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1.7.1. Introduction

The Bilbao Crystallographic Server, http://www.cryst.ehu.es, is a

web site of crystallographic databases and programs. It can be

used free of charge from any computer with a web browser via

the Internet.

The server is built on a core of databases and contains different

shells. The set of databases includes data from the 5th edition of

International Tables for Crystallography Volume A, Space-Group

Symmetry (2005) (hereafter referred to as IT A) and the data for

maximal subgroups of space groups as listed in Part 2 of this

volume (hereafter referred to as IT A1). Access is also provided

to the crystallographic data for the subperiodic layer and

rod groups [International Tables for Crystallography, Volume

E, Subperiodic Groups (2002)] and their maximal subgroups.

A database on incommensurate structures incorporating modu-

lated structures and composites, and a k-vector database with

Brillouin-zone figures and classification tables of the wavevectors

for space groups are also available.

Communication with the databases is achieved by simple

retrieval tools. They allow access to the information on space

groups or subperiodic groups in different types of formats:

HTML, text ASCII or XML. The next shell includes programs

related to group–subgroup relations of space groups. These

programs use the retrieval tools for accessing the necessary

space-group information and apply group-theoretical algo-

rithms in order to obtain specific results which are not

available in the databases. There follows a shell with programs

on representation theory of space groups and point groups

and further useful symmetry information. Parallel to the

crystallographic software, a shell with programs facilitating the

study of specific problems related to solid-state physics,

structural chemistry and crystallography has also been devel-

oped.

The server has been operating since 1998, and new programs

and applications are being added (Kroumova, Perez-Mato,

Aroyo et al., 1998; Aroyo, Perez-Mato et al., 2006; Aroyo, Kirov et

al., 2006). The aim of the present chapter is to report on the

different databases and programs of the server related to the

subject of this volume. Parts of these databases and programs

have already been described in Aroyo, Perez-Mato et al. (2006),

and here we follow closely that presentation. The chapter is

completed by the description of the new developments up to

2007.

The relevant databases and retrieval tools that access the

stored symmetry information are presented in Section 1.7.2.

The discussion of the accompanying applications is focused on

the crystallographic computing programs related to group–

subgroup and group–supergroup relations between space groups

(Section 1.7.3). The program for the analysis of the relations of

the Wyckoff positions for a group–subgroup pair of space

groups is presented in Section 1.7.4. The underlying group-

theoretical background of the programs is briefly explained

and details of the necessary input data and the output are

given. The use of the programs is demonstrated by illustrative

examples.

1.7.2. Databases and retrieval tools

The databases form the core of the Bilbao Crystallographic

Server and the information stored in them is used by all computer

programs available on the server. The following description is

restricted to the databases related to the symmetry relations

between space groups; these are the databases that include space-

group data from IT A and subgroup data from IT A1.

1.7.2.1. Space-group data

The programs and databases of the Bilbao Crystallographic

Server use specific settings of space groups (hereafter referred to

as standard or default settings) that coincide with the conven-

tional space-group descriptions found in IT A. For space groups

with more than one description in IT A, the following settings are

chosen as standard: unique axis b setting, cell choice 1 for

monoclinic groups; hexagonal axes setting for rhombohedral

groups; and origin choice 2 (origin at 1) for the centrosymmetric

groups listed with respect to two origins in IT A.

The space-group database includes the following symmetry

information:

(i) The generators and the representatives of the general posi-

tion of each space group specified by its IT A number and

Hermann–Mauguin symbol;

(ii) The special Wyckoff positions including the Wyckoff letter,

Wyckoff multiplicity, the site-symmetry group and the set of

coset representatives, as given in IT A;

(iii) The reflection conditions including the general and special

conditions;

(iv) The affine and Euclidean normalizers of the space groups

(cf. IT A, Part 15). They are described by sets of additional

symmetry operations that generate the normalizers succes-

sively from the space groups. The database includes the

additional generators of the Euclidean normalizers for the

general-cell metrics as listed in Tables 15.2.1.3 and 15.2.1.4 of

IT A. These Euclidean normalizers are also affine normal-

izers for all cubic, hexagonal, trigonal, tetragonal and part of

the orthorhombic space-group types. For the rest of the

orthorhombic space groups, the type of the affine normalizer

coincides with the highest-symmetry Euclidean normalizer

of that space group and the corresponding additional

generators form part of the database (cf. Table 15.2.1.3 of IT

A). The affine normalizers of triclinic and monoclinic groups

are not isomorphic to groups of motions and they are not

included in the normalizer database of the Bilbao Crystal-

lographic Server.

(v) The assignment of Wyckoff positions to Wyckoff sets as

found in Table 14.2.3.2 of IT A.

The data from the databases can be accessed using the simple

retrieval tools, which use as input the number of the space group

(IT A numbers). It is also possible to select the group from a table

of IT A numbers and Hermann–Mauguin symbols. The output of

the program GENPOS contains a list of the generators or the

general positions and provides the possibility to obtain the same

data in different settings either by specifying the transformation
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matrix to the new basis or selecting one of the 530 settings listed

in Table 4.3.2.1 of IT A. A list of the Wyckoff positions for a given

space group in different settings can be obtained using the

program WYCKPOS. The Wyckoff-position representatives for

the nonstandard settings of the space groups are specified by the

transformed coordinates of the representatives of the corre-

sponding default settings. The assignments of the Wyckoff posi-

tions to Wyckoff sets are retrieved by the program WYCKSETS.

This program also lists a set of coset representatives of

the decompositions of the normalizers with respect to the

space groups and the transformation of the Wyckoff positions

under the action of these coset representatives. The programs

NORMALIZER and HKLCOND give access to the data for

normalizers and reflection conditions.

1.7.2.2. Database on maximal subgroups

1.7.2.2.1. Maximal subgroups of indices 2, 3 and 4 of the space
groups

All maximal non-isomorphic subgroups and maximal iso-

morphic subgroups of indices 2, 3 and 4 of each space group can

be retrieved from the database using the program MAXSUB.

Each subgroupH is specified by its IT A number, the index in the

group G and the transformation matrix–column pair (P, p) that

relates the bases of H and G:

ða0; b0; c0ÞH ¼ ða; b; cÞGP: ð1:7:2:1Þ

The column p = (p1, p2, p3) of coordinates of the origin OH of

H is referred to the coordinate system of G.

It is important to note that, in contrast to the data listed in IT

A1, the matrix–column pairs (P, p) used by the programs of the

server transform the standard basis ða; b; cÞG of G to the standard

basis ofH (see Section 2.1.2.5 for the special rules for the settings

of the subgroups used in IT A1). The different maximal

subgroups are distributed in classes of conjugate subgroups. For

certain applications it is necessary to represent the subgroups H

as subsets of the elements of G. This is achieved by an option in

MAXSUB which transforms the general-position representatives

of H by the corresponding matrix–column pair (P, p)�1 to the

coordinate system of G. In addition, one can obtain the splittings

of all Wyckoff positions of G to those of H.

1.7.2.2.2. Maximal isomorphic subgroups

Maximal subgroups of index higher than 4 have indices p, p2 or

p3, where p is a prime. They are isomorphic subgroups and are

infinite in number. In IT A1, the isomorphic subgroups are listed

as members of series under the heading ‘Series of maximal

isomorphic subgroups’. In addition, the isomorphic subgroups of

indices 2, 3 and 4 are listed individually. The program SERIES

provides access to the database of maximal isomorphic subgroups

on the Bilbao Crystallographic Server. Apart from the para-

metric IT A1 descriptions of the series, its output provides the

individual listings of all maximal isomorphic subgroups of indices

as high as 27 for all space groups, except for the cubic ones where

the maximum index is 125. The format and content of the

subgroup data are similar to those of the MAXSUB access tool.

In addition, there is a special tool (under ‘define a maximal index’

on the SERIES web form) that permits the online generation of

maximal isomorphic subgroups of any index up to 131 for all

space groups. [Note that these data are only generated online

and do not form part of the (static) database of isomorphic

subgroups.]

1.7.3. Group–subgroup and group–supergroup relations between
space groups

1.7.3.1. Subgroups of space groups

If two space groups G and H form a group–subgroup pair

G > H, it is always possible to represent their relation by a chain

of intermediate maximal subgroups Zk: G > Z1 > . . . > Zn ¼ H.

For a specified index ofH in G there are, in general, a number of

possible chains relating both groups, and a number of different

subgroupsHj <G isomorphic toH. We have developed two basic

tools for the analysis of the group–subgroup relations between

space groups: SUBGROUPGRAPH (Ivantchev et al., 2000) and

HERMANN (Capillas, 2006). Given the space-group types G and

H and an index [i], both programs determine all different

subgroupsHj of G with the given index and their distribution into

classes of conjugate subgroups with respect to G. Owing to its

importance in a number of group–subgroup problems, the

program COSETS is included as an independent application. It

performs the decomposition of a space group in cosets with

respect to one of its subgroups. Apart from these basic tools,

there are two complementary programs which are useful in

specific crystallographic problems that involve group–subgroup

relations between space groups. The program CELLSUB calcu-

lates the subgroups of a space group for a given multiple of the

unit cell. The common subgroups of two or three space groups

are calculated by the program COMMONSUBS.

1.7.3.1.1. The program SUBGROUPGRAPH

This program is based on the data for the maximal subgroups

of index 2, 3 and 4 of the space groups of IT A1. These data are

transformed into a graph with 230 nodes corresponding to the

230 space-group types. If two nodes in the graph are connected by

an edge, the corresponding space groups form a group–maximal

subgroup pair. Each one of these pairs is characterized by a

group–subgroup index. The different maximal subgroups

of the same space-group type are distinguished by corresponding

matrix–column pairs (P, p) which give the relations between

the standard coordinate systems of the group and the subgroup.

The index and the set of transformation matrices are

considered as attributes of the edge connecting the group with

the subgroup.

The specification of the group–subgroup pair G > H leads to a

reduction of the total graph to a subgraph with G as the top node

andH as the bottom node, see Example 1.7.3.1.1 at the end of this

section. In addition, the G > H subgraph, referred to as the

general G > H graph, contains all possible groups Zk which

appear as intermediate maximal subgroups between G and H. It

is important to note that in the general G > H graphs the space-

group symbols indicate space-group types, i.e. all space groups

belonging to the same space-group type are represented by one

node on the graph. Such graphs are called contracted. The

contracted graphs have to be distinguished from the complete

graphs where all space groups occurring in a group–subgroup

graph are indicated by different space-group nodes.

The number of the nodes in the general G > H graph may be

further reduced if the index of H in G is specified. The subgraph

obtained is again of the contracted type.

The comparison of complete graphs and contracted

graphs shows that the use of contracted graphs for the analysis

of specific group–subgroup relations G > Hj can be very mis-

leading (see Example 1.7.3.1.1, Fig. 1.7.3.2 and Fig. 1.7.3.3). The

complete graphs produced by SUBGROUPGRAPH are equal

for subgroups of a conjugacy class; the different orientations and/
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or origin shifts of the conjugate subgroups Hs are manifested by

the different transformation matrices ðP; pÞs listed by the

program.

Different chains of maximal subgroups for the group–

subgroup pair G > H are obtained following the possible paths

connecting the top of the graph (the group G) with the bottom

(the group H). Each group–maximal subgroup pair determines

one step of this chain. The index of H in G equals the product of

the indices for each one of the intermediate edges. The trans-

formation matrices relating the standard bases of G and H are

obtained by multiplying the matrices of each step of the chain.

Thus, for each pair of group–subgroup types with a given index

there is a set of transformation matrices (P, p)j, where each

matrix corresponds to a subgroup Hj isomorphic to H. Some of

these subgroups could coincide. To find the different Hj of G, the

program transforms the elements of the subgroup H to the basis

of the group G using the different matrices (P, p)j and compares

the elements of the subgroupsHj in the basis of G. Two subgroups

that are characterized by different transformation matrices are

considered identical if their elements, transformed to the basis of

the group G, coincide.

The different subgroups Hj are distributed into classes of

conjugate subgroups with respect to G by checking directly their

conjugation relations with elements of G.

Input to SUBGROUPGRAPH:

(i) As input, the program needs the specification of the space

groups G andH. The groups G andH can be defined either by

their sequential IT A numbers or by their Hermann–

Mauguin symbols. The default settings of all space groups are

used.

(ii) If the index of H in G is specified, then the program deter-

mines the chains of maximal subgroups relating these groups

and classifies the isomorphic subgroups Hj into classes of

conjugate subgroups.

Output of SUBGROUPGRAPH:

The output is illustrated by Example 1.7.3.1.1.

(i) Group–subgroup pairs with non-specified indices.

When the index of the subgroupH in G is not specified, the

program returns a list of the possible intermediate space

groups Zk relating G andH. The list is given as a table whose

rows correspond to the intermediate space groups Zk,

specified by their Hermann–Mauguin symbols. In addition,

the table contains the maximal subgroups of Zk, specified by

their IT A numbers and the corresponding indices given in

brackets.

This list is also represented as a contracted graph. Each

space-group type in the list corresponds to one node in the

graph, and the maximal subgroups are the neighbours

(successors) of this node. Group–subgroup relations occur-

ring in both directions are represented by nodes connected

by two edges with opposite arrows. Maximal isomorphic

subgroups are shown by loop edges (nodes connected to

themselves), see Fig. 1.7.3.1.

(ii) Group–subgroup pairs with specified indices. As an example,

see Table 1.7.3.1 and Figs. 1.7.3.2 and 1.7.3.3.

(a) Chains of maximal subgroups.

If the index of the subgroup H in the group G is

specified, the program returns a list of all possible chains

of maximal subgroups relating G and H with this index.

(The program has no access to data for maximal iso-

morphic subgroups with indices higher than four.) The

different transformation matrices and a link to a list of

these matrices are given for each of the possible chains.

The graphical representation contains the inter-

mediate groups that connect G and H with the specified

index. This graph is a subgraph of the general graph of

maximal subgroups with unspecified index and is also of

the contracted type.

(b) Classification of the different subgroups Hj of G.

Once the index of H in G is given, the different

subgroupsHj of that index are calculated and distributed

into classes of conjugate subgroups of G. The subgroups

of a conjugacy class form a block where each subgroup is

specified by the corresponding transformation matrix–

column pair ðP; pÞj that relates the standard bases of G

andHj. There is also a link to a list of the elements of the

subgroups transformed to the basis of the group G, which

allows the identification of those elements of G that are

retained in the subgroup. The list of transformation

matrices that give the same (identical) subgroup is

accessible under a separate link (see Table 1.7.3.1).

The graph contains the intermediate space groups Zk

for the pair G>
i
H but contrary to the graph of the

previous step, the different isomorphic subgroups are

represented by different nodes, i.e. the graph is a

complete one. All isomorphic subgroups Hj are given at

the bottom of the graph. Their labels are formed by the

short Hermann–Mauguin symbol of the subgroup

followed by a number given in parentheses which speci-

fies the class of conjugate subgroups to which the sub-

group Hj belongs.

Note that for group–subgroup pairs with high indices,

where a lot of intermediate maximal subgroups occur, the

resulting complete graph with all subgroups Hj can be

very complicated and difficult to overview. Alternatively,

a simpler graph associated with a single specific subgroup

Hj can also be obtained (the graphs are the same for all

subgroups within a conjugacy class).

Example 1.7.3.1.1

Consider the group–subgroup relations between the groups

G ¼ P41212, No. 92, andH ¼ P21, No. 4. If no index is specified

then the graph of maximal subgroups that relates P41212 and

P21 is represented as a table indicating the space-group types

of the possible intermediate space groups Zk and the

corresponding indices. The contracted general P41212 > P21
graph is shown in Fig. 1.7.3.1. Two edges with opposite arrows

between a group–subgroup pair correspond to group–

subgroup relations in both directions, e.g. the pair P41 and

P43.
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Table 1.7.3.1. Group–subgroup relations for P41212 (No. 92) > P21

(No. 4), index 4

There are three different subgroups Hj ¼ ðP21Þj of P41212 distributed into two
classes of conjugate subgroups. The possible chains of maximal subgroups and
the corresponding matrices (P, p)j (written in concise form) are also shown. (Note
that the standard setting for P21 is the unique axis b setting.) The different
transformation matrices for the subgroup ðP21Þ3 correspond to the different
group–subgroup chains that relate the same subgroup to P41212, cf. Fig. 1.7.3.3.

Class Hj Chains (P, p)j

Class 1 ðP21Þ1 ¼ P21 ½010� P41212 > P212121 > P21 a; b; c; 14 0
5
8

ðP21Þ2 ¼ P21 ½100� P41212 > P212121 > P21 c; a; b; 14
1
4
3
8

Class 2 ðP21Þ3 ¼ P21 ½001� P41212 > P212121 > P21 b; c; a; 12 0
3
8

P41212 > P41 > P21 b; c; a; 0 1
2 0

P41212 > C2221 > P21 a; c;�b; 0 0 1
4
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Fig. 1.7.3.1. General contracted graph for P41212 (No. 92) > P21 (No. 4) as given by the program SUBGROUPGRAPH. The nodes of the graph
correspond to the space-group types that can appear as intermediate groups in the chain of the group–subgroup pair P41212 > P21. Each edge of the
graph corresponds to a maximal subgroup pair of the indicated index [i]. Isomorphic subgroups (of indices 2 and 3) are shown as loops.

Fig. 1.7.3.2. Contracted graph for the pair of space groups P41212 (No.
92) > P21 (No. 4), index 4, as given by the program SUBGROUP-
GRAPH. The nodes of the graph correspond to space-group types. The
directed edges represent the possible group–maximal subgroup pairs.

Fig. 1.7.3.3. Complete graph for P41212 (No. 92) > P21 (No. 4), index 4,
as given by the program SUBGROUPGRAPH. The nodes represent
space groups and not space-group types. The three subgroups of the
type P21 are distributed into two classes of conjugate subgroups, which
are indicated in parentheses after the space-group symbol. The two
subgroups P21ð1Þ with twofold screw axes along ½100� and ½010� of P41212
belong to the same conjugacy class. Their complete single graphs look
alike and differ considerably from the graph of P21ð2Þ. The latter
corresponds to the subgroup whose twofold screw axes point along the
tetragonal axes.
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When the index [i] of the subgroup in the group is specified,

the resultant graph is reduced to the chains of maximal

subgroups that correspond to the value of [i]. For example, in

Fig. 1.7.3.2 the contracted graph P41212 > P21 of index 4 is

shown. The data in Table 1.7.3.1 and the complete graph shown

in Fig. 1.7.3.3 indicate that there are three different P21
subgroups of P41212 > P21 of index 4, distributed over two

classes of conjugate subgroups. The three different subgroups

of space-group type P21 of index 4 correspond to three sets of

twofold screw axes in P41212: those pointing along [100] and

[010] of the tetragonal cell give rise to the two conjugate

subgroups, and the third one (forming a class of conjugate

subgroups by itself) is along the tetragonal axis. Their full

Hermann–Mauguin symbols are P2111, P1211 and P1121. The

corresponding transformations are listed in Table 1.7.3.1. The

complete graph P41212 > P21, index 4 (Fig. 1.7.3.3) also shows

that three different maximal subgroup chains end at the same

P21ðP1121Þ subgroup, each of them specified by a different

transformation matrix ðP; pÞ (Table 1.7.3.1). The three differ-

ent transformation matrices are related by elements of the

normalizer of the subgroup.

1.7.3.1.2. The program HERMANN

The method of calculation of the subgroups and their distri-

bution into classes of conjugate subgroups used in

SUBGROUPGRAPH is not adequate for group–subgroup pairs

of indices greater than 50. The program HERMANN has been

developed to treat the cases of such considerable reduction of

symmetry. It is a modification of SUBGROUPGRAPH and is

based on Hermann’s theorem (cf. Lemma 1.2.8.1.1). Consider a

group–subgroup pair G > H, withH a general subgroup of index

[i]. The existence and the uniqueness of Hermann’s group M,

G >M > H, implies the possibility of factorizing the group–

subgroup chain G > H and its index [i] into two subchains of

smaller indices with ½i� ¼ ½iP� � ½iL�. The first one, the so-

called translationengleiche or t-chain G>
iP
M, is related to the

reduction of the point-group symmetry in the subgroup. The

second one is known as the klassengleiche or k-chainM>
iL
H, and

it takes account of the loss of translations. (The ½iL� index is equal

to the cell-multiplication factor of the volumes of the primitive

cells of the lattices.)

The program HERMANN calculates all subgroups Hj of G of

index [i] and distributes them into conjugacy classes with respect

to G. In addition, the program indicates the corresponding

Hermann groups. It is important to note that for a given pair of

space-group types G>
i
H and index [i], Hermann groups M of

different space-group types can exist that belong to the same

crystal class, cf. Example 1.7.3.1.2. However, there is a unique

Hermann group for any group–subgroup pair of specific space

groups.

The space-group types of the possible Hermann groupsM for

the pair G>
i
H are determined by the following conditions: (i) the

groupsM are subgroups of G of index ½iP� where iP is equal to the

ratio of the point-group orders of G and H; (ii) the point groups

ofM coincide with the point group ofH, PH; (iii) the groupsM

have subgroupsH of index ½iL� ¼ ½i�=½iP�. The complete set of the

subgroups Hj of G is calculated by the consecutive application of

SUBGROUPGRAPH to the two subchains G>
iP
M andM>

iL
H.

At this stage, the subgroups Hj are distributed into conjugacy

classes with respect to the corresponding Hermann groups only.

Finally, the program determines the conjugacy classes of Hj with

respect to G: these either coincide with conjugacy classes relative

to M, or some of the classes relative to M merge together to

form conjugacy classes with respect to G.

Input to HERMANN:

The data needed are the space-group types of G and H and

their index.

Output of HERMANN:

Essentially, the output of the program is a list of all subgroups

Hj of G of index ½i� ¼ ½iP� � ½iL�, distributed into conjugacy classes

with respect to G. The classes of conjugate subgroups are listed in

different blocks depending on the space-group type of the

Hermann groups M<
iP
G. The subgroups Hj in each class are

listed explicitly and are distinguished by the transformation

matrices ðP; pÞj. Options for transforming the elements of Hj to

the basis of G and for decomposing G in right cosets with respect

to Hj are available. In addition, it is possible to calculate the

splittings of the Wyckoff positions of G relative toHj (cf. Section

1.7.4, program WYCKSPLIT). There is an optional link to the

program SYMMODES, which carries out a symmetry analysis of

the possible distortions compatible with Hj for the symmetry

break G�!Hj.

Example 1.7.3.1.2

Consider the pair of group–subgroup types P422 (No. 89) >

P21 (No. 4), index [i] = 8 (Fig. 1.7.3.4). The factorization of the

index into ½iP� ¼ 4 and ½iL� ¼ 2 follows from the ratio of the

orders of the point groups of G and H. The two space-

group types P2, No. 3, and C2, No. 5, satisfy the conditions for

Hermann subgroups for the pair P422 >
i¼8

P21. There are three

P2 Hermann subgroups of G distributed in two conjugacy

classes: the subgroups with twofold axes along [100] and [010]

form a conjugacy class, and P2½001�ðP2Þ is a normal subgroup in

P422. The two C2 Hermann subgroups with twofold axes along

[110] and ½110� form a single conjugacy class. Each Hermann

subgroup has just one normal subgroup of P21 type of index

½iL� ¼ 2. Altogether there are five different P21 subgroups of

P422 of index [i] = 8, distributed in three conjugacy classes,

following the conjugacy relationships of the corresponding

Hermann groups.
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Fig. 1.7.3.4. Group–subgroup graph for P422 (No. 89) > P21 (No. 4),
index 8. The nodes represent space groups and not space-group types.
The directional symbols [100] etc. state the orientations of the monoclinic
axes referred to the basis of P422. Horizontal lines connect subgroups
conjugate in P422. There are two space-group types of Hermann
subgroups in the intermediate level of the figure: P2 and C2. The
distribution of the five P21 subgroups into conjugacy classes with respect
to P422 follows the conjugacy-class distribution of the corresponding
Hermann subgroups.



1. SPACE GROUPS AND THEIR SUBGROUPS

1.7.3.1.3. The program COSETS

The coset decomposition of a group G with respect to a

subgroup H<G is a basic step in many problems that involve

group–subgroup relations between space groups, e.g. the distri-

bution of subgroups into conjugacy classes (cf. Section 1.2.6.3) or

the determination of supergroups of space groups (cf. Section

2.1.7.4). The procedure for the coset decomposition G : H is well

defined: one transforms G to the basis ofH by the transformation

matrix ðP; pÞ that relates the two bases, and then one distributes

the transformed elements of G into left grH or right Hgs cosets

with respect toH (cf. Section 1.2.4.2). The elements gr and gs are

called the coset representatives. Consider the space-group pair

G > H with the corresponding transformation matrix ðP; pÞ. The
coset decomposition G : H can be easily achieved if both G andH

are decomposed into cosets with respect to the translation sub-

group T 0H of H, consisting of integer translations only (i.e. the

coset decomposition is performed with respect to a primitive

lattice of H). The determination of the coset representatives of

G : T 0H for the right-coset decomposition is simplified by the fact

that two elements of G that differ by an integer translation tH of

H belong to the same coset T 0Hgq. This is, however, not in general

true for the left-coset decomposition: in that case, two elements

of G belong to the same coset gqT
0

H if they differ by the trans-

lation W qtH where gq ¼ ðW q;wqÞ. In other words, two elements

of G (with the same rotational part) belong to the same coset

gqT
0

H if the difference �q between their translational parts

satisfies ðW qÞ
�1�q 2 T

0

H.

Given the space-group pair G > H with the corresponding

transformation matrix ðP; pÞ, the program COSETS decomposes

G into left or right cosets with respect to H.

Input to COSETS:

The data that are needed are the group G, the subgroupH and

the transformation matrix ðP; pÞ that relates the default settings

of G and H. The user can choose between right- or left-coset

decomposition of G with respect to H.

Output of COSETS:

The output data consist of the list of the cosets of the

decomposition of G with respect toH. The first coset corresponds

to the subgroup H represented by the set of its general-position

triplets, fhv; v ¼ 1; . . . ; f jPHjg, where jPHj is the order of the

point group PH and f is the so-called centring factor that equals

the number of lattice points per cell. The triplets of the rest of the

cosets are of the form ðgshvÞ for the left-coset decomposition

or ðhvgrÞ for the right-coset decomposition, with s, r = 1, . . . ,
jG : Hj.

Example 1.7.3.1.3

Consider the group–subgroup pair R3m (No. 166) > P21/c (No.

14) of index 6, with the transformation matrix

P ¼

2
3 0 �2
1
3 1 �1
1
3 0 0

0
@

1
A; P�1 ¼

0 0 3

� 1
2 1 0

� 1
2 0 1

0
@

1
A

relating the bases defined for the default settings of the group

and the subgroup (hexagonal axes setting for R3m, and the

unique axis b setting for P21=c). The decomposition of P21=c

with respect to TH consists of four cosets. (For P space groups,

T
0

H coincides with TH.) There are 36 coset representatives of

G : T 0G, with T
0

G consisting of integer translations only. From the

determinant of the transformation matrix it follows that there

are 2
3� 36 ¼ 24 cosets in the decomposition of G : TH, i.e. some

of the coset representatives of T 0G belong to the same cosets

with respect to TH. The distribution of the coset representa-

tives of G : T 0G into cosets of G with respect to TH is different

for the right- and left-coset decomposition. Consider the three

coset representatives of G : T 0G corresponding to the threefold

rotation, namely ð3þ; 000Þ, ð3þ; 23
1
3
1
3Þ and ð3

þ; 13
2
3
2
3Þ. In the basis

of the subgroup, the rotational part

ð3þÞ ¼

0 �1 0

1 �1 0

0 0 1

0
@

1
A

is transformed by P�1ð3þÞP to

ð3þÞ ¼

1 0 0
1
2 �

1
2 �

3
2

1
2

1
2 �

1
2

0
@

1
A

and the translational parts by P�1tj to ð000Þ, ð100Þ and ð2
1
2
1
2Þ,

correspondingly. The elements with translational parts ð000Þ,

ð100Þ belong to the same coset THð3
þ; 000Þ in the case of right-

coset decomposition, and ð3þ; 2 1
2
1
2Þ can be taken as a repre-

sentative of a different coset [the program chooses the element

(3þ; 0 1
2
1
2Þ as a coset representative]. In the case of left-coset

decomposition, the coset representatives are ð3þ; 000Þ and
ð3þ; 100Þ: the elements ð3þ; 100Þ and ð3þ; 2 1

2
1
2Þ belong to the

same coset ð3þ; 100ÞT H as the difference in their translational

parts �q ¼ ð1;
1
2 ;

1
2Þ satisfies the condition �q ¼ W qtH, with

W q ¼ 3þ and tH ¼ ð1; 0; 0Þ.
The output of COSETS gives the distribution of the 24

coset representatives of G : TH into the six cosets of the

decomposition of R3m with respect to P21=c. In the case of

right-coset decomposition, the elements fð1; 000Þ, ð1; 0 1
2
1
2Þ,

ð3þ; 000Þ, ð3þ; 0 1
2
1
2Þ, ð3

�; 000Þ, ð3�; 0 1
2
1
2Þg can be selected as

coset representatives. The elements fð1; 000Þ, ð1; 0 1
2
1
2Þ,

ð3þ; 000Þ, ð3�; 000Þg are valid coset representatives also for the

left-coset decomposition of R3m with respect to P21=c, while

ð3þ; 0 1
2
1
2Þ; ð3

�; 0 1
2
1
2Þ have to be substituted by ð3þ; 100Þ,

ð3�; 100Þ.

1.7.3.1.4. The program CELLSUB

For several applications, it is of interest to determine the

subgroups of a space group for a specific multiple of the cell, i.e.

for a given ½iL� index. This happens, for example, in the search for

possible low-symmetry phases after a phase transition from a

known high-symmetry phase with experimental data indicating

the reduction of translational symmetry. The program CELLSUB

calculates the different subgroups of a space group G for a given

maximal index ½ðiLÞmax� in two steps:

(i) It determines all possible space-group types H which form

group–subgroup pairs with G, G > H of index ½i� ¼ ½iP� � ½iL�,

such that the index ½iL� is equal to or smaller than a given

value ½ðiLÞmax�.

(ii) For each pair of space-group types G > H and their index [i]

satisfying the above condition, CELLSUB finds all possible

subgroups Hj specified by the matrix–column pairs (P, p)j

and classifies them into classes of conjugate subgroups.

The method for obtaining the different subgroup types and

indices of a given space group G is similar to that used in the

SUBGROUPGRAPH module. It is also based on the data for

maximal subgroups of the space groups in IT A1. Given the
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group G, the program constructs a graph of maximal subgroups,

imposing the additional condition ½iL� � ½ðiLÞmax�.

Input to CELLSUB:

(i) The space group G. It can be specified either by its sequential

IT A number or by its Hermann–Mauguin symbol.

(ii) The (maximal) ½ðiLÞmax� index. By default (full-list option), all

subgroups with an index ½iL� smaller than the given ½ðiLÞmax�

are shown. As an option, it is possible to choose only the

subgroups with a specified ½ðiLÞmax� index.

Output of CELLSUB:

(i) A list of the space–group types of the subgroups H with the

corresponding index [i], the index ½iP� and the index ½iL�. The

subgroups are further classified into k-subgroups, t-subgroups

(for the special case of ½iL� ¼ 1) or general subgroups.

(ii) For every space-group type H of the list, a link to the

SUBGROUPGRAPH module provides the following data:

the chains of maximal subgroups relating G and H with

the given index, the classification of the different subgroups

Hj of G in classes of conjugate subgroups, the graphical

representations and all the benefits of the program

SUBGROUPGRAPH.

1.7.3.1.5. The program COMMONSUBS

Two space groups G1 and G2 which are not in a group–subgroup

relation may be related by common subgroups Hj with

G1 > Hj <G2. Given G1 and G2, the program COMMONSUBS

determines these groupsHj. Such group–subgroup relations have

a subjective component: in general the lattices of both space

groups do not fit ideally. There will be some misfit between the

lattice parameters of H1, a subgroup of G1 and those of H2, a

subgroup of G2. The decision as to how much misfit could be

tolerated depends on the specific structural criteria applicable to

the problem studied.

The higher the proportion of common symmetry between G1
and G2, i.e. the smaller the indices ½i1� ¼ jG1 : Hj and ½i2� ¼
jG2 : Hj are, the more promising is the search for a relation

between the two crystal structures. Owing to the theorem of

Hermann both the indices ½i1� and ½i2� may be split into the point-

group index ½ðiPÞm� and the lattice index ½ðiLÞm�, such that

½im� ¼ ½ðiPÞm� � ½ðiLÞm�, m = 1, 2. The point-group indices are finite,

½ðiPÞm� � 48; the lattice index may have any value in principle.

Large indices, however, mean little common symmetry and thus

low probability of structural relevance. Therefore, it is reasonable

to limit the value of ½ðiLÞm� and thus of ½i1� and ½i2� by introducing

a maximal value ½ðiLÞmax�.

If two structures with space groups G1 and G2 can be compared

within a common subgroup H, then the number of formula

units ZH of a primitive unit cell of H should be the same for

both structures. This means that ZH ¼ Z1 � ½ðiLÞ1� ¼ Z2 � ½ðiLÞ2�,

where Z1 and Z2 are the numbers of the formula units of

the primitive unit cells of the crystal structures 1 (with space

group G1) and 2 (with space group G2). It follows that ½i2� ¼

½i1� � ðZ1=Z2Þ � ð½ðiPÞ2�=½ðiPÞ1�Þ or

½i2� ¼ ½i1� �
Z1

Z2

�
jPG2 j

jPG1 j
; ð1:7:3:1Þ

where jPj is the order of the point group P.

Given the space groups G1 and G2, the formula units

per primitive cells Z1 and Z2, and ½ðiLÞmax�, the program

COMMONSUBS calculates the common subgroups in several

steps:

(i) A dedicated module of the program CELLSUB (cf. Section

1.7.3.1.4) calculates the sets of subgroups fH1;r; i1;rg of G1 and

fH2;s; i2;sg of G2 with ½ðiLÞm� � ½ðiLÞmax�. Here, the indices r

and s distinguish the different space-group types of the

subgroups H1 and H2.

(ii) The intersection of the sets fH1;r; i1;rg and fH2;s; i2;sg for

H1;r ffi H2;s ffi H then gives the set of the space-group types

of the common subgroups fHg of G1 and G2 with ½ðiLÞm� �

½ðiLÞmax�, m = 1, 2.

(iii) The program COMMONSUBS selects and lists those sub-

groups of the set fHg whose indices ½i1� and ½i2� in G1 and G2
satisfy the condition given by equation (1.7.3.1).

The generalization of the procedure for the case of common

subgroups of three groups G is straightforward and has been also

implemented in the program COMMONSUBS.

Input to COMMONSUBS:

The necessary data include the specification of the space-group

types G, the index ½ðiLÞmax� and the number of formula units per

conventional unit cell1 (or the ratio of the two ½iL� indices for the

special case of common subgroups of two space groups). The

search for common subgroups can be further restricted by

specifying the point group, the crystal class or the type of centring

desired for the common subgroup.

Output of COMMONSUBS:

(i) A list of common subgroups H specified by their Hermann–

Mauguin symbols, the point groups PH, the indices [i] ofH in

the space groups G, and the corresponding factors ½ðiPÞ� and

½ðiLÞ�. Optional links to the databases give access to addi-

tional information related to Hm, its maximal subgroups or

the point group PH.

(ii) The output for the case of common subgroups of two space

groups gives more details on the group–subgroup relations

for the two branches G1 > H and G2 > H. Apart from the

specification of the common subgroups H and their indices

½ði1Þ� and ½ði2Þ� in G1 and G2, one obtains a list of repre-

sentatives of the conjugacy classes of the subgroups H with

respect to G1 and G2. There are also links to the programs

WYCKSPLIT (for the splittings of the Wyckoff positions for

G > H, cf. Section 1.7.4.1) and SYMMODES (Capillas et al.,

2003) (for the group-theoretical study of the possible phase-

transition mechanism related to the symmetry break G > H).
A list of all subgroups of a conjugacy class and the corre-

sponding transformation matrices are obtained via links

to the programs HERMANN (cf. Section 1.7.3.1.2) and

SUBGROUPGRAPH (cf. Section 1.7.3.1.1).

The existence of a common subgroup does not automatically

mean the existence of a structural relation between the corre-

sponding crystal structures. In general, the existence of a common

supergroup of two space groups is mostly taken as more indica-

tive of a structural relation than that of a common subgroup,

provided the indices of the common supergroup are comparable

with those of the common subgroup. However, the following

example shows the utility of the common-subgroup approach in

the search for the possible symmetry of an intermediate phase

between two phases with no group–subgroup relation between

their space groups.
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1 The number of formula units per conventional unit cell Zc is simply related to the
number Z of formula units per primitive unit cell via the centring factor f,
Z ¼ Zc=f , with f = 1 for primitive lattices, 2 for I-, C-, B- or A-centred lattices, 3 for
R-centred lattices and 4 for F-centred lattices.
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Example 1.7.3.1.4

The perovskite-like ferroelectric compounds PbZr1�xTixO3

exhibit a morphotropic2 phase boundary around x = 0.45–0.50.

At compositions with x < 0.47 they are rhombohedral, at x >

0.47 tetragonal. For x = 0.48 a tetragonal-to-monoclinic phase

transition has been observed at ~300 K, the space group

changing from P4mm, No. 99, to Cm, No. 8 (Noheda et al.,

1999, 2000). The monoclinic structure results from the tetra-

gonal one by shifts of the Pb and Zr/Ti atoms along the

tetragonal [110] direction. The monoclinic structure can also

be envisaged as a distorted variant of the rhombohedral phase,

space group R3m, No. 160. There is no group–subgroup rela-

tion between P4mm and R3m, but Cm is a common subgroup

of both. In this way, the monoclinic structure can be considered

as providing a ‘bridge’ between the rhombohedral and tetra-

gonal regions of the morphotropic phase boundary. The

application of COMMONSUBS for G1 ¼ P4mm with Zc;1 ¼ 1,

G2 ¼ R3m with Zc;2 ¼ 3, and iL ¼ 1 (i.e. no cell multiplication)

yields exactly Cm as the common monoclinic subgroup.

Structural relations established through a common subgroup

are also being used to model first-order transformations between

phases with no group–subgroup relation between their symmetry

groups. The local symmetry of a common subgroup of the two

end symmetries is supposed to describe approximately the

symmetry constraints of the local transient states taking place

during the transformation [see e.g. Capillas et al. (2007) and the

references therein].

In some cases these intermediate configurations can even be

stabilized and appear as stable intermediate phases in the phase

diagram. The program COMMONSUBS can be useful in both

types of searches.

1.7.3.2. Supergroups of space groups

The problem of the determination of the supergroups of a

given space group is of rather general interest. For several

applications it is not sufficient to know only the space-group

types of the supergroups of a given group; it is instead necessary

to have available all different supergroups Gr > H that are

isomorphic to G and are of the same index [i]. In the literature

there are few papers treating the supergroups of space groups in

detail (Koch, 1984; Wondratschek & Aroyo, 2001). In IT A one

finds only listings of minimal supergroups of space groups which,

in addition, are not explicit: they only provide for each space

group H the list of those space-group types in which H occurs as

a maximal subgroup (cf. Section 2.1.6). It is not trivial to deter-

mine all supergroups Gr > H if only the types of the minimal

supergroups are known. The Bilbao Crystallographic Server

offers two basic programs that solve this problem for a given

finite index [i] (Ivantchev et al., 2002): (i) MINSUP, which gives

all minimal supergroups of index 2, 3 and 4 of a given space

group, and (ii) SUPERGROUPS, which calculates all different

supergroups of a given space-group type and a given index.

As in the case of subgroups, we have developed two comple-

mentary programs that involve the calculation of supergroups of

space groups: (i) the program CELLSUPER, for calculating the

supergroups of a space group for a given ½iL� index, and (ii)

COMMONSUPER for the computation of common supergroups

of two or more space groups.

1.7.3.2.1. The programs MINSUP and SUPERGROUPS

In analogy to the case of minimal supergroups (cf. Section

2.1.7), the determination of all supergroups Gr of a given space-

group type G and index [i] of a space group H can be done by

inverting the data for the subgroups Hs of G of index [i]. In the

following we outline the basic arguments of this procedure.

Let G be a space group and H<G be one of its subgroups of

index [i]. Then all subgroups Hs of G of the same index [i] and

isomorphic to H can be calculated by a dedicated module of

SUBGROUPGRAPH (cf. Section 1.7.3.1.1). The number of

subgroups with index [i] is finite for any space group. Therefore,

such a list is always finite. LetH<G be a member of this list. We

are looking for all supergroups Gr > H of index [i] that are

isomorphic to G, Gr ffi G. Then the supergroups Gr are also affine

equivalent to G, i.e. there must be a mapping ar 2 A such that

a�1r G ar ¼ Gr, where A is the group of all reversible affine

mappings. Different supergroups Gr are obtained if ar 62 NAðGÞ.

As in the case of minimal supergroups (cf. Section 2.1.7), there

are two cases to be distinguished:

(1) The first candidates for the mapping ar are the elements of

the affine normalizer of H, i.e. ar 2 NAðHÞ. Following Koch

(1984) (see also Lemma 2.1.7.4.1), other supergroups Gr will

be obtained by the transformation of G with the representa-

tives of the cosets in the decomposition of the group NAðHÞ

relative to the group D ¼ NAðHÞ \ NAðGÞ.

(2) There could exist further supergroups Gr > H;Gr ffi G of the

same index [i] with ar 62 NAðHÞ, i.e. ar is not an element of the

affine normalizer of the group H.

Summarizing: Any supergroup of H, Gr > H;Gr ffi G may be

found by the following procedure: (i) determine all subgroups

Hs <G of the same index and distribute them into classes of

conjugate subgroups with respect to G. From each class of

conjugate subgroups, choose a representative Hr , specified by

ðP; pÞr;
3 (ii) apply ðP; pÞ�1r to the group G in order to obtain the

group Gr; and (iii) test whether Gr is already among the deter-

mined supergroups of H. If it is not, then Gr is a new supergroup

of H and further supergroups may be generated by the coset

representatives of the decomposition of NAðHÞ relative to

ðNAðHÞ \ NAðGÞÞ as explained above.

The procedure described above for the determination of

supergroups is also applied to the determination of minimal

supergroups G of H (cf. Section 2.1.7). In this case, the distinct

maximal subgroups Hr , representatives of the classes of conju-

gate subgroups Hs with respect to G, are retrieved directly from

the maximal-subgroup database of the server.

Input to MINSUP and SUPERGROUPS:

(i) The program MINSUP needs as input the IT A number (or

the Hermann–Mauguin symbol) of the group for which the

minimal supergroups have to be determined. The type of

supergroup is chosen from a table (returned by the program)

which contains the IT A number of the minimal supergroup,

its Hermann–Mauguin symbol and the index of the group in

the supergroup. There is also a link to a list of the trans-

formation matrices that relate the basis of the supergroup

with that of the subgroup.

(ii) For the determination of all supergroups of a given type, it is

necessary to select the type of the normalizers of the group

and the supergroup. By default the Euclidean normalizers of

general cell metrics are used as listed in Tables 15.2.1.3 and
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15.2.1.4 of IT A. The affine normalizers of the space groups

(except triclinic and monoclinic) are also accessible. For a

translation lattice with metrics of apparent higher symmetry,

the users may themselves provide the set of additional

generators for the specific Euclidean normalizer (cf. Table

15.2.1.3 of IT A and Koch & Müller, 1990).

(iii) The program SUPERGROUPS takes as input the IT A

numbers of the space groups G and H and the index of H in

G. The transformation matrices relating the bases of G andH

necessary for the determination of the supergroups Gr are

retrieved from the IT A1 database. In case of a non-minimal

supergroup, the program SUBGROUPGRAPH determines

the transformation matrix (or matrices) for the corre-

sponding chains of maximal subgroups that relate G and H.

As in the case of MINSUP, the space-group normalizers

used by default are the Euclidean normalizers. It is also

possible for the user to use the affine normalizers given in IT

A or to provide a specific one.

Output of MINSUP and SUPERGROUPS:

For the two supergroup programs the results contain:

(i) The transformation matrix (P, p)r that relates the basis of the

supergroup with that of the subgroup.

(ii) One representative from each coset in the decomposition of

the supergroup Gr with respect to the groupH. The full cosets

of the decomposition Gr : H are also accessible. The elements

of Gr are listed with respect to the basis of the subgroup H.

From the considerations given above it should have become

clear that the aim of the presented procedure and the supergroup

programs is to solve the following ‘purely’ group-theoretical

problem: Given a group–subgroup pair of space groups G > H,
determine all supergroups Gr of H isomorphic to G. The proce-

dure does not include any preliminary checks on the compat-

ibility of the metric of the studied space group with that of a

supergroup. Depending on the particular case some of the

supergroups obtained are not space groups but just affine groups

isomorphic to space groups (see Koch, 1984). As an example

consider the cubic supergroups of P212121, No. 19: only if the

three basis vectors of P212121 have equal length can one speak of

supergroups of the cubic space-group type P213, No. 198.

However, for each group P212121 there exist affine analogues of

P213 as supergroups.

Example 1.7.3.2.1

Here we consider supergroups Gr ¼ a�1r G ar of H with

ar 2 NAðHÞ. As an example we consider the group–super-

group pair H<G with H ¼ P222, No. 16, and the supergroup

G ¼ P422, No. 89, of index [i] = 2. Further, we suppose that the

group P222 has specialized cell metrics specified as a = b = c.

In the subgroup data of P422 there is only one entry for the

subgroup P222 of index 2. We are interested in all P422

supergroups of index 2 of the group P222. The affine

normalizer of P422 coincides with its Euclidean normalizer

and it has the translations ðxþ 1
2 ; yþ 1

2 ; zÞ, ðx; y; zþ 1
2Þ and the

inversion as additional generators (cf. IT A, Table 15.2.1.4).

The Euclidean normalizer of P222 with a = b = c coincides with

its affine normalizer. It corresponds to the cubic group Pm�3m

with the additional generating translations ðxþ 1
2 ; y; zÞ,

ðx; yþ 1
2 ; zÞ and ðx; y; zþ 1

2Þ (cf. IT A, Table 15.2.1.3). The

decomposition of NðHÞ with respect to the intersection of the

two normalizers contains six cosets, i.e. the group P222 has six

supergroups P422 isomorphic to each other. The different

supergroups, as calculated by MINSUP, are listed in Table

1.7.3.2. They are distinguished by their transformation matrix–

column pairs ðP; pÞr and the coset representatives of the

decomposition of Gr with respect toH. The existence of the six

different supergroups becomes obvious if we consider the type

and location of the symmetry elements corresponding to the

listed coset representatives of the different supergroups (Table

1.7.3.2). Owing to the specialized metrics of P222, the fourfold

axis of P422 can be chosen along any of the three ortho-

rhombic axes. Accordingly, the six supergroups are distributed

into three pairs. Comparison of the space-group diagrams of

P422 and P222 (Fig. 1.7.3.5) shows that the two supergroups

for each orientation of the fourfold axis correspond exactly to

the two possible locations of the fourfold axis in the ortho-

rhombic cell.

Example 1.7.3.2.2

Here we consider the supergroups Gr ¼ a�1r G ar of H with

ar 62 N AðHÞ. Consider the group Pnma, No. 62, and its

minimal supergroups of type Cmcm, No. 63, of index 2. The

group Cmcm has two maximal Pnma subgroups: ðPnmaÞ1
specified by ðP; pÞ1 ¼ ðb; c; aÞ, and ðPnmaÞ2 with ðP; pÞ2 ¼
ðc; a; b; 14 ;

1
4 ; 0Þ. The Euclidean and affine normalizers of

Cmcm and Pnma are identical and correspond to the

group Pmmm with the additional translations ðxþ 1
2 ; y; zÞ,

ðx; yþ 1
2 ; zÞ and ðx; y; zþ 1

2Þ. Accordingly, the application of

the normalizer procedure to any of the two group–subgroup

pairs will not generate further equivalent supergroups. The

first pair Cmcm > ðPnmaÞ1 gives rise to the minimal super-

group Bbmm ðCmcm; b; c; aÞ. The second supergroup Amma

ðCmcm; c; a; bÞ can only be obtained considering the second

group–subgroup pair. Both supergroups are related by a cyclic
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Fig. 1.7.3.5. Space-group diagrams for (a) P222, No. 16, with specialized
cell metrics (see the text) and (b) P422, No. 89. For explanations of the
space-group diagrams, see IT A Chapter 1.4.

Table 1.7.3.2. P422, No. 89, supergroups of P222, No. 16 (a = b = c),
index 2, as determined by MINSUP

The different supergroups are distinguished by the transformation matrices (P, p)r

and the coset representatives of the decomposition of ðP422Þr with respect to H.
(The unit element is taken as a coset representative in all cases and is not listed).
The locations of the axes 4 are referred to the orthorhombic cell.

Supergroup (P, p)j

Coset
representative Location of 4

ðP422Þ1 a; b; c; 0 0 0 ð4zj 0 0 0Þ 0 0 z

ðP422Þ2 a; b; c; 12 0 0 ð4zj
�1
2
1
2 0Þ

�1
2 0 z

ðP422Þ3 b; c; a; 0 0 0 ð4yj 0 0 0Þ 0 y 0

ðP422Þ4 b; c; a; 0 1
2 0 ð4yj

�1
2 0

�1
2Þ

�1
2 y 0

ðP422Þ5 c; a; b; 0 0 0 ð4xj 0 0 0Þ x 0 0

ðP422Þ6 c; a; b; 12 0 0 ð4xj 0
�1
2
1
2Þ x �12 0



1. SPACE GROUPS AND THEIR SUBGROUPS

rotation of the three axes which is not in the normalizer of H

(or G).

The number of supergroups of a space group H of a finite

index is not always finite. This is the case of a space group H

whose normalizer NðHÞ contains continuous translations in one,

two or three independent directions (see IT A, Part 15). As

typical examples one can consider the infinitely many centro-

symmetric supergroups of the polar groups: there are no

restrictions on the location of the additional inversion centre on

the polar axis. For such group–supergroup pairs there could be up

to three parameters r, s and t in the origin-shift column of the

transformation matrix and in the translational part of the coset

representatives. The parameters can have any value and each

value corresponds to a different supergroup of the same space-

group type.

1.7.3.2.2. The program CELLSUPER

The program CELLSUPER is an application similar to

CELLSUB (cf. Section 1.7.3.1.4): in this case, the search is for the

space-group types of supergroups Gs of H of a given maximum

lattice index ½ðiLÞmax�. The algorithm is similar to that of

CELLSUB: using the data for the index and space-group types of

minimal supergroups, the program constructs a tree of minimal

supergroups starting from H and imposing the condition

½iL� � ½ðiLÞmax�. The input data of CELLSUPER coincide with

those of CELLSUB with the only difference being that they are

referred to the low-symmetry group H. The output data include:

(i) The space-group types of the supergroups Gs of H with the

corresponding indices [i], [iP] and [iL]. The supergroups are

classified into t-supergroups, k-supergroups and general

supergroups.

(ii) A link to the SUPERGROUPS module (cf. Section 1.7.3.2.1)

enables the calculation of all different supergroups ðGsÞr ofH

of the space-group type Gs and index [i]. Each supergroup

ðGsÞr is specified by the corresponding transformation matrix

relating the conventional bases of the supergroup and the

group, and the representatives of the coset decomposition

ðGsÞr : H.

1.7.3.2.3. The program COMMONSUPER

The program COMMONSUPER calculates the space-group

types of common supergroups G of two space groups H1 and H2

for a given maximal lattice index ½ðiLÞmax�. The procedure used is

analogous to the one implemented in the program COMMON-

SUBS (cf. Section 1.7.3.1.5). The two sets of supergroups of H1

and of H2 are determined by the program CELLSUPER. The

intersection of the sets of supergroups gives the set of the space-

group types of the common supergroups fGg of H1 and H2 with

½iL� � ½ðiLÞmax�. A relation between the indices ½i1� ¼ jGj=jH1j and

½i2� ¼ jGj=jH2j is obtained by imposing the structural require-

ment of equal numbers of formula units in the (primitive) unit

cell of the common supergroup G obtained from the numbers of

the formula units Z1 and Z2 of H1 and H2:

½i2� ¼ ½i1� �
Z2

Z1

�
jPH1
j

jPH2
j
: ð1:7:3:2Þ

The program COMMONSUPER selects and lists those super-

groups of the set fGg whose indices ½i1� ¼ jGj=jH1j and ½i2� ¼

jGj=jH2j satisfy the above condition.

The input data for COMMONSUPER include the specification

ofH1 andH2, the numbers of formula units per conventional unit

cell, and the maximum lattice index ½ðiLÞmax�. The output data of

COMMONSUPER are:

(i) The space-group types of the common supergroups G of H1

and H2 with the indices ½i1� and ½i2�, ½ðiLÞ1� and ½ðiLÞ2�, and

½ðiPÞ1� and ½ðiPÞ2�. Optional links to the programs POINT and

GENPOS give access to data for the point group PG and the

general positions of the supergroup G.

(ii) A link to the SUPERGROUPS module (see Section

1.7.3.2.1) enables the calculation of all different supergroups

Gr of H1 and H2 of a space-group type G and indices ½i1� and

½i2�. Each supergroup Gr is specified by the corresponding

transformation matrix relating the conventional bases of the

supergroup and the group, and the representatives of the

coset decomposition of Gr relative to H1 or H2.

Example 1.7.3.2.3

The program COMMONSUPER is useful in the search for

structural relationships between structures whose symmetry

groups H1 and H2 are not group–subgroup related. The deri-

vation of the two structures as different distortions from a

basic structure is a clear manifestation of such relationships.

The symmetry group of the basic structure is a common

supergroup of H1 and H2. Consider the ternary intermetallic

compound CeAuGe. At 8.7 GPa a first-order phase transition

is observed from a hexagonal arrangement (space group

P63mc, No. 186, two formula units per unit cell, Z1 ¼ 2) into an

orthorhombic high-pressure modification of symmetry Pnma,

No. 62, Z2 ¼ 4 (Brouskov et al., 2005). There is no group–

subgroup relation between the symmetry groups of the high-

and low-pressure structures. For ½ðiLÞmax� ¼ 4 the program finds

two common supergroups of H1 ¼ P63mc, Z1 ¼ 2 and

H2 ¼ Pnma, Z2 ¼ 4: (i) the group P63=mmc with ½i1� ¼ 2 and

½i2� ¼ 6, and (ii) P6=mmm, with ½i1� ¼ 4 and ½i2� ¼ 12. The

common basic structure of the AlB2 type, proposed by

Brouskov et al. (2005), corresponds to the common supergroup

P6=mmm found by COMMONSUPER.

1.7.4. Relations of Wyckoff positions for a group–subgroup pair
of space groups

Consider two group–subgroup-related space groups G > H.
Atoms that are symmetrically equivalent under G, i.e. belong to

the same orbit of G, may become non-equivalent under H, (i.e.

the orbit splits) and/or their site symmetries may be reduced. The

orbit relations induced by the symmetry reduction are the same

for all orbits belonging to a Wyckoff position, so one can speak of

Wyckoff-position relations or splitting of Wyckoff positions.

Theoretical aspects of the relations of the Wyckoff positions for a

group–subgroup pair of space groups G > H have been treated in

detail by Wondratschek (1993) (see also Section 1.5.3). A

compilation of the Wyckoff-position splittings for all space

groups and all their maximal subgroups is published as Part 3 of

this volume. However, for certain applications it is easier to have

the appropriate computer tools for the calculations of the

Wyckoff-position splittings for G > H: for example, when H is

not a maximal subgroup of G, or when the space groups G > H
are related by transformation matrices different from those listed

in the tables of Part 3. The program WYCKSPLIT (Kroumova,

Perez-Mato & Aroyo, 1998) calculates the Wyckoff-position

splittings for any group–subgroup pair. In addition, the program
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provides further information on Wyckoff-position splittings that

is not listed in Part 3, namely the relations between the repre-

sentatives of the orbit of G and the corresponding representatives

of the suborbits of H.

1.7.4.1. The program WYCKSPLIT

To simplify the notation, we assume in the following that the

group G, its Wyckoff-position representatives and the points of

the orbits are referred to the basis of the subgroup H.

(1) Splitting of the general position. Consider the group–

subgroup chain of space groups G > H of an index [i]. The

general-position orbitsOGðX0Þ have unique splitting schemes:

they are split into [i] suborbits OHðX0;jÞ of the general posi-

tion of the subgroup, i.e. they all are of the same multiplicity:

OGðX0Þ ¼ OHðX0;1Þ [ . . . [ OHðX0;iÞ: ð1:7:4:1Þ

This property is a direct corollary of the relation between the

index [i] and the so-called reduction factors of the site-

symmetry groups SGðXÞ and SHðXÞ of a point X in G and H

(Wondratschek, 1993; see also Section 1.5.3).

The determination of the splitting of the general-position

orbit OGðX0Þ is then reduced to the selection of the [i] points

ðX0;jÞ belonging to the [i] independent suborbits OHðX0;jÞ of

H, equation (1.7.4.1). Owing to the one-to-one mapping

between the general-position points of OGðX0Þ and the

elements g of G, the right cosets Hgj of the decomposition of

G with respect toH (cf. Definition 1.2.4.2.1) correspond to the

suborbits OHðX0;jÞ. In this way, the representatives of these

cosets can be chosen as the [i] points X0;j in the decomposi-

tion of OGðX0Þ.

(2) Splitting of a special position. The calculation of the splitting

of a special Wyckoff position WG involves the following

steps:

(i) the determination of the suborbitsOHðXjÞ into which the

special-Wyckoff-position orbit OGðXÞ has split;

(ii) the assignment of the orbits OHðXjÞ to the Wyckoff

positions W l
H of H;

(iii) the determination of the correspondence between the

points Xm
j of the suborbits OHðXjÞ and the representa-

tives of W l
H.

The direct determination of the suborbits OHðXjÞ is not an

easy task. The restrictions on the site-symmetry groups

SHðXjÞ which follow from the reduction-factor lemma (cf.

Section 1.5.3) are helpful but in many cases not sufficient for

the determination of the suborbits. The solution used in our

approach is based on the general-position decomposition,

equation (1.7.4.1). It is important to note that each of the

suborbits of the general position gives exactly one suborbit

OHðXjÞ when the variable parameters of OHðX0;jÞ are

substituted by the corresponding parameters (fixed or vari-

able) of the special position. The assignment of the suborbits

to the Wyckoff positions of H is done by comparing the

multiplicities of the orbits, the number of the variable para-

meters [the number of the variable parameters of W l
H is

equal to or greater than that of OHðXjÞ] and the values of the

fixed parameters. If there is more than one Wyckoff position
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Fig. 1.7.4.1. Sequence of calculations of WYCKSPLIT for the splitting of the Wyckoff positions 2a m:mm ð0; 0; 0Þ and 4d �4:: ð12 ; 0;
3
4Þ of P42=mnm, No.

136, with respect to its subgroup Cmmm, No. 65, of index 2. ðOGÞH are the orbits of P42=mnm in the basis of Cmmm.

Table 1.7.4.1. Wyckoff positions of Cmmm (No. 65) with multiplicities
2 and 8

Each Wyckoff position is specified by its multiplicity and Wyckoff letter, site
symmetry and a coordinate triplet of a representative element.

Wyckoff multiplicity
and letter Site symmetry

Representative
element

2d mmm ð0; 0; 12Þ

2c mmm ð12 ; 0;
1
2Þ

2b mmm ð12 ; 0; 0Þ

2a mmm ð0; 0; 0Þ

8q ..m ðx; y; 12Þ

8p ..m ðx; y; 0Þ

8o .m. ðx; 0; zÞ

8n m.. ð0; y; zÞ

8m ..2 ð14 ;
1
4 ; zÞ
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of H satisfying these conditions, then the assignment is done

by a direct comparison of the points of the suborbit OHðXjÞ

with those of a special W l
H orbit obtained by substitution of

the variable parameters by arbitrary numbers. The determi-

nation of the explicit correspondences between the points of

OHðXjÞ and the representatives ofW l
H is done by comparing

the values of the fixed parameters and the variable-parameter

relations in both sets.

The program WYCKSPLIT calculates the splitting of the

Wyckoff positions for a group–subgroup pair G > H given the

corresponding transformation relating the coordinate systems of

G and H.

Input to WYCKSPLIT:

The program needs as input the following information:

(i) The specification of the space-group types G and H by their

IT A numbers.

(ii) The transformation matrix–column pair ðP; pÞ that relates

the basis of G to that of H. The user can input a specific

transformation or follow a link to the IT A1 database for the

maximal subgroups of G. In the case of a non-maximal sub-

group, the program SUBGROUPGRAPH provides the

transformation matrix (or matrices) for a specified index ofH

in G. The transformations are checked for consistency with

the default settings of G and H used by the program.

The Wyckoff positions WG to be split can be selected from a

list. In addition, it is possible to calculate the splitting of any orbit

OGðXÞ specified by the coordinate triplet of one of its points.

Output of WYCKSPLIT:

(i) Splittings of the selected Wyckoff positionsWG into Wyckoff

positions W l
H of the subgroup, specified by their multi-

plicities and Wyckoff letters.

(ii) The correspondence between the representatives of the

Wyckoff position and the representatives of its suborbits is

presented in a table where the coordinate triplets of the

representatives ofWG are referred to the bases of the group

and of the subgroup.

WYCKSPLIT can treat group or subgroup data in uncon-

ventional settings if the transformation matrices to the corre-

sponding conventional settings are given.

Example 1.7.4.1.1

To illustrate the calculation of the Wyckoff-position splitting

we consider the group–subgroup pair P42=mnm (No. 136) >

Cmmm (No. 65) of index 2, see Fig. 1.7.4.1. The relation

between the conventional bases ða; b; cÞ of the group and of

the subgroup ða0; b0; c0Þ is retrieved by the program MAXSUB

and is given by a0 ¼ a� b, b0 ¼ aþ b; c0 ¼ c. The general

position of P42=mnm splits into two suborbits of the general

position of Cmmm:

16k 1 ðx; y; zÞ ! 16r 1 ðx1; y1; z1Þ [ 16r 1 ðx2; y2; z2Þ:

This splitting is directly related to the coset decomposition

of P42=mnm with respect to Cmmm. As coset representatives,

i.e. as points which determine the splitting of the general

position, one can choose X0;1 ¼ ðx1; y1; z1Þ and X0;2 ¼

ðx2; y2; z2Þ ¼ ðy; xþ 1
2 ; zþ 1

2ÞÞ (referred to the basis of the

subgroup).

The splitting of any special Wyckoff position is obtained from

the splitting of the general position. The consecutive steps of

the splittings of the special positions 4d �4:: ð12 ; 0;
3
4Þ and

2a m:mm ð0; 0; 0Þ are shown in Fig. 1.7.4.1. First it is necessary

to transform the representatives ofWG to the basis ofH, which

gives the orbits ðOGÞHð0; 0; 0Þ and ðOGÞHð
1
4 ;

1
4 ;

3
4Þ. The substi-

tution of the values x = 0, y = 0, z = 0 in the coordinate triplets

of the decomposed general position of G (cf. the corresponding

output of WYCKSPLIT) gives two suborbits of multiplicity 2

for the 2a position: O2a;1
H ð0; 0; 0Þ and O

2a;2
H ð0;

1
2 ;

1
2Þ. The assign-

ment of the suborbits O2a;j
H to the Wyckoff positions of H (cf.

Table 1.7.4.1) is straightforward. Summarizing: the Wyckoff

position 2a m:mm ð0; 0; 0Þ splits into two independent posi-

tions of Cmmm with no site-symmetry reduction:

2a m:mm ð0; 0; 0Þ ! 2a mmm ð0; 0; 0Þ [ 2c mmm ð0; 12 ;
1
2Þ:

No splitting occurs for the case of the special 4d position orbit:

the result is one orbit of multiplicity 8, O4d;1
H ð

1
4 ;

1
4 ;

3
4Þ. The

assignment of O4d;1
H ð

1
4 ;

1
4 ;

3
4Þ is also obvious: there are five

Wyckoff positions of Cmmm of multiplicity 8 but four of them

are discarded as they have fixed parameters 0 or 1
2 (Table

1.7.4.1). The orbit O4d;1
H belongs to the Wyckoff position

8m ::2 ð14 ;
1
4 ; zÞ.

As expected, the sum of the site-symmetry reduction factors

equals the index of Cmmm in P42=mnm for both cases (cf.

Section 1.5.3). The loss of the fourfold inversion axis results in

the appearance of an additional degree of freedom corre-

sponding to the variable parameter of 8m ::2 ð14 ;
1
4 ; zÞ.
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Brouskov, V., Hanfland, M., Pöttgen, R. & Schwarz, U. (2005). Structural
phase transitions of CeAuGe at high pressure. Z. Kristallogr. 220, 122–
127.

Capillas, C. (2006). Métodos de la cristalografı́a computacional en el
análisis de transiciones de fase estructurales. PhD thesis, Universidad
del Paı́s Vasco, Spain.

Capillas, C., Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Stokes, H. T.
& Hatch, D. M. (2003). SYMMODES: a software package for group-
theoretical analysis of structural phase transitions. J. Appl. Cryst. 36,
953–954.

Capillas, C., Perez-Mato, J. M. & Aroyo, M. I. (2007). Maximal symmetry
transition paths for reconstructive phase transitions. J. Phys. Condens.
Matter, 19, 275203.

International Tables for Crystallography (2005). Vol. A, Space-Group
Symmetry, edited by Th. Hahn, 5th ed. Dordrecht: Kluwer Academic
Publishers.

International Tables for Crystallography (2002). Vol. E, Subperiodic
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