The single mode GM5- only involves displacements of 
the high-symmetry orbit of atoms represented by O1.  
 The total number of modes must coincide with the total number of free structural 
parameters that are necessary to describe the structure. Indeed, if we inspect the original 
asymmetric unit of the Amm2 structure, it can be seen that there are five atomic 
components that are “free” by symmetry, although one of them has been arbitrarily 
chosen zero due to the polar character of the structure.  
  
 The second Table in this summary is the most important one. It lists the two 
irreps present in the distortion and the absolute amplitudes of these two symmetry 
components of the global distortion. The table gives for each irrep its wave vector, the 
restricted direction within the irrep space that the modes fulfill, their isotropy subgroup, 
and the dimension of its subspace. This dimension is the number of basis symmetry-
adapted modes of this symmetry. The GM4- subspace is four-dimensional. In order to 



describe a GM4- distortion four components must be given corresponding to the four 
GM4- (orthonormal) basis modes, one for the Ba atoms, one for the Ti atoms, and two 
for the oxygens. The GM5- subspace is one dimensional as only one basis mode of this 
symmetry exists.  
 The four dimensional character of the GM4- subspace is however misleading, as 
it includes the global translation of the structure. Fixing the origin, as in a standard 
crystallographic description, reduces the number of degrees of freedom within this type 
of distortions to three. 
 It is remarkable that the isotropy subgroup of the two irreps is Amm2. Therefore 
any of the two could the active irrep. However, the amplitudes obtained for the two 
symmetry-adapted distortions are very different. The amplitude of GM5- distortion is 
more than 20 times smaller. This is an extreme case of what we expect in distorted 
structures resulting (according to Landau theory) from the instability of an order 
parameter with symmetry properties given, by a single active irrep. In our example, the 
GM4- distortion corresponds approximately to a specific combination of the three-fold 
degenerate unstable polar normal modes which cause the successive ferroelectric phases 
in BaTiO3. Its amplitude can be identified with the Landau order parameter connecting 
this phase with the cubic perovskite. The GM4- distortion is therefore at the origin of 
this ferroelectric phase, while the GM5- distortion is only a secondary effect allowed by 
symmetry, but marginal in the phase stabilization. Therefore, the strong difference of 
amplitudes of the two frozen distortions is the signature of the underlying lattice 
dynamics mechanism causing this phase. 
 
             Note that the amplitude of the total distortion, 0.1650 Å is again given in this 
summary. It is in fact a cross check of the calculation done previously summing the 
square of the atomic displacements of the total distortion. Here, the calculation is done 
taking the square root of the sum of the square of the amplitudes listed in the Table for 
all irreps (The Pythagoras theorem is fulfilled by the amplitudes: as we are in a vector 
space!). In this example: 0.1650= [(0.1649)2+ (0.0056)2]½ . 
 
Basis of symmetry-adapted modes: 
   The subsequent detailed output includes first a list of the basis of symmetry-
adapted modes used in the decomposition: 

                                   
 

 
 



 

 
 
The five basis symmetry-adapted modes used by the program are shown. They are listed 
separately for each irrep. They are labelled using the atom label of the representative of 
the corresponding Wyckoff orbit, plus a numeric index that enumerates the modes in 
case that more than one exists. 
 
 The basis modes are given listing the displacements of only the atoms of the 
relevant Wyckoff orbit that are present in the asymmetric unit of the reference structure. 
These displacements are expressed in relative units with respect to the unit cell 
parameters of the subgroup cell. If transformed into absolute values (in Å) using the 
reference unit cell, the square of these displacements, when summed for all atoms 
within a primitive unit cell of the low symmetry space group, must yield 1 Å2: 
 
                      Σi  u

2(i)  = 1 Å2 
 
This means that the basis modes are normalized to 1 Å. We can check that for instance 
for mode (O1 ,1): 
 
   2x[(0.062406 x 5.665339)2 + (0.062406 x 5.665339)2] + 1x[(0.124813 x 5.665339)2 = 0.999995 
 
where we have used the fact that b=c= 5.665339Å in the reference structure, and that 
the multiplicity of the splitted orbits of the oxygens O1 and O1_2, reduced to a 
primitive unit cell, are 2 and 1, respectively. Note that the inclusion in the sum of the 
atoms not listed in the Table can be done simply by multiplying by the respective 
multiplicities (for a primitive cell) the contribution of the atoms in the Table, because, 
due to the symmetry condition mentioned above, the modules of their rotated 
displacements will be the equal to those of the corresponding atom in the asymmetric 
unit. 
 
 The basis modes are also orthogonal: 
 
                Σi  umode1(i). umode2(i)  = 0 
 
Let us check this condition  for the modes (O1, 1) and (O1, 2): 
 
2x[(0, 0.062406 x 5.665339, 0.062406 x 5.6653399) . (0, - 0.088256 x 5.665339, 0.088256 x 5.6653399)]  
 
+ 1x[(0, 0, 0.124813 x 5.665339) . (0, 0, 0)] = 1.12331 x 10-7 
 



where again the sum for the full orbit can be done by multiplying the dot products of the 
atom representatives by their multiplicities. 
 
 We can observe in the above table of basis modes the symmetry contraints 
associated with each type of symmetry. For instance, the displacements of the O1 and 
O1_2 atoms in the mode GM5- are such that the displacement of the O1_2 atom is 
restricted to the z-direction (subgroup setting), and is twice the value of the equal 
displacement of the O1 atom along the y and z directions. O1 and O1_2 are independent 
atomic positions in the Amm2 group, but the GM5- mode correlates their 
displacements. It is the free combination of the GM5- and GM4- modes for the two 
atoms, both allowed in the Amm2 space group, that makes the two atomic sites 
independent. 
 
Irrep Distortions. Amplitudes and polarization vectors: 
 Once the basis of symmetry-adapted modes is defined, the output gives the 
details of the mode decomposition. For each irrep, the parameters describing the 
distortion of this symmetry (irrep distortion) present in the low-symmetry structure are 
listed: 
 

 
 
 After a detailed information on the symmetry of the irrep distortion: wave 
vector, restricted direction, isotropy subgroup, and transformation matrix, the output 



lists the amplitude of this irrep distortion and its normalized so-called polarization 
vector.  
 The polarization vector of the irrep distortion is the set of normalized correlated 
atomic displacements of all atoms that multiplied by the given amplitude yields the 
actual distortion of this symmetry, which is present in the low-symmetry structure. 
 
 The polarization vector is expressed in two equivalent forms, one algebraic, and 
one crystallographic. In our example, the space of GM4- distortions is 4-dimensional, 
and four different basis modes of this symmetry were listed above. Any GM4- 
distortion can be expressed as a vector in this 4-dim space, by means of its four 
components with respect to this basis. The output gives these four components: 
 
        (0.1745, 0.7585, -0.2536, -0.5744)  
 
indicating the basis mode corresponding to each of them: (Ba1,1), (Ti1,1), (O1,1) and 
(O1,2), respectively. The vector is normalized:  
 
     0.17452 + 0.75852+ (-0.2536)2 +(-0.5744)2 = 1.00002 
 
The program ist just saying that the GM4- distortion present in the structure can be 
obtained by combining the four basis modes in the form given by this 4-dim normalized 
vector and multiplying the resulting distortion by an amplitude of  0.1649.  
 
 This algebraic form of expressing the irrep distortion can be very useful to 
compare different distorted structures, obtained for instance at different temperatures, 
for similar compounds, or to compare experimental and theoretical (ab-initio) 
structures. In general, one expects the polarization vector of the active/primary irrep 
distortion to be rather invariant to temperature variations, modelizations, or 
composition, while its amplitude may vary considerably. 
 
 We can compare an irrep distortion in two different isomorphic structures by 
comparing separately their amplitudes, and their polarization vectors. The amplitude 
just compares the magnitude of the distortion, while the polarization vector compares 
the type of distortion within a certain symmetry restriction. The polarization vector 
defines a direction in the 4-dimensional vector space of the GM4- distortions. Two 
distortions would be of same type, independently of their magnitude, if the dot product 
of their 4-component vectors is one. The closer to one this dot product is, the more 
similar are the two distortions. 
 
 For instance, the Amm2 structure was also determined at 250K (Kwei et al. 
(1993), and the polarization vector of the GM4- distortion for this structure determined 
with AMPLIMODES is: 
 
     (0.2084, 0.7073, -0.1889, -0.6486) 
  
The similarity of this vector with the one corresponding to the structure at 190K 
discussed until now, can be clearly seen by comparing each component. But a more 
quantitative comparison is just given by their dot product, which is 0.9933. 
 



 The output on each irrep distortion also includes a crystallographic description 
of its polarization vector. For the asymmetric unit of the reference structure, a table is 
given with the correlated atomic displacements (in relative units), which describe the 
normalized polarization vector of the irrep distortion. 
 
 This Table is just obtained by multiplying the components of the polarization 
vector by the corresponding basis modes. Thus, for instance, the atomic displacements 
of the oxygens O1 and O1_2 in the table above can be obtained by just combining the 
two GM4- basis modes for these atoms, each multiplied by the corresponding 
component in the four-dimensional vector: 
 

 
 
 
For the GM5- distortion the output is somehow simpler, since it is a 1-dim subspace: 
 

 
 
For each irrep, the program can provide a virtual structure with only the distortion of 
this symmetry, which has been calculated and is present in the input distorted structure. 
 
 The output of the program for our example can be summarized as follows. The 
Amm2 structure can be understood as the sum of two distortions with symmetry 
properties given by two different irreps.  The amplitudes of the two irrep distortions are 



very different. The correlated atomic displacements corresponding to each them, are 
given by the listed polarization vectors. Schematically we can say that the observed 
Amm2 structure can be described in the following form:  
 

 
 
 
We can represent graphically this mode decomposition as: 
 

 
 
 
In the figures we have represented the effect of each of the two irrep distortions in an 
exaggerated way by increasing arbitrarily their amplitudes. 
 
 Note that the displacements corresponding to the GM4- symmetry include a 
subtle hidden correlation, namely the displacements of the oxygens O1 and O1_2 fulfill 
δyO1+δzO1+δzO1_2 = 0. This implies in the resulting structure a non-crystallographic 
symmetry constraint: yO1 + zO1 + zO1_2 = 0. As the GM5- distortion, that breaks this 
relation, is a secondary marginal distortion with a very small amplitude, this non-
crystallographic relation is approximately maintained by the atomic coordinates of the 
experimental structure. 
 
 Finally, it is important to emphasize that for doing a meaningful symmetry mode 
analysis of a distorted structure with AMPLIMODES is NOT necessary to know a 
specific real parent structure. Starting from the distorted phase one can construct an 



ideal parent structure whose symmetry group is determined by the structural 
pseudosymmetry of the low-symmetry phase, either by hand, from previous knowledge 
of similar compounds, or using computer tools as PSEUDO, also available on the 
Bilbao Crystallographic Server. If the atomic coordinates of the parent high-symmetry 
structure include some values not forced by symmetry, it is sufficient to give them 
reasonable approximate values. The structural differences between the ideal parent 
structure, constructed in such a way, and any other possible parent structure of this 
symmetry are only due to contributions of symmetry modes compatible with the high 
space groups, i.e. the so called totally symmetric modes transforming according to the 
identity irrep. The contributions of the much more important symmetry-breaking 
distortion modes do not depend on the choice of the variable atomic coordinates of the 
parent structure. 
 
Exercise 1: S2Sn2P6 has a monoclinic P21/c phase at high temperatures (J. Sol. State 
Chem. (1992) 96, 294)  and a ferroelectric non-centrosymmetric phase of symmetry Pc 
at low temperatures (Z. Naturf. B. (1974) 29, 312-317 ) : 
 
14 
6.5500 7.4930 11.3157 90.00 124.19 90.00 
5 
Sn    1   4e    -0.2842 0.3692 -0.2431                   
P     1   4e    0.3723 0.3914 -0.0671                    
S     1   4e    0.1362 0.4975 -0.2629                    
S     2   4e    0.21 0.309 0.0328                        
S     3   4e    0.5988 0.1976 -0.057    
 
 
7 
6.513000 7.488000 11.309900 90.000000 124.000000 90.000000 
10 
Sn    1   2a    0.304600 0.385600 0.277000               
Sn    2   2a    0.740900 0.124500 0.777900               
P     1   2a    0.372800 0.860800 0.433600               
P     2   2a    0.626600 0.644700 0.567400               
S     1   2a    0.140700 0.751100 0.239800               
S     2   2a    0.203800 0.946200 0.528800               
S     3   2a    0.602100 0.051700 0.444200               
S     4   2a    0.865200 0.743700 0.764900               
S     5   2a    0.785900 0.563300 0.464700               
S     6   2a    0.402500 0.448000 0.555000 
 
i) Obtain with AMPLIMODES that the ferroelectric structure has two dirtortion modes,  
a primary one that yields the Pc space group, i.e. the order parameter distortion, and a 
secondary one compatible with the parent symmetry.  
ii) Change arbitrarily some of the coordinates of P21/c, but displacing the positions only 
a small amount (below 1 Å). Check that AMPLIMODES gives the same results 
(amplitude and polarization vector) for the symmetry-breaking mode, changing only the 
form of the fully symmetric mode GM1. 
iii) Which atoms are moving more strongly in the transition? Derive the atomic 
positions of the Sn atoms in two virtual Pc structures having only the experimental 
primary ferroelectric mode with an amplitude of 0.1Å and  of 0.2 Å.  One could use 
such virtual structures in an ab-initio calculation to characterize the energy variation of 
the system as a function of the ferroelectric mode. 
 
 



Exercise 2. “Complex” phase of Ga under pressure 
Ga under pressure exhibits a phase with symmetry C2221 and 52 atoms per primitive 
unit cell (see below). It has been reported as a “complex” structure and described in 
terms of some sequence of atomic layers along the c axis (PRL 93, 205502 (2004).  
i) Using the program AMPLIMODES show that the structure can be understood as a 
distorted structure of a simple Fddd structure, with its unit cell having the same a and b 
parameters, and c being 13 times smaller, and with only a single independent Ga atom 
at position 8a (1/8,1/8,1/8). (origin shift of the transformation between the two space 
groups: -1/8 1/8 -3/8).  
ii) Identify the Ga atom in the C2221 structure with the largest displacement with 
respect to the ideal Fddd position. 
iii) From the output identify the prevailing primary mode and its wave vector. 
iv) Check that the two next dominant modes have wave vectors corresponding to a 
second and third harmonic of the primary mode.  
v) If the structure is described with these three first harmonics that have much larger 
amplitudes, how many parameters are required? Compare this number with the number 
of parameters required in a conventional crystallographic description.  
 
GaII structure:  
# space group C2221 
20 
5.976 8.576 35.758 90 90 90 
14  
Ga    1   4b    0.5000 0.1802 0.2500                     
Ga    2   8c    0.6956 0.4684 0.2716                     
Ga    3   8c    0.5804 0.7858 0.2861                     
Ga    4   8c    0.2772 0.5622 0.3081                     
Ga    5   8c    -0.0341 0.7809 0.3292                    
Ga    6   8c    0.8482 0.4567 0.3430                     
Ga    7   8c    0.5632 0.6919 0.3666                     
Ga    8   8c    0.2324 0.4838 0.3851                     
Ga    9   8c    0.6129 0.2914 0.4003                     
Ga    10  8c    0.8276 0.5660 0.4250                     
Ga    11  8c    -0.0030 0.2613 0.4435                    
Ga    12  4a    0.2460 0.0 0.5000                        
Ga    13  8c    0.1052 0.3090 0.5170                     
Ga    14  8c    0.3574 0.5518 0.5409 
 
 
SYSTEMATIC WEAKNESS OF SECONDARY DISTORTIONS 
 
 The case of the Amm2 structure of BaTiO3 is an extreme example of the 
systematic hierarchy that usually happen between primary distortions, associated with 
the active irrep of the symmetry break, and the secondary ones. 
 
 Let us consider as a second example the room-temperature P63cm phase of 
KNiCl3:  
 
185 
11.795 11.795 5.926 90 90 120 
5 



K     1   6c    0.3353 0.3353 0.3294                     
Ni    1   2a    0 0 0                                    
Ni    2   4b    0.333333 0.666667 0.1230                 
Cl    1   6c    0.1598 0 0.2604                          
Cl    2   12d   0.5056 0.1732 0.3852 
 
This structure has the following virtual  P63/mmc parent structure: 
 
194 
6.80985 6.80985 5.926 90 90 120 
3 
Ni    1   2a    0.0 0.0 0.0                              
K     1   2d    0.333333 0.666667 0.75                   
Cl    1   6h    0.16 0.32 0.25 
 
This virtual structure can be obtained for instance using the program PSEUDO of the 
server, or just by looking at the P63/mmc structure of similar compounds. Note that the 
special coordinates 1/3, 2/3 are given with 6 digits. This is important, as in other programs 
of the server, for the program to recognise the special value of the coordinate. 
 
 From the comparison of the multiplicities of the atomic positions, it is 
straightforward to see that the number of fomula unit per primitive unit cell is Z=2 for 
the parent phase, while Z=6 in the non-centrosymmetric phase. This means a triplication 
of the unit cell (ik=3). Using CELLSUB or SUBGROUPGRAPH it is then inmediate to 
obtain the transformation matrix relating both space groups: (a+2b, -2a-b, c; 0 0 0). 
This transformation is only one of a set of possible ones, which are fully equivalent. In 
fact the cell parameters of the virtual parent structure have been chosen to fullfill the 
cell transformation exactly. 
 
 We use then AMPLIMODES to perform the mode decomposition of the P63cm 
structure with the following basic result: 
 

 
 
 It is convenient to analyse this result, having in mind the graph of minimal 
subgroups connecting the high and low symmetries: 
   



                                          
 

Figure 2: Graph of maximal subgroups connecting the parent and low-
symmetry space groups of KNiCl3 

 
 One can see that there is a primary active irrep with wave vector (1/3,1/3,0) and 
label K3 and two secondary active irreps, associated with two intermediate isotropy 
subgroups. The K1 distortion also corresponds to a wave vector (1/3,1/3,0), so that it 
produces the same cell multiplication as K3, but maintains the point group of the parent 
phase, while the second distortion, GM2- at the Brillouin zone centre, keeps the parent 
lattice and is a polar mode, which should be responsible of some spontaneous 
polarization in the distorted phase.   
 The mode decomposition provided by AMPLIMODES shows the extreme 
prevailing role of the primary distortion corresponding the irrep K3. From a total 
amplitude of 1.72 Å of the total distortion, the contribution of the K3 component is 1.70 
Å. This K3 distortion involves only 2 of the 9 structural degrees of freedom present in 
the P63cm structure. The much larger amplitude of the K3 distortion is a clear indication 
that it can be identified with the primary order parameter of this phase, and it can be 
further inferred that K1 and GM2- are induced secondary effects. The material is then a 
ferroelectric of improper character, the spontaneous polarization (of symmetry GM2-) 
being an induced secondary effect.  
 
 The polarization vector of the K3 dominant distortion is given by  
AMPLIMODES as: 
 
 

                                    
 
 
This table only adquires a full meaning when combined with the Table defining the 
reference structure and the asymmetric unit chosen by the program: 

 



Reference Structure: 
185 
11.795007 11.795007 5.926000 90.000000 90.000000 120.000000  
5 
Ni 1 2a 0.000000 0.000000 0.000000 
Ni 1_2 4b 0.666667 0.333333 0.000000 
K 1 6c 0.333334 0.000000 0.750000 
Cl 1 6c 0.160000 0.000000 0.250000 
Cl 1_2 12d 0.826667 0.333333 0.250000 

 
This list defines the atoms in the Table that describes the polarization vector of the K3 
mode. The splitted Ni1 and Ni1_2 atoms within the asymmetric unit of the distorted 
structure move in opposite directions along z, with a ½ relation among its 
displacements. The same relation exists among the displacements of the two Cl sites. 
These correlations are forced by the K3 symmetry. But the table shows an additional 
correlation between the displacements of the Cl and Ni sites, namely the displacements 
of Ni1 and Cl1 are practically the same, and this is not forced by symmetry. 
 Combining AMPLIMODES with FULLPROF (J. Rodriguez-Carvajal, 
http://www.ill.eu/sites/fullprof/) one can obtain in a straighforward manner a graphical 
scheme of this K3 distortion (see below for a more detailed explanation of the combined 
use of AMPLIMODES and FULLPROF): 

 
 
Figure 3: Scheme of the K3 distortion present in KNiCl3 

 
 The correlation of the Ni and Cl displacements implies that the K3 distortion 
involves global displacements of the NiCl3 columns as rigid units. This feature of the 
primary K3 distortion is forced neither by symmetry, nor by a strong rigidity of the Ni 
positions within the octahedra. In the observed structure in fact the Ni atoms clearly 
displace relatively to their surrounding Cl6 octahedra, and approach along the c axis one 
of the two Cl3 triangles forming the octahedron. But these Ni displacements are not part 
of the K3 distortion; they follow a pattern according to the GM2- symmetry. The -½ 
relation between the displacements of the Cl1_2,Ni1_2 atoms and the Cl1 and Ni1 
atoms (this relation indeed forced by the K3 symmetry) yields the antiphase shift of the 
NiCl3 octahedral columns within the P63cm unit cell, with respect to those on the 
vertices, causing the triplication of the cell. It important to note that the secondary 
modes break in general these strict K3-correlations of the displacements between atomic 



sites, which are crystallographically independent. For instance the GM2- mode 
introduces displacements with completely different correlations: 
 
 
 

 
Figure 4: Scheme of the GM2- distortion present in KNiCl3 

 
 
But the prevailing role of the K3 distortion makes that its atomic correlations are also 
approximately fulfilled by the total distortion, despite the presence of the secondary 
distortions. Hence the structure has approximate non-crystallographic constraints 
coming from the physical mechanism, which estabilizes the phase. 
 
Exercise 3:  Constrained structural model of SrMnO3 

A C2221 structural model for SrMnO3 has been recently proposed (Phys. Rev. B  
75 (2007) 104417). The structure is listed below.  
i) Decompose this structure into modes with respect to the structure of higher 
symmetry, P63/mmc, observed at 350K (also listed below) and check that the structure 
has an active irrep and a strong primary distortion with this symmetry, and that two 
secondary distortions have amplitudes, which are practically negligible.  
ii) Comparing the atomic coordinates of the model with the general form of the 
corresponding Wyckoff positions, check that several refinable coordinates have been 
restricted a priori in the model. How many degrees of freedom have been in practice 
used in the refinement compared with a full conventional refinement under the C2221 
space group? How many degrees of freedom would have been used in the refinement if 
the secondary modes would have been set a priori to zero. 
iii) By checking the form of the polarization vector of the primary mode, derive that this 
model has also included an unjustified restriction on the form of the primary distortion, 
which is not forced by symmetry considerations 
 
SrMnO3 at 350K: 
194 
5.461 5.461 9.093 90 90 120 
5 



Sr    1   2a    0 0 0                                    
Sr    2   2c    0.333333 0.666667 0.25                   
Mn    1   4f    0.3333333 0.666667 0.61264               
O     1   6g    0.5 0 0                                  
O     2   6h    -0.81858 0.81858 0.75     

 
SrMnO3 at 100K: 
20 
5.4435 9.4122 9.0630 
7 
Sr    1   4a    0.0096 0 0                               
Sr    2   4b    0 0.333333 0.25                          
Mn    1   8c    -0.0123 0.3333333 0.6131                 
O     1   4a    0.5212 0 0                               
O     2   8c    0.7712 0.25 0.0085                       
O     3   4b    0 -0.1798 0.25                           
O     4   8c    0.2696 0.0899 0.2412       
 
Exercise 4: Hexagonal BaMnO3 
              BaMnO3 has been determined at 1.7K and at 80K (Chem. Mater. 12 (2000) 
831-838) with space group P63cm (see structures below).  These structures are supposed 
to be distorted structures from an ideal P63/mmc ABX3 structure with atoms at positions 
A 2a, B 2d and O 6h (x, 2x, 0.25), with x about 0.15. (It is a similar situation to the one 
of the example of  KNiCl3 discussed above). 
i) Draw with SUBGROUPGRAPH the graph of maximal subgroups relating both 
symmetries.  
ii) Descompose with AMPLIMODES the two structures into symmetry-adapted modes 
with respect to the ideal parent phase. Identify the primary dominant distortion. Try to 
understand and characterize this dominant mode.  
iii) How many positional atomic parameters are necessary to refine these structures and 
how many are required to describe the dominant primary distortion? 
iv) Compare the mode decomposition of the two structures corresponding to different 
temperatures. First, compare the total amplitudes for each irrep distortion mode, and 
check if the result is plausible.  Second compare the polarization vectors of each 
distortion mode, by inspection, and by calculating their dot products. Detect that there is 
some inconsistency in the models for one of the secondary modes (the atomic 
displacements are more or less opposite in the two models, relative to those of the 
primary mode). So probably one of the structures is wrong (corresponding to a false 
minimum in the refinement). 
v) Compare the mode decomposition with the one of the example KNiCl3 discussed 
above. 
 
BaMnO3 at 1.7K: 
185 
9.8467 9.8467 4.8075 90.00 90.00 120.00 
5 
Ba    1   6c    0.339 0.339 0.230                        
Mn    1   2a    0 0 0                                    
Mn    2   4b    0.666667 0.333333 0.952                  
O     1   6c    0 0.1492 0.248                           
O     2   12d   0.6644 0.4824 0.200      
 
BaMnO3 at 80K: 
185 
9.8467 9.8467 4.8075 90.00 90.00 120.00 
5 



Ba    1   6c    0.332 0.332 0.238                        
Mn    1   2a    0 0 0                                    
Mn    2   4b    0.666667 0.333333 0.963                  
O     1   6c    0 0.150 0.250                            
O     2   12d   0.667 0.484 0.212   
 

 
AMPLIMODES COMBINED WITH FULLPROF 
 
      A symmetry mode decomposition can be done not only a posteriori, i.e. once the 
low symmetry structure is known, but may be very useful for the actual process of 
determining the structure. The expected hierarchy among the distortions of different 
symmetry and the essential invariance of their polarization vectors can make very 
advantageous a direct refinement of the amplitudes of a basis of symmetry modes, as 
collective coordinates, instead of the usual individual atomic coordinates. In 
collaboration with J. Rodriguez-Carvajal we have included in AMPLIMODES an 
option, which creates a special output to be directly used by FullProf (J. Rodriguez-
Carvajal, http://www.ill.eu/sites/fullprof/), for doing such type of refinement.  By this 
means, FullProf can now use in the refinement process the amplitudes of the basis of 
symmetry modes defined by AMPLIMODES as refinable positional parameters, 
alternative to the atomic coordinates.  
 
  This option can also be used to generate, using FullProf, figures of the distortion 
modes, and of the basis of symmetry-adapted modes, in general. 
 
 The FullProf option can be chosen in the starting menu, and the program 
completely changes its output with respect to what has been explained above. 
Concerning the input, the inclusion of a specific low-symmetry distorted structure 
becomes optional.  
 
 In this option, AMPLIMODES creates a so-called pcr file to be used as input for 
FullProf. This pcr file, by default, is intended to be an input file for simulating with 
FullProf a neutron powder diffraction diagram. If FullProf is executed using this pcr 
file, not only the simulated diffraction diagram, but also  .fst files are created that can be 
read by FullProf Studio to represent graphically the different irrep distortions present in 
the distorted structure.  
 
 The pcr file created by AMPLIMODES can be easily changed by the user to 
become the starting pcr file for a refinement of diffraction data, with the amplitudes of 
the basis of symmetry-adapted modes defined by AMPLIMODES as refinable 
parameters, instead of the conventional atomic coordinates. 
 
 Let us take again the example of the Amm2 phase of BaTiO3 discussed above. 
AMPLIMODES under the FullProf option gives two alternative outputs. One is a set of 
text lines which can be introduced by copy/paste in a working pcr file of the user, to 
allow the direct refinement of the amplitudes of basis of symmetry-modes defined by 
AMPLIMODES: 
 



 
 
The first lines define the reference structure. Its atomic coordinates are set constant, and 
will not be refined. Then, the set of 5 symmetry modes defined by AMPLIMODES are 
listed. The modes are numbered from 1 to 5, and the first column of each line indicates 
to which mode belongs the triad of displacements listed in this line. For instance, the 
mode GM4- labelled (O1 1) in the previous output is here mode 3, and the 
displacements for atoms O1 and O1_2 corresponding to this mode are given in two 
consecutive rows headed by the number 3. The number of lines necessary to define all 
basis modes using this format is 8, which is the variable V_MODES. A_MODES is the 
number of basis symmetry modes (5 in our example). It should coincide with the 
number of refinable positional parameters in a conventional treatment. The digit 2 in the 
same row controls the output of .fst graphic files (consult the webpage of Fullprof for 
other graphical options). 
 
 The last lines introduce, as starting model for the eventual refinement, the 
amplitudes of the 5 basis symmetry modes that have calculated by AMPLIMODES by 
decomposing the input low-symmetry structure. If no low-symmetry structure is 
included in the input, these amplitudes would appear with null values, and the starting 
model would be the reference structure. The value 1.00  after the 5 amplitudes sets them 
by default as refinable parameters.   
 
 Compared with the output of AMPLIMODES in its normal option, the 
amplitudes for the basis modes listed here are obtained by multiplying the 
corresponding component of the irrep polarization vector by the amplitude of this irrep 
distortion. But one should take into account that in the FullProf option no origin shift is 
introduced for polar structures. Therefore, for a comparison, the origin shift should be 
avoided in the normal option by introducing (0,0,0) as polar direction. 
 
Polar Structures: In the FullProf option, AMPLIMODES does not introduce an origin 
shift of the low symmetry polar structure, since the amplitudes of the modes are only 



intended as starting values for a refinement. This is the reason why the amplitude of the 
GM4- mode for Ba1 is zero, since in the input structure its z-coordinate is fixed to cero. 
Similarly as it happens with a conventional refinement, in a direct refinement of the 
mode amplitudes, the amplitude of either mode 1 or mode 2, which involve only atomic 
displacements along z, should be fixed, while the other amplitudes are refined.  
 
 
As an alternative, AMPLIMODES can create a full pcr file for the simulation of a 
neutron powder diffraction diagram: 
 

 



 
Running FullProf with this pcr file, apart from creating the simulated diffraction 
diagram, produces a .fst file for each irrep distortion present in the structure according 
to the mode amplitudes given in the .pcr file.  These .fst files can be read by FullProf 
Studio to represent graphically the distortion modes. 
 
Note that the cell parameters in this .pcr file are those of the reference high symmetry 
structure in the low symmetry setting. For FullProf refinements you will have to change 
by hand these cell parameters to introduce the experimental values of the low-symmetry 
phase. Note however that, in this case, the symmetry and orthogonal properties of the 
modes will in general be broken in a degree that depends on the magnitude of the strain 
between the two cells. This will be not a problem for refinements (except for extreme 
unrealistic strains), but a proper visualization with FullProf Studio and a correct 
interpretation of the symmetry modes will require the use of the reference unit cell 
provided in the .pcr file provided by AMPLIMODES. 
 
A final caution remark: If the reference unit cell is very large the default values used for 
the pcr file may fail and FullProf may crash. This problem can usually be palliated by 
changing the U, V, … peak profile parameters, making the peaks thinner. 
 
Exercise 5:  
i) Run the default example of AMPLIMODES for the Amm2 structure of BaTiO3, but 
making the program not to shift the origin. Inspecting the output of this run, check that 
the values of the amplitudes for the basis modes in the pcr file above are correct. 
ii) If your are familiar with FullProf, create the pcr file for this default example, and use 
it to obtain with FullProf Studio a graphical representation of the GM4- and GM5- 
distortions in the Amm2 phase of BaTiO3. 
 


