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The description of displacive distorted structures in terms of symmetry-adapted
modes is reviewed. A specific parameterization of the symmetry-mode decompo-
sition of these pseudosymmetric structures defined on the setting of the experi-
mental space group is proposed. This approach closely follows crystallographic
conventions and permits a straightforward transformation between symmetry-
mode and conventional descriptions of the structures. Multiple examples are pre-
sented showing the insight provided by the symmetry-mode approach. The method-
ology is shown at work, illustrating its various possibilities for improving the
characterization of distorted structures, as for example: detection of hidden struc-
tural correlations, identification of fundamental and marginal degrees of freedom,
reduction of the effective number of atomic positional parameters, quantitative
comparison of structures with the same or different space group, detection of false
refinement minima, systematic characterization of thermal behavior, rationaliza-
tion of phase diagrams and various symmetries in families of compounds, etc. The
close relation of the symmetry-mode description with the superspace formalism
applied to commensurate superstructures is also discussed. Finally, the applica-
tion of this methodology in the field of ab-initio or first-principles calculations
is outlined. At present, there are several freely available user-friendly computer
tools for performing automatic symmetry-mode analyses. The use of these pro-
grams does not require a deep knowledge of group theory and can be applied
either a posteriori to analyze a given distorted structure, or a priori to parameter-
ize the structure to be determined. We hope that this article will encourage the use
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1. Introduction

Many crystalline structures can be considered pseudosymmet-
ric with respect to some configuration of higher symmetry. This
higher symmetry arrangement may be another phase of the
compound or a virtual reference structure. In the following we
will refer to this (real or virtual) structure of higher symme-
try as parent structure or parent phase. By definition, a group-
subgroup relation necessarily exists between the space groups
of the parent structure and the observed one. This latter can
then be qualified as a distorted structure and can be described as
the parent crystalline structure plus a static symmetry-breaking
structural distortion. If the distortion is sufficiently small, a ther-
mally driven structural transition to the configuration of higher
symmetry may take place at higher temperatures (Bruce (1980),
Dove (1993), Dove (1997), Rabe et al. (2007)). Ferroic struc-
tures are a particular case of this type of distorted structures,
with the distorted (ferroic) structure having a lower point group
than the parent phase (Wadhawan, 2000). Structural distortions
can be of displacive type or may include some type of order-
disorder component (symmetry breaking change of the occupa-
tion probabilities of some atomic sites). In the present paper, we
will only consider purely displacive distorted structures, and the
term distorted will be used in this restricted sense. We will see

of these tools. All the examples presented here have been worked out using the
program AMPLIMODES (Journal of Applied Crystallography, 42(5), 8207833).

below, however, that some simple order-disorder distortions can
also be included within this displacive formalism.

Similarly as it happens with dynamic distortions (thermal
vibrations), we know since the development of Landau theory
(Landau & Lifshitz (1969), Toledano & Toledano (1987)) that
the natural language to deal with the static frozen distortions
present in ferroic structures and distorted structures in general,
is the one of modes. Modes are collective correlated atomic dis-
placements fulfilling specific symmetry properties. Structural
distortions in distorted structures can be decomposed into con-
tributions from different modes with symmetries given by irre-
ducible representations of the parent space group. One can then
distinguish primary and secondary (induced) distortions with
different symmetries, which will have in general quite different
weights in the structure, and will respond differently to external
perturbations. In general, the use of symmetry-adapted modes
in the description of distorted structures introduces a natural
physical hierarchy among the structural parameters. This can be
useful not only for investigating the physical mechanisms that
stabilize these phases, but also for pure crystallographic pur-
poses. The set of structural parameters used in a mode descrip-
tion of a distorted phase is in general better adapted for a con-
trolled refinement of the structure, or for instance for compara-
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tive studies between different materials.

The theoretical basis of symmetry mode analysis of distorted
structures and its practice is well documented (see for instance
Stokes et al. (1991); Hatch & Stokes (2001)). But despite its
obvious advantages the use of symmetry-adapted modes is still
scarce in crystallographic studies of distorted structures. Exam-
ples where this approach is applied in a quantitative and sys-
tematic form regularly appear in the literature but they rep-
resent a minority within the large amount of structural stud-
ies of distorted structures. During many years there has been
one clear reason for that situation; namely, the mode decom-
position analysis in non-trivial cases required a deep knowl-
edge of group theory and a considerable calculation effort for
each specific case. In the last years, this situation has changed;
free computer programs have been developed allowing fast
and automatic symmetry—mode analyses (Baslreps (Rodriguez-
Carvajal, 1993), SIMREF (Ritter et al., 1998), SARAh (Wills,
2000), SYMMODES (Capillas et al., 2003), MODY (Sikora
et al., 2004)).These tools have focussed on the calculation of
a basis of distortion modes relevant in each case. However, this
has been usually done within the reference of the parent struc-
ture, without using the space group symmetry of the distorted
structure in an explicit form. This has implied in general a for-
malism and parameterization quite distant from the usual crys-
tallographic description, and has hampered its use among crys-
tallographers.

This situation has improved in the last years with new
free software (ISODISPLACE (Campbell et al., 2006) and
AMPLIMODES (Orobengoa et al., 2009)). In particular,
we have made available in the Bilbao Crystallographic
Server (Aroyo et al. (2006b), Aroyo et al. (2006a)) a tool
(AMPLIMODES) that allows the automatic mode decomposi-
tion of any distorted structure (Orobengoa et al., 2009). The
program provides, apart from a basis of symmetry modes, their
amplitudes in the distorted structure. An important feature of
the program is that the parameterization of the structural dis-
tortion is done in a form that is close to the conventions of
crystallography. Modes are given in terms of relative displace-
ments for the asymmetric unit of the distorted phase, such that
the actual atomic positions describing the structure in a conven-
tional form are readily obtained from the list of basis modes
and their amplitudes. By this means we pretend to introduce a
mode parameterization that facilitates a straightforward switch
from the symmetry-mode approach to the conventional descrip-
tion of a structure, and hopefully will help to standardize and
generalize its use in crystallographic studies.

A further step in this direction has been adapting the
refinement program FullProf (Rodriguez-Carvajal, 1993) and
AMPLIMODES for their combined use, so that now FullProf
can directly use the output of AMPLIMODES and refine dis-
torted structures using as refinable parameters the amplitudes
of a basis of symmetry-modes. The potential of the symmetry-
mode approach for the determination of pseudosymmetric or
distorted structures, with the introduction among the structural
parameters of a strong hierarchy and the reduction of cor-
relations, has recently been demonstrated for a specific case

(Campbell et al., 2007). The automatic combination of these
two freely available programs should facilitate and extend the
application of the direct symmetry-mode refinement of dis-
torted structures, advancing in the development of a standard-
ized quantitative “Mode Crystallography”.

Another important development that has taken place in the
last decade is the generalization and extensive use of ab-initio
DFT calculations and simulations in the investigation of the
structure and properties of ferroic materials and distorted struc-
tures in general. A systematic use of symmetry-mode consid-
erations would in general be convenient both for the design
and analysis of these calculations. It can help, both to optimize
the calculations, and to resolve the different relevant degrees
of freedom, distinguishing marginal features from fundamen-
tal ones. But as in the case of the experimental investigations,
proper use of symmetry-mode analyses, are seldom found in
this rapidly growing research field.

Within this context and in the light of the new computer
tools mentioned above, we review in this article the symmetry-
mode approach to the analysis of distorted structures, thor-
oughly discussing a series of examples. By this means, the
virtues and wide possibilities of the analysis of distorted struc-
tures in terms of symmetry-adapted modes is illustrated. All the
examples presented here have been worked out using the pro-
gram AMPLIMODES (Orobengoa et al., 2009) and other tools
of the Bilbao Crystallographic Server (Aroyo et al. (2006b),
Aroyo et al. (2006a)).

2. Symmetry-Mode description of distorted structures

We review in this section the basic features of the symmetry-
adapted mode description of distorted structures, introducing
the notation and parameterization employed. In order to sim-
plify the notation, we will avoid when possible any explicit
indication of the parameters describing the symmetry properties
of the modes (wave vectors, wave vector stars, etc.). Thus, we
reduce the notation to the basic features which are really needed
in a practical case, assuming that we have some computing tool
to obtain a valid basis of symmetry-adapted modes, given in
the crystallographic format explained below. A more practical
introduction with additional examples of the notation used here
can be found in Orobengoa et al. (2009). For an extended review
of the group theory of displacive modes see for instance Izyu-
mov & Syromyatnikov (1990); Stokes et al. (1991).

The distortion relating a parent structure with the actual dis-
placively distorted structure of lower symmetry can be decon-
voluted into two parts:

1. A set of atomic displacements, which may break some
translational symmetry but keep the metrics of the under-
lying parent lattice, so that the basis vectors of the result-
ing new Bravais lattice are exactly given by some integer
combination of the primitive unit cell basis vectors of the
parent structure.

2. A strain of the parent lattice mentioned in 1.

This separation into two parts corresponds to the distinc-
tion of the elastic degrees of freedom from the internal atomic
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degrees of freedom in the structure, and is done automatically if
the atomic displacements and positions are expressed in relative
coordinates with respect to the cell parameters, as usually done
in crystallography.

In general, for full consistency and formal rigor (orthogonal-
ity properties of modes, etc.), the mode analysis should be done
assuming that the relative coordinates of the distorted struc-
ture correspond to the step 1 above, i.e. to a structure with an
unstrained lattice, so that its unit cell, in general a supercell, per-
fectly matches that of the parent structure. The additional strain
present in the real structure can be added automatically a poste-
riori, by taking the real unit cell while keeping the same relative
coordinates.

Let ro(u) be the positions of the atoms p (u = 1,...,s)
within an asymmetric unit of the parent structure with space
group G. The asymmetric unit of the observed distorted struc-
ture with lower space group #, subgroup of G, will in general
have a larger number of atoms due to the splitting of the Wyck-
off orbits of the higher-symmetry space group (Wondratschek,
1993). Its atomic positions can then in general be expressed as:

r(:u’7i> :r()(/"i)—'_u(//"i) (D

whererg(p, i) (w=1,...,85i=1,...,n,) are the correspond-
ing atomic positions in the parent structure, expressed in the
setting of the low symmetry space group, with the index i enu-
merating the formally split atomic orbits coming from a single
Wyckoff orbit in G

The set of atomic displacements # (s, i) within an asymmet-
ric unit of the distorted structure, with symmetry given by space
group H, fully defines the displacive distortion relating both
structures. In general, it can be expressed as a linear combina-
tion of the contributions of a basis of symmetry-adapted modes:

u(p, i) =32 Arme(T,m|p, i), 2

The indices 7 and m label all possible distinct allowed
symmetry-adapted distortion modes in the chosen basis. In
short, we shall call these modes basis modes. 7 stands for the
possible different mode symmetries, while m (m = 1,...,n;)
enumerates the possible different independent modes for a
given symmetry. The contribution of each mode is separated
into an amplitude A, ,, and a set of normalized atomic displace-
ments € within a primitive unit cell, both being real quantities.
The atomic displacements ¢ for a given basis mode (7, m) form
its so-called polarization vector, that describes the correspond-
ing set of correlated relative atomic displacements. The set of
displacements e(7, m|u, i) within the asymmetric unit of the H-
structure, i.e. withpy = 1,...,5,i=1,...,n,, define unambigu-
ously the polarization vector of the corresponding symmetry
mode (7, m). The displacements of the remaining atoms within
the H-unit cell are obtained by the symmetry operations of the
space group H that relate these atoms with those in the asym-
metric unit. By definition, each of the modes in (2) separately
maintain at least the symmetry given by the space group H .
Therefore, the displacement of an atom related by an opera-
tion (R, £) of ‘H with atom (, i) in the asymmetric unit will be
given by Re(7, m|u, i). The polarization vector (7, m) defines

the symmetry-adapted basis mode (7,m) except for an arbi-
trary amplitude; therefore we will use in the following the terms
mode and mode polarization vector as essentially synonymous.
We choose the polarization vectors of the basis modes in (2)
normalized within a primitive unit cell of the H lattice, i.e.

> mult (i) e (7, mp, ) = 1 3)

The symmetry relation mentioned above permits the reduc-
tion of the sum in (3) to the asymmetric unit by considering
the multiplicity mult(p, i) (the multiplicity within a primitive
unit cell for the space group H ) of the corresponding Wyckoff
positions. It is important that the normalization in (3) is done
with the mode displacements expressed in an absolute length
scale. In addition, the basis modes introduced in (2) are chosen
orthogonal, so that their polarization vectors fulfill:

Z,u,i mult(ﬂa i)E(Ta m|ﬂ’a l) : E(’T,, mI|M7 l) = 57’7/5mm’ (4)

This orthogonality is automatically satisfied by modes of dif-
ferent symmetry, while in the case of modes of the same sym-
metry, a systematic orthogonalization procedure can be applied.
Note that this implies that the set of symmetry-adapted modes
is not unique and a certain arbitrary choice must be done for any
practical calculation.

The displacements of the atoms in each Wyckoff orbit of the
parent structure form an invariant subspace within the space of
the structural distortions for all symmetry operations, so that the
symmetry-adapted basis modes can be chosen considering sep-
arate basis modes for each atomic Wyckoff orbit of the parent
structure, i.e. (7, m|u,i) = O for all u except a specific one.
In addition, the symmetry constraints of the polarization vec-
tor of a given mode only depends on the type of Wyckoff orbit,
so that the polarization vectors of the basis modes can be cho-
sen identical for all orbits corresponding to the same Wyckoff
position. Hence, the index m in the mode basis {&(7,m)} enu-
merating the modes associated with the same symmetry, can be
decomposed into two labels: one indicating the atom represen-
tative 1 of the set of the parent-symmetry related atoms having
displacements for this mode, and an additional index for further
enumeration of the modes of the same symmetry and the same
atoms. We will maintain, however, for simplicity whenever is
possible a single label m as a short symbolic notation.

The maximum number of modes that can be included in (2)
coincides with the number of free atomic positional parameters
necessary to describe the 7 structure in a conventional form,
i.e. with the number of (H -symmetry allowed) free parame-
ters in the set of atomic displacements {u(u,i)}. Expression
(2) is then in fact a change of basis in the mathematical vector
space of structural parameters describing the structural distor-
tion, i.e. a linear transformation between the atomic positional
parameters {u(u,1)}, that define the atomic positions in the H
-structure and the amplitudes {A ,, } of the chosen basis of sym-
metry adapted modes. It is important to stress that the dimen-
sion of these amplitudes A, is length. Therefore, they can be
expressed for instance in ansgstroms and the magnitude of dif-
ferent distortion modes present in a distorted structure can be
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directly compared even if they represent collective atomic dis-
placements of very different kind. The values of the amplitudes
A. ,, can be readily obtained from the set of atomic displace-
ments {u(u,i)}, once the basis of symmetry-adapted modes
e(7, m) has been chosen. Using their orthonormality properties,
a simple scalar product of the distortion with each normalized
mode of the basis provides the corresponding amplitude:

AT-,m = Zp,i mult(ua i)E(Ta m|/14a l) ! ll(/.L, l) (5)

The symmetry of each basis mode ¢ is characterized by an
irreducible representation (irrep) of the space group G, defin-
ing its transformation properties for the operations of the high
symmetry group G, plus generally some additional restrictions
such that the mode keeps the observed symmetry . In general
each basis mode in (2) maintains in the structure a symmetry
that is intermediate between G and H (including H or G them-
selves). In other words, its isotropy subgroup (Jaric & Senechal
(1984), Hatch & Stokes (1985)) is in general a supergroup of H.
This implies that the basis modes in (2) are normally restricted
to a specific subspace within the representation space associated
with their irrep. As this additional restriction is always present if
we are working with a specific space group H, the irrep 7 asso-
ciated with the mode can be used as a single label for describ-
ing its symmetry, with the additional restriction (forced by the
invariance with respect to the space group ) left implicit.

The distortion modes with isotropy group equal to H can
be called primary, while those with isotropy groups given by
subgroups of G which are distinct supergroups of 7, are usu-
ally termed secondary. A primary distortion mode is sufficient
to produce the observed symmetry break between the parent
and the observed structure, while secondary distortion modes
alone would yield a higher symmetry. Trivial examples of sec-
ondary distortion modes are those that maintain the symmetry
of the parent structure, i.e. they transform according to the iden-
tity irrep. This type of secondary symmetry modes always exist
except if all the atoms in the parent structure are located in spe-
cial positions with all its coordinates forced to special values.

The determination of the amplitudes A ,, of the symmetry-
breaking modes does not require to know a specific “real”
parent structure. Only the amplitudes of modes transforming
according to the identity irrep, i.e. those that do not break the
space group and are therefore already allowed in the parent
structure, depend on the specific atomic coordinates of the par-
ent structure. A change in the atomic coordinates that are vari-
able under space group G only introduces additional atomic
displacements described by modes that transform according to
the identity irrep. Therefore, the rest of the distortion, namely
the symmetry-breaking distortion remains unchanged for any
values of these variable coordinates. Hence, the calculation of
the amplitudes A, ,, of the symmetry breaking distortion modes
only requires a minimal knowledge from the high symmetry
structure, namely the set of atoms in its asymmetric unit, their
type of Wyckoff position and their correspondence with the
atoms in the distorted structure. This association between the
atoms in the high and low symmetry phases is necessary for
the calculation of the set of displacements u(u, i), but for this

purpose a rough approximate guess of the crystallographic free
coordinates of the atoms in the parent structure is in general
sufficient.

Some ambiguity in the results of the mode decomposition
occurs if the distorted phase is polar. The set of atomic displace-
ments relating the parent and the distorted structure includes in
general a global translation of the crystal that depends on the
(arbitrary) choice of origin of the polar structure. A convenient
origin choice is the one that makes this global translation zero.
This is the choice done in all analyses of polar structures dis-
cussed in this article.

It is also very convenient to express the total distortion as a
combination of a single distortion mode for each of the allowed
irreps:

u(p,i) = Are(r|u,i). (6)

The amplitudes A, are given by (3, A2 )7, while the corre-
sponding normalized polarization vector e(7) is determined by
the linear combination of the basis modes &(7, m), with fixed 7,
realized in the structure:

e(T|/’L7 l) = Zm a‘ﬂmE(T7 m\,u, l) Wlth aTym = AT,m/(ZmA‘zr,m)%
@)

The distortion mode of symmetry 7 present in the structure
can therefore be described by a global amplitude A and an n.-
dimensional normalized polarization vector with components
{as m} in the working basis {e(7,m)}. The components {a , }
define the direction taken by the observed distortion in the n.-
dimensional space of allowed 7-distortions. The set of ampli-
tudes {A; ,,} are indeed the components of an n.-dimensional
vector expressed in an orthonormal basis, and any possible dis-
tortion 7 of the parent structure can be expressed by an ampli-
tude A, and the normalized vector {a; ,, }.

While the polarization vectors e(7,m) of the symmetry-
adapted basis only depend on the symmetry properties of the
irrep 7 and include some arbitrary choice, the polarization vec-
tors e(7) describing the 7-distortion are specific for each con-
crete structure. We shall call these system-dependent symmetry-
adapted global distortion modes, present in the distorted struc-
ture, irrep distortion components, or simply irrep distortions,
to be distinguished from the irrep basis modes &(7,m). Their
amplitudes A, define the global amplitude of each irrep dis-
torsion in the structure and will vary with external perturba-
tions or with changes of the thermodynamic variables of the
system. On the other hand, the corresponding polarization vec-
tors e(7) are expected to be weakly dependent with respect to
external fields, and among isomorphic materials. In many cases
they can be related with low-energy static normal modes of the
system (see section 4 and 11), that characterize not only the
free-energy minimum realized by the observed phase, but also
the low energy arrangements around this minimum where the
system may move with relatively low energy cost.

A quantitative assessment of the similitude of the polarization
vectors of the irrep distortions of the same symmetry present
in different structures can be readily done by calculating their
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scalar product. If the two distortions are expressed by their com-
ponents {a,,,} and {d ,}, using equivalent bases, then this
scalar product is just > | ar nd’. .

3. The example of the orthorhombic ferroelectric phase
of BaTiOs.

Barium titanate, one of the most studied ferroelectrics, is known
to have a parent phase having Pm3m symmetry and three con-
secutive ferroelectric phases of different symmetries as temper-
ature is lowered (Lines & Glass, 1977). In particular, it has an
intermediate orthorhombic phase with space group Amm?2 in
the temperature interval [183K, 273K] (Tomaszewski, 1992),
which we consider here as a first example.

Without including the orthorhombic strain, the space group
Amm?2 of the orthorhombic phase of BaTiOj is related with the
one of its cubic phase by the transformation (¢, a — b, a + b;
0, 0, 0) !. The reported structure (Kwei et al., 1993) of this
orthorhombic phase of BaTiO; is reproduced in Table 1 and
shown in Figure 1. The maximum atomic displacement in the
distortion with respect to the cubic perovskite phase is smaller
than 0.13 A. The number of atomic positional parameters in
the structure is five, but, as the structure is polar along z, only
four of them are really independent, due to the arbitrariness of
the origin along z. Before performing the mode decomposition,
as discussed in the previous section, we shift the origin of the
published Amm2 structure along the polar direction so that the
atomic displacements relating both structures do not include a
global translation. This shift has already been done in the struc-
ture given in Table 1. The atomic displacements relating the
Amm?2 structure with the parent perovskite structure are then
readily obtained from the comparison of the asymmetric unit
of the Amm?2 structure with the one of the cubic parent phase
expressed in the same setting (the reference structure), which is
also listed in Table 1.

The Amm?2 distortion decomposes into two distortion modes
of different symmetry corresponding to the irreps GM4- and
GMS5- 2. Both irreps have Amm2 as isotropy subgroup. The
space of the GM4- distortion is four-dimensional while the
GMS5- distortion subspace is one dimensional (n, = 4 and 1,
for GM4- and GMS5-, respectively). A basis of five symmetry-
adapted modes ¢ is listed in Table 2. The polarization vectors
of the GM4- modes for Ba and Ti are equal and correspond
to z displacements of 1A, while for the oxygens there are two
independent GM4- modes that can be chosen as shown in Table
2. The first of these two oxygen modes involves displacements
(in angstréms) of (0, 1/4/8, 1/4/8) for O1_1 and ( 0, 0, 1/+/2) for
O1_2, while for the second one, only O_1 in the asymmetric unit
has a non-zero displacement given by (0,—1/2,1/2). Note that
the modes for Ba and Ti are described by a single 3-dimensional
vector as their orbit is not split by the symmetry break, while
in the case of the oxygens, the basis modes are given, in gen-
eral, by two 3-dimensional vectors, one for each oxygen, as they
merge into a single orbit in the parent symmetry. The modes in

Table 2 are expressed in relative units with respect to the unit
cell of the reference structure for practical purposes.

The amplitudes for the five modes listed in Table 2 can be
calculated using eq. (5). The global amplitudes of the GM4-
and GMS5- distortions result to be 0.165(3) A and 0.006(3) A,
respectively (see Orobengoa et al. (2009) for more details of the
calculation). These amplitudes can be obtained from the data in
Tables 1 and 2. Substracting the reference and the experimen-
tal structures of Table 1, the atomic displacements are derived.
Calculating their scalar product (in absolute units) with the
basis modes of Table 2, as indicated in eq. (5) the amplitudes
of the basis modes are obtained, and from them the ampli-
tudes of the normalized polarization vectors can be inmediately
derived (see eq. (6).) The distortion GMS5- is therefore more
than 25 times smaller than the distortion GM4-, which is the
polar one, responsible for the macroscopic polarization. Figure
2(a) depicts the polarization vector of the distortion mode GM5-
, which is fully determined by symmetry and is listed in Table 2.
It is a non polar mode, totally alien to the ferroelectric instabil-
ity. Its much smaller weight in the structure is fully consistent
with the physical origin of this phase. In fact, the amplitude of
mode GMS5- is so small, that its contribution to the actual values
of the atomic positions is very close to their standard deviations.

The extremely small value of the GMS5- distortion implies
that the structure has some ‘“hidden” non-crystallographic
approximate correlation among its atomic coordinates. This can
be clearly seen inspecting in Table 3 the polarization vector of
the GM4- distortion mode present in the structure. The five non-
zero displacement components in this table are not independent,
they are related by three relations: i) absence of global transla-
tion, ii) normalization and iii) GM4- symmetry. More specif-
ically, the GM4- character of the mode forces the following
relation among the components of the oxygen displacements:
0yo1+9z01 —9z02 = 0. These three relations reduce the number
of adjustable free parameters of the GM4- polarization vector to
two, which with its amplitude and the single parameter describ-
ing the GMS5- distortion make the expected total of 4 degrees of
freedom in the structure. As the GMS5- distortion mode is very
small, the GM4- symmetry is fulfilled to a good approximation
by the total distortion, so that the experimental coordinates of
the oxygens satisfy yo1 + zo1 — zo2 = 0 (for the reported struc-
ture yo1 + zo1 — 202 = 0.001440.0008). This is a non-trivial
non-crystallographic approximate correlation, which is a direct
signature of the physical mechanism responsible for the stabi-
lization of this phase, namely the thermal instability of a GM4-
polar mode.

The polar GM4- distortion mode present in the Amm?2 struc-
ture of BaTiO; is depicted in Figure 2(b). Although the dis-
tortion associated to this phase is usually described as a sim-
ple change of the spontaneous polarization (order parameter)
from the direction (1,0,0) in the tetragonal phase, to the (1,1,0)
direction in this orthorhombic one (Lines & Glass, 1977), it is
remarkable that the scheme of correlated atomic displacements

1 All along the paper, the transformation between the conventional settings of the high- and low-symmetry space groups will be given in this form, where the first
part indicates the basis vectors a’, b’, ¢/ of the subgroup in terms of those of the supergroup a, b, ¢, while the second part defines its origin shift in the (a, b, ¢) basis.
2 We follow in the whole article the irrep notation of ISOTROPY (Stokes & Hatch, 2002), which is essentially the one of Cracknell et al. (1979). The irreps at the I
point, will be labelled with the symbol GM, instead of the greek letter, to simplify the notation.
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is rather complex, and their relation with those associated with
the tetragonal ferroelectric phase are not obvious. But indeed
the GM4- distortion shown in Table 3 and Figure 2(b) is closely
connected with the simple polar distortion along a tetragonal
axis present in the tetragonal phase. A quantitative comparison
of both distortions can be done if they are considered in the
common reference of the parent phase.

Note that in this example, both irrep distortions could be con-
sidered primary from the symmetry viewpoint, as both have
as isotropy or invariance subgroup the observed space group.
From a structural viewpoint, it is, however, the comparison of
the amplitudes of the two irrep distortions in the experimental
structure that shows the primary role played in the stabilization
of the phase of one of the two irrep distortions.

4. Hierarchy of modes

The large difference in amplitude of the two distortion modes
of different symmetry present in the Amm2 structure of BaTiO3
is a simple example of a property that happens rather system-
atically in all kind of distorted structures. If a structure is pseu-
dosymmetric, the minimum of the free energy corresponding to
this phase within the configuration space of the system, should
be located in the proximity of a saddle point corresponding
to the higher-symmetry configuration. The closeness of both
points allows in general a description of this energy minimum
by a truncated Taylor expansion around the saddle point associ-
ated with the high symmetry configuration. This Taylor expan-
sion expressed in terms of the amplitudes of normal static dis-
tortion modes, i.e. diagonal for the second order terms of the
expansion, is the starting point of the Landau theory of struc-
tural phase transitions (Landau & Lifshitz, 1969). This topolog-
ical property of the energy landscape around distorted structures
is, however, rather general, and can be used to characterize the
structural properties of a distorted structure, independent of the
existence or not of a phase transition.

The first terms of a Landau-type expansion around the unsta-
ble high-symmetry configuration, with space group G and close
to the distorted phase with space group H (subgroup of G ), can
be written as:

E=Eo+ Y Bupomim+ 52 ka3 P2,,) + o (8)

where the mode amplitudes p; , ; in (8) correspond to all dis-
placive normal modes. These are classified according to their
irrep 7 (of G), a multiplicity label n, and a third index j for
enumerating the different degenerate modes associated to the
same irrep if this latter is multidimensional, so that several
modes (same stiffness coefficient . ,) exist for the same irrep.
All symmetry breaking modes, i.e. all modes not transforming
according to the identity representation, do not have linear terms
in the energy expansion (8) (the energy of a G configuration is
necessarily extremal with respect to G-symmetry breaking dis-
tortions). The linear terms in (8) are therefore reduced to the
distortion modes allowed in the space group G, i.e. those trans-
forming according to identity irrep GM1, and therefore allowed
to be non-zero in the G configuration.

We choose the normal mode amplitudes p; , ; in (8) real, and
they refer to modes that apart from being symmetry-adapted,
are also eigenmodes of the matrix of second derivatives of the
free energy with respect to the atomic displacements. We can
say that within the existing freedom in the choice of a sym-
metry adapted basis, the set of normal modes corresponding to
the amplitudes p , ; is a specific choice that apart from being
a symmetry-adapted, is also a physically-adapted basis. These
normal modes decompose the space of structural degrees of
freedom into collective modes that are energetically indepen-
dent in the harmonic approximation, their stiffness coefficients
k-, being a measure of their energy cost. They are eigenmodes
of the matrix of atomic force constants. To distinguish this priv-
ileged basis of symmetry-adapted modes, we shall call them
eigenmodes.

At least one of the stiffness coefficients ., in (8) must
be negative to make the high-symmetry configuration unsta-
ble. The anharmonic terms of lowest order, subsequent to those
shown in (8), are then sufficient to explain the off-center minima
corresponding to the distorted structure. This implies in general
that the observed structural distortion corresponding to these
off-center minima will contain mainly low energy eigenmodes.
Among them one can distinguish the contribution of primary
and secondary eigenmodes, but this distinction includes now a
physical condition to the considerations in section 2, where only
symmetry properties were considered.

Primary eigenmodes:

Primary eigenmodes are in general those that their conden-
sation is sufficient to explain the observed symmetry break
between the parent and the observed phase and are intrinsically
unstable (their stiffness coefficient is negative), while secondary
eigenmodes are those that are only present as an induced effect.
Within this viewpoint, primary and secondary eigenmodes can
be of the same symmetry, their difference being their intrinsic
instability or stability (see example in previous section).

Secondary eigenmodes:

Secondary eigenmodes, despite having in general pos-
itive stiffness coefficients and hence being hard modes,
appear in the total distortion because they have a symmetry-
allowed anharmonic coupling with the primary ones of type
psP™ (Pp1,- - ppn) Where P is a polynomial term of order
m in the amplitudes of the primary eigenmodes, (ppi, - .., Ppn)-
The minimal allowed order m has been called the faintness
index (Aizu, 1974) of the corresponding secondary mode.
Neglecting higher order terms, this lowest coupling is sufficient
for producing a non-zero amplitude of a secondary mode at the
energy minimum, if the primary distortions are non-zero:

ps ~ (Ukg)P™ (pp1, . .., ppn) 9)

where k; is the stiffness coefficient of the mode amplitude p, in
(8). All secondary eigenmodes present in the distorted phase of
space group H are necessarily coupled with the primary ones
with terms of this type, i.e. linear in the amplitude of the sec-
ondary eigenmode. Any eigenmode having as isotropy group or
invariance group a subgroup of G which is a supergroup of H
has such coupling terms, and is allowed in the distorted phase,
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in accordance with Curie laws (Authier, 2003). Thus this type
of coupling is a necessary and sufficient condition for a mode to
be present in the distorted structure. Within this perspective, the
space group symmetry # associated with the distorted struc-
ture, is just an efficient form of defining and introducing the
symmetry restrictions that all eigenmodes condensed in the dis-
torted phase should fulfill.

The eigenmodes {eg(7,n)} compatible with the symmetry
‘H of the distorted phase can be labelled in the same way as we
did with a general symmetry-adapted basis for an H distortion
in eq. (2), and we can express them in terms of the chosen sym-
metry adapted basis:

ex(T,nlp,i)=>", b(T"_,),,e(T,mm, i) n=1,...,n,

In a shorter vector notation:

er(t,n) =3 BVhe(r,m)  n=1,....n, (10)

or

eE(Tvn) = ( T, 10720 7bg'n21r)

The eigenmodes {eg(7,n)} can be used as a privileged sym-
metry and physically adapted basis to describe the irrep distor-
tions {e(7)} (see eq. (6)) present in a distorted structure:

e(r)=>,d: ec(r,n) (11)

According to the arguments above, if 7 is the symmetry of
a primary mode, the decomposition (11) will be dominated by
the unstable primary eigenmodes within the set of eigenmodes
eg(7,n) of the same symmetry 7. The rest of hard eigenmodes
of the same symmetry 7 will contribute in general with much
smaller amplitudes, described in a first approximation by eqs. of
type (9). As can be seen in eq. (9) secondary eigenmodes with
larger stiffness constants are expected to have smaller ampli-
tudes in the distortion, although the strength of the coupling
with the primary eigenmodes plays also a role and may alter
this general trend.

If 7 corresponds to a symmetry only associated with sec-
ondary eigenmodes, the static distortion of this symmetry
present in the structure is expected to be much smaller than the
primary one, because of its typical dependence on a power of
the primary mode amplitudes. The relative weight of the differ-
ent eigenmodes of the same symmetry will be essentially gov-
erned by eq. (9), i.e their relative amplitudes are approximately
inversely proportional to their stiffness, and proportional to their
coupling with the primary modes.

Summarizing, the decomposition of a distorted structure in
terms of symmetry modes is expected to show quite differ-
ent amplitudes for the different irrep distortions present in the
structure. Distortion modes that are primary from the symmetry
viewpoint will have larger amplitudes and can be identified in
a good approximation with the mode(s) that is(are) intrinsically
energetically unstable and are the origin of the observed struc-
ture (with small corrections due to presence of frozen secondary

modes of the same symmetry). In the case of ambiguity with
respect to the possible irrep associated with the primary dis-
tortion, a comparison of their respective amplitudes is in most
cases sufficient for their identification, and therefore for identi-
fying the mechanism underlying the stabilization of the phase.

5. An improper ferroelectric: gadolinium molybdate

A ferroelectric is said to be improper if its polar distortion,
responsible for the spontaneous polarization, is a secondary
mode (Toledano & Toledano, 1987). The symmetry of an
improper ferroelectric cannot therefore be explained by the
presence of a polar distortion. This latter is usually not intrin-
sically unstable in the parent paraelectric phase and its appear-
ance in the distorted phase is induced by its coupling with a
primary unstable non-polar distortion mode. The spontaneous
electric polarization in these materials is usually very small,
compared with that in proper ferroelectrics, as expected from
its secondary role in the stabilization of the phase.

Gdy(MoOQOy), is a well known improper ferroelectric
((Dvorak, 1971), (Jeitschko, 1972)). Its ferroelectric phase (see
Figure 3) has space group Pba2, with a duplication of the unit
cell (transformation: a—b, a+b, c; 0, %, 0) with respect to its par-
ent structure of symmetry P42;m, which is stable above 160 C.
The maximum atomic displacement in the displacive distortion
is of the order of 0.4 A. Figure 4 shows the graph of maximal
subgroups relating the space groups of both phases, with indica-
tion of the possible irrep distortions of P42;m compatible with
these symmetries. As shown in the graph, we should expect in
the Pba2 phase three distortion modes. A primary one yields
directly the observed symmetry and corresponds to the (physi-
cally irreducible) (see for example Stokes & Hatch (1988)) irrep
M2+M4, associated with the point M (1/2,1/2,0) at the border
of the Brillouin zone. A second mode at the centre of the Bril-
louin zone with symmetry given by irrep GM3, only breaking
the symmetry up to the intermediate subgroup Cmm2, is also
symmetry allowed and will also be present as a secondary dis-
tortion mode. This second mode is polar and is responsible for
the spontaneous polarization of the Pba2 phase. Finally, there
can also be a fully symmetric GM1 distortion keeping the parent
symmetry. The number of independent symmetry modes corre-
sponding to these symmetries is 22 and 15, for the M2+M4 and
GM3 subspaces respectively, while the subspace of GM1 distor-
tions has 14 dimensions, in accordance with the number of free
atomic parameters already present in the parent P42;m struc-
ture. In other words, the determination of the M2+M4, GM3
and GM 1 distortions requires 22, 15, and 14 parameters, respec-
tively, so that their total number is 51, in accordance with the
number of free atomic positional parameters in a conventional
description of the Pba?2 structure (Jeitschko, 1972).

A summary of the mode decomposition of the Pba2 experi-
mental structure reported in Jeitschko (1972) is given in Table
4. Again here the primary distortion is dominant, its ampli-
tude being more than one order of magnitude larger than the
secondary distortion GM3. In a very good approximation the
structure can be described considering only the M2+M4 and the
GM1 distortions, i.e. with a significant decrease of 30% in the
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number of positional parameters compared with a conventional
description.

Tables 5 and 6 complete the symmetry-mode description of
the Pba2 structure of Gd;(MoQOy), in a form following crys-
tallographic conventions. Table 5 lists a Pba2 asymmetric unit,
with the atomic positions corresponding to the reference par-
ent phase of higher symmetry (Jeitschko, 1972). For this asym-
metric unit, Table 6 lists the atomic displacements in relative
coordinates defining the normalized polarization vectors of the
GM1, M2+M4 and GM3 distortion modes present in the struc-
ture. This information together with the mode amplitudes in
Table 4 is sufficient for obtaining, just by adding the three sets
of displacements, the atomic coordinates of the asymmetric unit
that define the observed Pba2 structure in a conventional form.
This table gives information of the pattern of correlated atomic
displacements associated with the modes of different symme-
try intervening in the distortion. One can see in Table 6 that
the mode GM3 involves mainly atomic displacements on the
plane xy, while the displacements along z, which are the only
ones with polar character, are much smaller. In fact, consider-
ing the very small amplitude of this GM3 distortion, its z dis-
placements, except in the case of the Mo atoms, are practically
zero within their experimental error. Jeitschko (1972) already
pointed out that the estimated value of the spontaneous polariza-
tion in this structure considering nominal charges was smaller
than its standard deviation.

The fact that the GM3 atomic displacements along z are
practically negligible does not mean, however, that the atoms
remain static along this direction. They displace indeed along
this direction, but following essentially the symmetry pattern
corresponding to the mode M2+M4, as shown in Table 6.
This means that the total structure has some approximate hid-
den non-crystallographic atomic correlations which are satis-
fied within experimental resolution, similarly as it happens in
the orthorhombic phase of BaTiO3 discussed in section 3.

6. A strongly distorted ferroelastic: Leucite.

We consider now the structure of leucite. This mineral, with for-
mula KAISi;Og, is tetragonal (/4;/a) at room temperature, but
becomes cubic ({a3d) above approximately 940 K (see Palmer
et al. (1997) and references therein). An intermediate phase in a
very narrow temperature interval with space group /4/acd has
also been reported (Lange et al. (1986), Palmer et al. (1997)).
There is a group-subgroup relation between the room temper-
ature I4;/a and the high-temperature symmetry Ia3d, but as
can be seen in Figure 5 the displacive distortion relating both
phases is very large. The connected framework of SiO4 and
AlOy tetrahedra suffer a strong rearrangement when passing
from the cubic to the tetragonal configuration with a collapse of
the cation stuffed trigonal channels of the cubic phase. In this
case the maximum atomic displacement is of the order of 1 A, a
value considerably larger than in the examples discussed above.
Nevertheless, we will see in the following that despite the large
magnitude of the distortion, it still can be rationalized in terms
of modes. The temperature evolution of the structure includes
the variation of two distortion modes with different symmetry,

and as a consequence having quite different temperature behav-
ior.

The number of atoms per primitive unit cell is the same in
both phases, and therefore only modes at the Brillouin zone
centre, i.e. modes keeping the lattice periodicity, are involved
in the distortion. It suffices to introduce the experimental struc-
tures (Palmer et al., 1997) of the two phases in the program
AMPLIMODES, together with the transformation relating the
settings of the two space groups (a, b, c; % 0, 0), to obtain
the amplitudes and the specific features of the irrep distor-
tions present in the tetragonal phase. A scheme of the group-
subgroup tree relating the parent and distorted symmetry is
shown in Figure 6. There is a primary distortion (irrep GM4+)
which yields the observed symmetry-break between the two
phases, plus a secondary mode (irrep GM3+) with a higher
isotropy subgroup (/4;/acd), and the usual full symmetric dis-
tortion mode (irrep GM1+). The 30-dimensional configuration
space of the I4i/a structure (30 independent atomic coordi-
nates define the structure) divides among these three distor-
tion subspaces of 16, 10 and 4 dimensions, for GM4+, GM3+
and GM 1+, respectively. Their amplitudes at room temperature
result to be 4.61, 1.82 and 0.41 A. As expected, the primary
mode is significantly larger, although not in such strong propor-
tion as in the other examples discussed above.

Palmer er al. (1997) made a series of high-resolution pow-
der neutron diffraction measurements of leucite as a function of
temperature below and above the phase transition around 940K,
and have reported structural models for the material at vari-
ous temperatures. It is illustrative to analyze these structures
in terms of modes and observe the temperature behaviour of
the three distortion modes active in the tetragonal phase. Their
amplitudes follow a well-behaved smooth temperature depen-
dence, shown in Figure 7(a). Note that apart from the struc-
tures determined above room temperature, the study in (Palmer
et al., 1997) also determined the structure at 4K. Even the
amplitudes corresponding to this isolated point at very low tem-
perature agree with the smooth curves suggested by the high
temperature data. The available points for the amplitude of the
GM4+ distortion mode have been fitted to a continuous func-
tion, following the typical law of an order parameter of a dis-
continuous phase transition (Dove, 1997). What is especially
remarkable is that the curve fitted to the GM3+ amplitudes is
just the square of the curve used for the GM4+ amplitudes, with
only a scale factor having been adjusted. Hence, we are observ-
ing a primary component in the structural distortion behaving
as the primary order parameter, while a second one, weaker but
significant, varies its amplitude as the square of the amplitude of
the primary distortion, as expected for a secondary mode with
faintness index 2 (see section 4). It should be stressed that in
general for each individual atomic position the contributions of
the two modes superpose, and therefore the simple law underly-
ing the thermal evolution of the structure shown in Figure 7(a)
cannot be directly observed in the thermal changes of single
atomic coordinates or atomic distances.

One can also follow the temperature variation of the polar-
ization vectors of the two distortion modes. The value of their
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scalar product with the one corresponding to the structure at
4 K, used as reference, can be used to monitor its change. One
can see in Figure 7(b) that the polarization vectors of both irreps
distortion modes are approximately temperature invariant. This
means that in each irrep distortion the atoms follow correlated
relative displacements which are common to the whole temper-
ature range, the temperature variation being essentially reduced
to their global amplitude. This is specially true for the primary
mode. For this mode except for the points closer to the transition
the scalar product maintains values larger than 0.99, and does
not decrease in any case below 0.97. The polarization vector of
the secondary mode GM3+ has a more significant variation, but
is also quite small, except close to the transition.

The approximate invariance of the polarization distortion
modes can be understood in the light of the discussion presented
in section 4. If we consider only the lowest anharmonic cou-
pling of the secondary normal modes to the primary one and
assume them essentially temperature independent as done in
Landau theory, the secondary distortion mode minimizing the
free energy will be formed by a linear combination of secondary
normal modes that will be kept invariant for changes of the tem-
perature and the amplitude of the primary normal mode. For
the primary distortion mode something similar happens, except
that it is expected to have an overwhelming proportion of the
primary normal mode. Hence, deviations of the ideal invariance
due to higher order anharmonic coupling terms are expected to
be smaller.

One may argue that the remarkable “rigidity” of the polariza-
tion vectors of the distortion modes is due to the fact that they
correspond to rigid unit modes (RUMs) ((Giddy et al., 1993),
(Hammonds et al., 1996)) of the tetrahedral framework in the
leucite structure. Both irrep distortions can indeed be consid-
ered RUMs for the framework of AlO4 and SiO, tetrahedra.
But the primary GM4+ distortion includes a significant relative
displacement of the K cations, and its participation in the mode
polarization vector is also invariant. We will see below other
examples where connected frameworks of rigid units do not
exist, and nevertheless the property of the approximate invari-
ance of the polarization vectors of the irrep distortion modes is
maintained, even between different compounds.

In Figure 7(b) one can see that the polarization vectors of
both the primary and the secondary distortions have their largest
variation close to the phase transition. We have also observed
this behavior in various other systems. It is not clear if this is
a genuine structural feature or an experimental effect coming
from the intrinsic difficulty of the measurements in the proxim-
ity of a phase transition. It is clear that the experimental uncer-
tainty on the normalized polarization vector increases as the
mode amplitude of the mode decreases. The relative decrease
of the amplitudes does not seem, however, sufficient to explain
this systematic variation of the polarization vectors when the
transition is approached. On the other hand, it has been shown
in many cases that the primary distortion mode well below the
transition agrees nearly hundred percent with the primary nor-
mal mode calculated by means of ab-initio calculations (see
section 11). It can be then hardly understood that this agree-

ment should deteriorate somehow as the system approaches the
transition (genuine critical phenomena are irrelevant here as the
transitions are either discontinuous or the proximity to the phase
transition is not sufficient for these phenomena to appear). The
simple model explaining the invariance of the polarization vec-
tors of the irrep distortions is in principle expected to be more
appropriate for smaller distortions. Therefore, we speculate that
the significant fluctuations of the distortion polarization vectors
close to the transition points are an indication of a poorer deter-
mination of the structures under these conditions.

It is remarkable that the intermediate phase of symmetry
141/acd, which has been proposed for a small temperature inter-
val above 900 K, just before reaching the parent cubic config-
uration, would correspond to a primary distortion of symmetry
GM3+. A distortion of this symmetry is also present at room
temperature, but only as a secondary induced distortion, as dis-
cussed above and shown in Figure 7(a). It is then rather peculiar
to have a distortion of this symmetry acting as a primary (unsta-
ble) mode at higher temperatures. The mode decomposition of
the 141/acd structural model at T=923K of Palmer et al. (1997)
yields an amplitude for this distortion of 0.86 A, also shown
in Figure 7(a). This value is clearly at odds with the tempera-
ture behavior of the amplitude of the GM3+ distortion in the
14,/a phase, which shows a fast but smooth tendency to zero
at a temperature around 900K. The polarization vector of the
GM3+ distortion mode in the I4;/acd structural model is in fact
very different from the one corresponding to the /4,/a phase,
indicating that it is a quite different type of distortion despite
having the same symmetry.

A primary mode responsible for a distorted phase is expected
to be intrinsically unstable, with temperature acting as stabiliz-
ing factor, so that in general, its disappearance at lower tempera-
tures is usually caused by its incompatibility with new stronger
instabilities of different symmetry. This is not the case here,
since the phase /4/a produced by the primary GM4+ distor-
tion mode is compatible with any GM3+ distortion. Of course,
there can be exceptional cases of reentrant transitions, but this
intermediate /4/acd phase would be even a more exceptional
case, since the GM3+ distortion present would disappear when
the system enters the /4;/a phase, although it is fully compat-
ible with this symmetry. We can therefore conclude that most
probably the symmetry and structural model proposed for this
intermediate high-temperature phase is not correct.

7. Domains and equivalent structures.

It is well known that, for a given distorted structure with
symmetry H < G, there is a series of physically equivalent
structures, which are crystallographically distinguishable when
referred to the common reference parent structure, i.e. the so-
called domains, variants or twin-related structures (Janovec &
Privratska, 2003).

If the left coset decomposition of G with respect to  is given
by:

with n being the index of the subgroup H, the application of
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the G operations chosen as coset representatives g, ...g, on
the distorted structure H produces n — 1 structures equivalent
to the original one, which together with this latter correspond
to the expected n distinct domain configurations. The space
group symmetry of these n equivalent structures are given by the
space groups H;, of the same type as H and given by g;Hg; I
From the viewpoint of the configuration energy map discussed
in section 4, it means that there are n equivalent energy min-
ima around the saddle point associated with the parent phase,
giving place to the multistability or degeneracy of the distorted
phase, with the possibility of switching processes through exter-
nal fields between the different equivalent energy minima.

The mode decomposition as formalized in the previous sec-
tions is restricted to a specific orientation (and origin shift)
between the subgroup # and G, given by the transformation
matrix (P, p) relating the two space groups. This means that
among the possible equivalent orientations and origin relations
between the low and high symmetry structures a choice must be
made, and the specific expressions for the polarization vectors
of the irrep distortions describing the structure will depend on
it. The amplitudes of the irrep distortions are, however, indepen-
dent of the choice of subgroup H, among the equivalent ones.

In many cases some coset representatives g;, are such that

gHg ' =H (13)

This means that the symmetry of the corresponding domain
equivalent configuration is described by the same space group
‘H, and the use of a specific transformation (P, p) between the
parent space group and the space group of the distorted struc-
ture does not fully specify the domain choice. Domain related
structures with the same space group H (the same transforma-
tion (P, p)) are distinguished because their mode decomposition
yields irrep distortions with the same polarization vectors but
some of them having amplitudes with opposite sign, or equiva-
lently the polarization vectors of some irrep distortions have a
global change of sign, if by definition the irrep distortion ampli-
tudes are chosen positive.

If a distorted structure is described by a set of irrep distor-
tions with amplitudes {A;1,A2,...,A.}, and g; is a coset
representative in eq. (12) such that eq. (13) is satisfied, then
an equivalent domain-related structure is obtained consider-
ing the same polarization vectors for the irrep distortions
and transforming the amplitudes through the action of the
space group operation reduced to a +1 or —1 factor, i.e.
{7—1 (gi)A'rlvT2(gi)A7'27 cee 77—s(gi)A'rs}a where Tj(gi) are +1 or
—1 according to the transformation properties of each ampli-
tude given by the corresponding irrep.? The values of the factors
7;(g;) are in general correlated. Those of the secondary modes
can be directly derived from those of the primary modes through
the relation (9) connecting the amplitudes of the secondary dis-
tortions to the primary ones (this equation considers the low-
est coupling terms among primary and secondary distortions,
but the resulting sign correlation is a symmetry property that is
maintained at any level of approximation). If the distorted struc-

ture contains a single primary distortion, the mode decomposi-
tion of the domain related configuration will yield a primary
distortion with opposite sign, while secondary distortions will
change sign or not depending on their faintness index (see sec-
tion 4) being odd or even. If, on the contrary, there are several
primary distortions (with different irreps) in the structure, more
than two domain equivalent configurations for the same fixed
subgroup H exist (i.e. more than one coset representative g; ful-
fill eq. (13)), and the different domains will be distinguished
by independent uncorrelated changes of sign of the different
primary distortions, while secondary distortions will have their
signs forced by those of the primary ones according to eq. (9),
or similar generalized equations.

The subset of equivalent domain configurations correspond-
ing to a fixed H and obtained by the allowed changes of sign
of the primary distortions (and correlated ones of the secondary
ones) correspond to some of the different equivalent crystallo-
graphic descriptions of the same structure, obtained by means
of transformations belonging to the Euclidean normalizer of the
group H extended to the possible specialized metric of the lat-
tice of H, when its strain with respect to the lattice of the super-
group G is neglected (Koch & Fischer, 2006).

We can consider two of the previously discussed structures
as simple examples of the above considerations. In the case
of the Amm2 phase of BaTiO;, there are 12 equivalent dis-
torted structures of this symmetry with respect to the Pm3m
perfect perovskite. They correspond to the 6 different distinct
subgroups Amm2 of Pm3m belonging to the same conjugacy
equivalence class, and associated with 6 different orientations
of the rotational operations of the group Amm?2 with respect
to the Pm3m setting. Once chosen one of these subgroups by
means of the transformation ¢, a — b, a + b; 0,0,0, the distorted
structure can have two equivalent configurations related by the
lost inversion operation, which can be taken as the coset rep-
resentative fulfilling eq. (13). The inversion operation changes
the sign of both the primary polar distortion of symmetry GM4-
and the secondary one GMS5-. Hence the two equivalent struc-
tures can be described by opposite amplitudes (Agya—, Agus—)
and (—Agma—, —Acus—), both keeping unchanged their polar-
ization vectors. As in a mode decomposition the amplitudes are
usually chosen positive by definition, the change of sign will be
reflected in the polarization vectors considered, which would
be opposite in both configurations. The correlated switch of the
sign of both distortions is consistent with the faintness index
of the GMS5- distortion, which is 3, as can be easily checked
using the program INVARIANTS of the package ISOTROPY
(Stokes & Hatch, 2002). Note that this means that although an
external electric field only couples linearly with the polar dis-
tortion GM4-, it can switch not only this primary polar mode,
but also the secondary non-polar one GM5- through the anhar-
monic coupling between the two distortions.

In the second example, gadolinium molybdate, the index
of the subgroup is 4, and we can choose as coset repre-
sentatives the following operations (1|0 0 0), (4z]0 0 0),

3 In some cases the action of the lost symmetry operation g; on a given irrep distortion, even when fulfilling eq. (13), cannot be reduced to a factor +1 and —1, and

the polarization vectors are distinguished by more complex rotational relations.
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(1|1 0 0), (4z|1 0 0) . The rotoinversion operation 4z changes
the orientation of the Pba2 space group, and corresponds to
another choice of the transformation matrix (P, p). On the
other hand, the lost translation (1|1 0 0) transforms the dis-
torted structure into its so-called antiphase domain. This trans-
lational operation only changes the sign of the primary mode,
while keeping the signs of the two secondary distortions GM4
and GM1. Thus, once fixed the transformation (P, p) relating
both structures, and maintaining the same polarization vec-
tors, the two alternative domains for this compound corre-
spond to the distortion amplitudes (App4,Acma,Acu1) and
(—Am2+m4,Acma, Acur). These correspond to two equivalent
structures related by the operation of the Euclidean normal-
izer of Pba2, (1|3 1 0), i.e. a mere origin shift. Hence, contra-
intuitively, the sense of the spontaneous polarization is fixed and
unique in the two domains that have the same orientation for the
Pba?2 space group, despite the system being an improper fer-
roelectric. The polarization can indeed be switched by means
of an electric field, but this corresponds to the transformation
into the domain related by the coset representative (4z/0 0 0),
and therefore also implies a transformation of the polarization
vector corresponding to the primary distortion M2+M4 accord-
ing to the action of the point group operation 4z, which is not
reducible to a mere change of sign, but produces a different
relative orientation of the Pba2 space group with respect to
the tetragonal parent structure. This means that the reversal of
the spontaneous polarization along the pseudotetragonal z-axis
through the action of an electric field will be accompanied by
the transformation through the operation 4z of the non-polar
M2+M4 atomic displacements described in Table 6, which are
mostly on the plane xy.

Below we will show further examples where two primary dis-
tortion modes are active and the set of possible domains is more
varied.

8. Hexagonal perovskites ABX;

There is a considerable number of ABX3 compounds which
crystallize in the so-called hexagonal perovskite (2L) struc-
ture or in slightly distorted modifications of it. A representa-
tive of the parent hexagonal perovskite structure, with P63/mmc
symmetry, underlying these structures is CsNiCls (Minkiewicz
et al., 1970). For smaller A cations, the structure is usually
distorted at room or lower temperatures, and polar configura-
tions are rather common, producing ferroelectric phases (Mitsui
et al. (2000),Hendrikse & Maaskant (1997), Yamanaka et al.
(2002)). If the B cations are magnetic, magnetically ordered
phases also exist at low temperatures, and multiferroic proper-
ties combining ferroelectricity and magnetic ordering are pos-
sible (Morishita er al., 2001). We will see here that it is very
illustrative and illuminating to analyze and compare the struc-
tures of this family, doing a systematic mode decomposition
with respect to the ideal hexagonal perovskite configuration.
We first consider a representative of the family, namely the
compound KNiClj (Visser et al., 1980). In the parent P63/mmc
phase Ni, K and O occupy positions 2a, 2d and 6h. It has

a ferroelectric phase at room temperature with space group
P63cm with a triplicated unit cell (@ + 2b, —2a — b, c; 0,
0, 0). A mode analysis of this phase was done “by hand” in
Maiies et al. (1982). We present here its mode decomposition
as obtained with AMPLIMODES, using the parameterization
discussed above. The graph of maximal subgroups and irreps,
relating the symmetry of the ferroelectric phase with that of the
parent phase, is shown in Figure 8. One can see that there is a
primary active irrep with wave vector (1/3, 1/3, 0) and label K34
and two secondary active irreps associated with two intermedi-
ate subgroups. The K1 distortion also corresponds to a wave
vector (1/3, 1/3, 0), so that it produces the same cell multipli-
cation, but maintains the point group of the parent phase, while
the second distortion, GM2- at the Brillouin zone center, keeps
the parent lattice and is the polar mode responsible for the spon-
taneous polarization in the distorted phase.

From Figure 8 it can be deduced that the symmetry break
from the parent phase to the room temperature structure could
take place by means of two quite different mechanisms. The
most obvious one would be a single phase transition with
K3 acting as active primary irrep, and distortions GM2- and
K1 appearing as secondary effects. But one could imagine a
more complex symmetry breaking mechanism, with GM2- and
K1 being primary unstable modes, and producing in general
two phase transitions, with an intermediate phase of symme-
try P6s3cm or P63/mmc, depending on which of the two distor-
tions first becomes zero as temperature is increased. This alter-
native mechanism has been in fact considered as a possibility
in the case of YMnOs3, which has a similar symmetry relation
with its parent space group, although both parent and distorted
structures are quite different (Nénert et al. (2007), Lonkai et al.
(2004)).

In the case of KNiCl3, as in YMnOj3 (Fennie & Rabe (2005),
Orobengoa et al. (2009)), however, the mode decomposition in
terms of the three symmetry breaking components K3, K1 and
GM2- of the structure of KNiCl; leaves little room for spec-
ulation. Their respective amplitudes (in A) are listed in Table
7. The much larger amplitude of the K3 antiferrodistortive dis-
tortion is a clear indication that it can be identified with the
primary order parameter of this phase, and it can be further
inferred that K1 and GM2- are induced secondary effects. The
material is then a ferroelectric of improper character. Figures
9 and 10 illustrate the polarization vectors of the three types
of distortions intervening with so different amplitudes in the
total observed distortion. The primary K3 distortion involves
displacements of the columns of NiClg octahedra along the z-
axis, with the two internal columns displacing in opposite direc-
tion to the one at the origin. The magnitude of the displace-
ment of the column at the origin doubles the one of the internal
columns. This non-crystallographic correlation introduced by
the K3 symmetry is patent in the polarization vector listed in
Table 9. The Nil and Nil_2 atoms within the asymmetric unit
of the distorted structure move in opposite directions along z,
with a % relation between their displacements. The same rela-
tion exists among the displacements of the two Cl sites. But

4 In Maiies et al. (1982) the label used was K4. Here we maintain the labels provided by AMPLIMODES in accordance with the convention of ISOTROPY.
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Table 9 shows an additional correlation between the displace-
ments of the Cl and Ni sites, namely their displacements within
each column of NiClg octahedra are practically equal within
experimental resolution, so that the distortion mode involves
global displacements of the NiCl; columns as rigid units. This
correlation of the primary K3 distortion is not forced neither by
symmetry, nor by a strong rigidity of the Ni positions within
the octahedra. In fact, in the observed structure the Ni atoms
clearly displace relatively to their surrounding Clg octahedra
and approach along the z axis one of the two Clj; triangles form-
ing the octahedron. But these Ni displacements are not part of
the K3 distortion, they follow a pattern according to the GM2-
symmetry, as shown in Figure 9(b).

In the GM2- distortion, all Ni atoms move in phase with the
same amplitude, while the CI atoms displace also in phase with
similar amplitude but in opposite sense. The GM2- distortion
is completed with the displacements of the K atoms outside
the octahedral columns, which move in the same direction as
the Ni atoms. Hence we have a polar distortion with cations
and anions moving in opposite senses, and therefore susceptible
of producing a significant polarization, as observed experimen-
tally (Mitsui et al., 2000). The mode decomposition also evi-
dences that the displacement off-center of the Ni atoms within
the NiClg octahedra is not part of the fundamental distortion
(normal mode) that is unstable. This means that most proba-
bly these off-center shifts of the Ni atoms are not intrinsically
favourable in contrast with the pure K3 distortion.

It should be stressed that by definition a distortion mode with
anon-zero wave vector cannot induce any polarization, and only
polar modes at the Brillouin zone center, as the GM2-, can be
considered at the origin of any spontaneous polarization and
can linearly couple with an external electric field. This is rather
often overlooked in the literature, and in the present compound
has led to speculations about possible ferrielectric properties
(Machida et al., 1994). From Figure 9 one can clearly see that
the polar displacements of the GM2- distortion are fully homo-
geneous. Ferrielectricity can not therefore be supported by the
experimental structure, and the confusion probably originates
in the erroneous consideration of the dominating K3 distortion
pattern (with opposite displacements of the octahedral columns)
as the source of the spontaneous polarization.

The secondary distortion K1, although quite small, seems to
be significant within experimental resolution. As shown in Fig-
ure 10 and Table 9, this distortion concerns displacements of
the Cl and K atoms on the xy plane. The CI atoms in consec-
utive Cl; triangles along the octahedral NiCl; columns rotate
in opposite senses around the z axis, while the displacements
of the K atoms between the columns move in a sense consis-
tent with the expected steric hindrances caused by the chlorine
displacements.

The faintness index (see section 4) of the secondary distortion
K1 is 2, while that of the polar mode GM2- is 3 5 Hence, the
sign of the amplitudes of the secondary distortions are bound to

that of the primary mode, according to the proportionality laws:

2
AKl 0.8 AK3
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This means that an equivalent structure or domain (see sec-
tion 7) will be given by the following changes in the signs of
the amplitudes: (—Ak3,Ak1, —Acgm2—). This domain sign rela-
tions are very important to compare the mode decomposition
of similar or closely related structures coming from different
sources or experiments. Table 10 compares the mode decom-
position of KNiCl; with those of other ABX3 P63cm structures
considered isomorphic, namely TlFeBr;, RbMnBr;, BaMnO;
and TICoCl3°. The amplitudes of the three irrep distortions for
each compound are listed, and their polarization vectors are
compared through their scalar product with the one of KNiCls.
One can see that in the five compounds the distortion K3 is pre-
dominant and has within experimental resolution the same bidi-
mensional polarization vector, which means that in all cases the
octahedral BX3 columns displace as rigid bodies, including the
B cations inside the BX¢ octahedra. The polar distortion GM2-
has, however, clear differences. Although the GM2- distortion
in TIFeBrs is essentially the same as in KNiClj, the positive
sign of their scalar product is inconsistent with the change of
sign observed in the primary distortion K3. This means that in
TIFeBr; the polar displacements of the A, B cations and X3
columns along z displayed in Figure 9(b) have opposite senses,
with respect to the sense taken by the primary K3 distortion.
In other words, an equivalent K3 distortion in both compounds
would produce a spontaneous polarization in opposite direc-
tions. This structure must then be taken with caution. It may
happen that indeed the anharmonic couplings between similar
K3 and GM2- distortions in the two compounds have opposite
signs, but another reason could be that one of the two models
corresponds to a local false minimum in the refinement process.
Indeed, false minima have been reported in the least square min-
imization of distorted structures corresponding to changes of
sign of some of the irrep distortion modes present in the actual
structure (Rae et al., 1992).

The sign of the scalar products of the polarization vectors of
the GM2- distortions in the other three compounds is consis-
tent when compared with the scalar product of the K3 mode.
However, the three distortions differ significantly from the one
of KNiCls, as its scalar product is only of the order of 0.7-0.8.
This difference can be further assessed comparing the atomic
displacements associated with the distortion mode in each case.
Table 11 shows the polarization vector of the GM2- distortion
mode of TICoClz. One can see that in contrast with KNiCls,
the B cations displace along z in the same sense as the chlo-
rine atoms, and with nearly the same amplitude, so that in this
case the octahedral BCl; columns essentially move as rigid
units in the polar distortion. The very small off-center shift of
the B cations within the octahedra is close to the experimental
error and in fact in the opposite direction to the one observed in

5 This can be derived using the program INVARTANTS from the package ISOTROPY (Hatch & Stokes, 1985)
6 The inorganic crystal structure database (Bergerhoff & Brown, 1987) contains a few additional cases with vanadium as B cation, and RbTil3 from Zandbergen
(1981), but unfortunately in these models the z coordinate of two atoms (instead of one) were a priori fixed in the refined model, and therefore the structural models

cannot be considered realistic.




research papers

KNiCl;. We can then expect the spontaneous polarization to be
much weaker than in KNiClj.

The GM2- distortion in BaMnO3 and RbMnBrj is very sim-
ilar to the one of TICoCl;. This can be seen in Table 10, where
the alternative scalar product with respect to the polarization
vector of this distortion in TICoCl; is also shown. One can
observe therefore, that despite the similarities among the struc-
tures, a clear difference exists between the Ni and the Mn/Co
compounds with respect to the form of the secondary polar dis-
tortion.

The very weak marginal K1 distortion has much larger varia-
tions between the compounds. As its amplitude is much smaller
than the other two irrep distortions, its polarization wave vector
is expected to have a larger error. In some of the compounds
its amplitude is so small, as in TICoCls, that it could be con-
sidered negligible. For this compound, note that although the
polarization vector of the K1 distortion is rather close to the one
of KNiClj (see Tables 9 and 11), with A cations and Cl anions
displacement being correlated in a similar form (see Figure 9),
its sign is inconsistent with the one in KNiCl;s. In some of the
other compounds the polarization vector is quite different and
the sense of the displacements of the A cations relative to those
of the X anions changes.

One can then summarize that the primary distortion mode
is quite robust and transportable from one material to another,
while the secondary distortions can vary considerably. In some
cases this could be due to false local minima in the refinement
process, while in other cases it can happen because of genuine
changes in the scheme of harmonic and anharmonic couplings
among the atomic displacements between different compounds.
In any case, secondary modes have much smaller amplitudes
and are bound to be worse determined. A look at the struc-
ture decomposed into modes can be very useful both to avoid
the traps of false refinement minima, and to compare struc-
tures, where the differences appear mostly in changes of the
secondary distortions, which although quite weak can be fun-
damental for the macroscopic properties of the material.

Some of the studies on these compounds have indicated that
the alternative symmetry P3cl, instead of P63cm could also be
used to refine the experimental data of the distorted structure
with similar reliability factors. In some cases the experimental
data was not sufficient to distinguish between the two models
and only an arbitrary choice between the two models could be
done (Cussen & Battle (2000), Nishiwaki et al. (2006)). In fact,
as easily checked with SYMMODES (Capillas et al., 2003) or
ISOTROPY (Stokes & Hatch, 2002) this alternative symmetry
for the distorted phase would also correspond to a distortion K3
as primary mode, and K1 as secondary. The difference with the
P63;cm symmetry break would be associated with a change in
the direction of the order parameter K3 in its two-dimensional
irrep space, i.e. a different (orthogonal) linear combination of
the two independent modes of this symmetry. This would be
sufficient to change the symmetry to P3cl, and cancel the pos-
sibility of having a secondary polar distortion. The fact that the
structure of this secondary polar distortion, only present under
the hexagonal symmetry, is quite comparable in all the com-

pounds (see Table 10), is a significant factor that should favour
the P63cm model as the most plausible one.

Another illustration of the insight that the mode decomposi-
tion can provide is the comparison of the structure of BaMnOj3
at 80K, which has its mode decomposition summarized in Table
10, with the structure of the same compound at 1.7K, reported in
the same work (Cussen & Battle, 2000). The amplitudes (in A)
of the three irrep distortions of K3, K1 and GM2- symmetries
are at the lower temperature 0.53, 0.15 and 0.14, respectively,
to be compared with 0.42, 0.04, 0.14 for the structure at 80K
(see Table 10). The distortion amplitudes have increased with
the temperature decrease as one would expect, but their polar-
ization vectors have some clear inconsistent variation. Their
scalar product with those at 80K give 0.9998, —0.90 and 0.996,
respectively. Hence, the distortion K1 keeps its internal struc-
ture similar to the one at 80K, but has its sign switched, while
the other two distortions are practically invariant except for its
amplitude increase. From the discussion above it should be clear
that the K1 distortion has its sign fixed by that of the primary
mode (see eq. (14)), and a change of sign of this irrep distor-
tion without a change of sign of the K3 distortion describes a
structure quite different from the one reported at 80K. There-
fore, we have here most probably another example of a defective
structural model caused by a false refinement minimum with a
secondary irrep distortion having a spurious switch of sign. As
the amplitude of the K1 mode is significantly larger at 1.7K, the
incorrect sign of this distortion is most probably the one at 80K.
This could also be inferred from Table 10, where the decompo-
sition can be compared with the one of KNiCl;.

Further consideration requires the hexagonal ABXj3; com-
pounds that exhibit a distorted structure of even lower sym-
metry. KTiCls, KTiBrs and KTil; are reported to have a dis-
torted hexagonal 2H perovskite structure with space group P63.
The three structures have been obtained from single crystal
X-ray diffraction and reported in a recent publication (Jongen
et al., 2005). The reliability factors are, however, rather poor,
the weighted R factor being 0.10, 0.15 and 0.16 for KTiCls,
KTiBr; and KTils, respectively. Clearly, the structural model
for KTiCl; is much more reliable than for the other two com-
pounds. One can preform a mode decomposition of the three
structures similar to the one done for the P63cm compounds.
The transformation matrix relating the lattice and origin of these
P63 compounds with the one of the hexagonal 2H perovskite is
the same as for the group P63;cm. Hence the space group of
these compounds is a subgroup of the P63cm observed in the
compounds discussed previously. Figure 11 shows the graph of
maximal subgroups relating the parent and distorted symme-
tries in this case. The irrep distortions permitted by the P63;cm
symmetry are enlarged with new irrep components associated
with other intermediate symmetries. The most important point
evidenced by Figure 11 is the fact that there is no single irrep
distortion that can produce the symmetry break between the
parent and the distorted symmetry, i.e. the distortion present
in these P63 phases must have more than one primary distor-
tion. From Figure 11 it is clear that at least two distortions
corresponding to two different irreps are necessary to explain




research papers

the symmetry break. There could be many pairs of irrep dis-
tortions which could be responsible for the observed symme-
try P63, but assuming that the irrep K3 is also in these com-
pounds a primary distortion, the second primary mode could
only be either GM2+, K4 or K2. The presence of any one of
these three distortions together with the K3 distortion would be
sufficient for explaining the observed P63 symmetry. The mode
decomposition of these three structures summarized in Table 12
permits to identify the distortion GM2+ as the searched second
primary distortion. It is clearly the dominant component of the
distortion that superposes to those yielding the P63cm symme-
try. This distortion is represented in Figure 12. Its polarization
vector is fully determined by symmetry, as only one basis sym-
metry mode is involved. It is a rotation of the octahedral BX;
columns around the z direction. As it is a primary distortion, a
switch of the sense of these rotations independently of the sign
of the other primary distortion K3, yields an equivalent config-
uration. Figure 11 shows that the secondary distortions K2 and
K4 must be induced by the simultaneous presence of both pri-
mary modes, as their isotropy subgroups are not supergroups of
any of the two primary symmetries P63cm or P63/m, but of their
intersection P63. Indeed, using the module INVARIANTS from
ISOTROPY (Stokes & Hatch, 2002) it can be checked that the
lowest coupling of the distortions of symmetry K2 and K4, with
the primary modes, and responsible for their induction in the
distorted phase are Ax3Aguo+Ag, and A%(3AGM2+AK4, respec-
tively. Both distortions are therefore sensitive to the sign of
the GM2+ distortion, while only K2 would also switch with a
change of sign of the K3 distortion.

The K3, K1 and GM2- distortions present in these three P63
structures are compared in Table 12 with those of the P6scm
phase of KNiCls. In the case of KTiClj3, the coincidence of the
polarization vectors of the three distortions is striking, despite
the quite different amplitudes. To be noted is the correlated
change of sign of the K3 and GM2- distortions, correspond-
ing to an equivalent domain-related configuration. On the other
hand, the mode decomposition of the other two compounds,
with much worse reliability factors, suggests where the prob-
lems of these structural models could be. While the polariza-
tion vector of the primary mode K3, given by a single param-
eter, is essentially the same as in KNiCls, the secondary ones
have much larger relative amplitudes than in KTiCl; and their
three dimensional polarization vectors have erratic changes of
sign, not even consistent between the two. If KTilz and KTiBr;
are compared, their distortions GM2- and K1 are very similar
but their signs are switched, and do not correspond to equiv-
alent domain-related configurations. Probably these structures
are also associated with false refinement minima for structures
with switched secondary modes.

The mode decomposition of these P63 ABXj structures also
helps to infer the probable temperature behavior of these com-
pounds. If, as usual, they acquire the parent symmetry P6s/mmc
at high temperatures, one can expect the existence of an inter-
mediate P63cm phase after the second primary mode GM2+ is
thermalized. One cannot discard of course a single first order
phase transition with both order parameters becoming zero

simultaneously, but in most cases two active primary irrep dis-
tortions imply two successive symmetry breaks.

9. Distorted pseudocubic perovskites. Sequence of
phase transitions

There are many ABXj3 structures having as parent structure the
cubic perovskite with space group Pm3m. Depending on the so-
called Goldsmidt or tolerance factor which quantifies the mis-
fit of the sizes of the three intervening ions, different distorted
structures exist, and the cubic parent phase is often reached at
high temperatures after following some sequence of phase tran-
sitions. For these simple structures with rather rigid BX¢ octa-
hedra, a mode description is quite simple; many normal modes
are fully determined by symmetry and can be identified with
tilts or RUMs (Giddy et al. (1993), Hammonds et al. (1996))
of the framework of octahedra. A good deal of the static distor-
tions present in these compounds can in fact be described as tilt-
ing schemes of the BOg octahedra, and have been rationalized
from this viewpoint (Glazer (1972), Woodward (1997a), Wood-
ward (1997b)). The more general approach of a mode descrip-
tion has also been considered (Howard & Stokes (1998), Dar-
lington (2002)). It is not the aim of this section to review such an
extensive subject. We only want to present a few cases within
this family, as further examples of the power of a systematic
mode decomposition.

Let us consider the very well studied case of StZrO3, which
has at room temperature a distorted perovskite structure with
Pnma symmetry (Howard et al. (2000), Kennedy et al. (1999a)
and references therein), which is typical of many ABX3 com-
pounds having a too small A cation to stabilize the cubic config-
uration. In this compound, the cubic perovskite structure is only
attained above 1340K. The setting of its orthorhombic Pnma
space group is related with the supergroup Pm3m correspond-
ing to its parent structure by the transformation: (a+c, 2b, —a+c;
0, 0, 0). The distortion mainly involves correlated tilting of the
ZrQg octahedra, i.e. RUMs of the octahedral framework (see
Figure 13), with a multiplication of the unit cell by a factor 4.
This implies the presence of a considerable number of distor-
tion modes of different symmetry, compared with the examples
above. On the other hand, the number of free atomic coordi-
nates is quite limited. Figure 14 shows, the graph of maximal
subgroups connecting the two space groups and, if existing, the
irrep yielding these intermediate symmetries as isotropy sub-
groups. It can be seen that distortions with symmetries given
by irreps corresponding to three differenct symmetry points at
the border of the cubic Brillouin zone will be present in the
Pnma structure, namely the points M (1/2, 1/2, 0), X (0, 1/2,
0) and R (1/2, 1/2, 1/2). Furthermore, the graph shows that the
Pnma symmetry of this phase is not an isotropy subgroup of
Pm3m, i.e. this symmetry cannot be attained with a single pri-
mary mode. At least two primary modes are necessary. In other
words, the Pnma phase cannot be generated by a single mecha-
nism or a single unstable mode of the cubic configuration, but at
least two different normal modes must be active. In the language
of Landau theory, the phase Pnma should be the result of the
condensation of two order parameters. These order parameters
are in general expected to be thermalized and become zero at




research papers

higher temperatures, but each one independently, producing two
phase transitions. Thus, one can expect from this simple sym-
metry relation regarding the parent and distorted space groups,
the probable presence of an intermediate phase before the sys-
tem reaches the cubic perovskite.

From the graph in Figure 14 one can establish the different
possible primary distortions that may be relevant. One has to
look for pairs of isotropy subgroups which have as intersection
the observed space group Pnma. There are many possibilities.
Any pair of the distortions indicated in the graph, except for the
pair of the two M modes or the pair of two R modes would be
sufficient to explain the observed Pnma symmetry.

A mode decomposition of the experimental structure at 20C
(Howard et al., 2000) clearly shows which are the primary
distortions. Table 13 lists the amplitudes of all the distortion
modes, and one can clearly see that two distortion amplitudes
are much larger, namely those of the distortions R4+ and M3+,
the one for R4+ being significantly larger. A scheme of the
five distortion modes participating in the Pnma structure can
be seen in Figure 15. Their polarization vectors are listed in
Table S1 of the supplementary material. The two primary dis-
tortion modes are tilting modes of the octahedra with a single
basis mode involved, and therefore fully determined by symme-
try. The secondary mode X5+, however, involves both oxygen
and Sr displacements, and despite implying some distortion of
the octahedra it has a significant non-zero amplitude. The two
remaining secondary distortion modes are very weak. The M2+
is zero within experimental resolution, while the R5+ distor-
tion although very small is present in the structure, and mainly
involves displacements of the Sr atoms along the orthorhombic
z direction.

Distortion modes of symmetry R4+ and M3+ are there-
fore the two dominant primary distortion modes underlying
the Pnma structure of SrZrO;. An analogous symmetry mode
decomposition in other compounds shows that this in fact hap-
pens in most of the distorted Pnma perovskites, with again
the R4+ distortion being somehow stronger in most cases.
In this simple case, these primary modes are defined in one-
dimensional spaces and their polarization vectors are fully
determined by symmetry, corresponding to simple so-called
tilt systems of the octahedra (Glazer (1972), Howard & Stokes
(1998)). Only their amplitudes are variable, and for small val-
ues these amplitudes are linearly related with the corresponding
tilt angle.

The identification of these tilt sytems as the two primary
modes, with a symmetry given by an irrep of the parent space
group Pm3m, is an information directly obtained from the
structure, which is very valuable to infer possible transition
sequences, and general trends in the whole family. In fact, as
pointed out in previous literature (Howard & Stokes, 1998), the
instability of the perovskite cubic configuration with respect to
RUMs of symmetry R4+ and M3+ underlies many of the dis-
torted phases with various symmetries. The R4+ RUM modes

correspond for instance to the well known (three fold degen-
erate) instability present in SrTiOs; which competes with the
ferroelectric one (Zhong & Vanderbilt (1995) and references
therein), and yields for this compound at low temperatures a
tetragonal phase with 14/mcm symmetry 7. Both irreps R4+ and
M3+ are three-dimensional and the distortion and symmetry
that is realized in SrZrO; corresponds to specific directions
within the space of each representation indicated symbolically
in Table 13. An extended general explanation of the mean-
ing of specific directions of a distortion mode within the irrep
space and their relation with the isotropy subgroup, can be
found in (Hatch & Stokes (1985), Howard & Stokes (1998)).
In the present case, changing the direction within the irrep
space, means in general a change of the axis around which the
tilts of the octahedra take place, with a consequent change of
the resulting (isotropy) space group. For instance, the possi-
ble symmetries for a R4+ distortion are given by the following
isotropy subgroups 3:

I4/mem, (@ +b, —a + b,2c; 0,0,0) , (a,0,0)

Imma, (a +c, 2b, —a + c; 0,0,0), (a,a,0)

R3¢, (—a+b, —b +c¢,2a +2b +2¢;0,0,0), (a,a,a)
C2/m, (—2¢,2b,a +c; 0,,1), (a,b,0)

C2lc, (—a+2b —c, —a+ca+c;0,3,1), (a,ab)
Pl,(b+c,a+c,a+b;0,0,0), (a,b,c)

The last item in each row indicates for each case the direc-
tion of the distortion in the irrep space, in the notation used by
ISOTROPY (Stokes & Hatch, 2002).

For a given R4+ instability of the cubic perovskite, the real-
ization of one or other space group of the above list depends
on the anharmonic terms in the free energy function discussed
in section 4, which creates the anisotropy of the energy map
in the three-dimensional subspace defined by the R4+ unstable
three-fold degenerate distortion modes. Usually, because of the
smoothness of the energy map the energy minima will corre-
spond to high symmetry directions within the map (Vanderbilt
& Cohen, 2001). These free energy minima can change with
temperature and a sequence of first order phase transitions then
happens, with symmetry changes between different isotropy
subgroups of the same irrep. This is observed for instance in
CeAlO; where only R4+ distortions act as primary within its
phase transition sequence for increasing temperature (Fu & Ijdo
(2006), Avdeev et al. (2007)):

I4/mcem Imma R3¢ Pm3m

The phase transitions are associated with changes of direction
of the R4+ order parameter (distortion) according to the list of
isotropy subgroups above. This is fully analogous to the consec-
utive discontinuous phase transitions taking place in BaTiOs,
due to changes of the direction of its spontaneous polarization,
directly related with changes of direction of its polar GM4- dis-
tortion within its three dimensional irrep space (see section 3).

7 The irreps labels do not necessarily coincide with those used in other studies (Darlington, 2002). Unfortunately, even keeping a fixed specific choice of notation,
the irrep label may change depending on the origin choice in the parent structure. For instance, if the origin is chosen at the site of the Sr atom instead of the Zr, the

irrep label of the distortion R4+ would change to RS-.

8 They can be obtained with ISODISPLACE (Campbell et al., 2006) and they are also listed in (Howard & Stokes, 1998).
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In the case, of SrZrO;, the R4+ distortion corresponds to the
direction (a,a,0) with symmetry I/mma. It is namely a combi-
nation of two equal tilts around the [1,0,0] and [0,0,1] cubic
perovskite axes, which is equivalent to a tilt around the oblique
direction [1,0,1], i.e. around the x direction of the orthorhombic
setting (see Figure 15).

As the R4+ distortion is clearly much stronger than the M3+
distortion, one can infer that this latter will be thermalized at
lower temperatures leaving a phase with only R4+ as primary
distortion. If the direction of the R4+ distortion mode does not
change one can predict a phase transition into a phase with
Imma as space group, which can in principle be continuous.
If temperature is further increased subsequent transitions corre-
sponding to changes of direction of the primary R4+ distortion
mode may happen, until the cubic phase is finally reached. And
indeed this is what happens in SrZrOs3, with a reported transition
sequence (Kennedy et al., 1999q):

Pnma Imma I4/mcm Pm3m

Therefore, the relative weight of several primary distortion
modes in a distorted structure can give important clues concern-
ing its behavior at higher temperatures. We can crosscheck this
by comparing the mode decomposition of SrZrO; with the anal-
ogous phase of NaTaO3 (Kennedy et al., 1999b), also shown in
Table 13. In this compound the amplitude of the R4+ distor-
tion is about 20% smaller, while the M3+ distortion is of the
same order of magnitude. Although the R4+ distortion is still
the largest, its amplitude is much closer to the one of M3+. In
this case the transition sequence is quite different:

P4/mbm Pm3m

Pnma Cmcem

The mode decomposition of these high temperature phases is
shown in Table 14. It can be seen that the Cmcm phase is also
the result of the presence of the two distortion modes with irrep
symmetry R4+ and M3+, but the R4+ distortion has changed
its direction, so that now its isotropy subgroup is I4/mcm. Its
amplitude is now significantly smaller than the one of the M3+
distortion. One can then infer, as it is indeed the case, that the
subsequent phase P4/mbm must be caused only by the presence
of the M3+ distortion, with the R4+ distortion thermalized at a
lower temperature than the M3+, the opposite of what happens
in SrZrOs.

The M2+ distortion, which distorts the BX¢ octahedra (see
Figure 15 and S1) is practically negligible both in SrZrO; and
NaTaOs, but can have important amplitudes in the Pnma phase
of perovskites with Jahn-Teller ions. The local symmetry of the
octahedral distortions associated with this mode corresponds
to the one induced by the local Jahn-Teller effect (Carpen-
ter & Howard (2009a), Carpenter & Howard (20090)). Table
13 shows the mode decomposition of LaMnQOj3 (Rodriguez-
Carvajal et al., 1998), where the presence of a significant M2+
distortion is patent, in contrast with the previous examples.
Despite its compatibility with the symmetry produced by the
two primary dominant distortions R4+ and M3+, the M2+ dis-
tortion in Jahn-Teller Pnma perovskites act as a third primary
mode instead of as a secondary induced distortion. In fact, this

additional primary mode usually introduces a new phase tran-
sition corresponding to its independent condensation. As the
Pnma symmetry is compatible with the distortion, this addi-
tional Jahn-Teller transition would not represent any symmetry
change in a structure with both R4+ and M3+ already frozen,
and an isosymmetrical Pnma Pnma transition takes
place, with a conspicuous increase of the amplitude of the M2+
distortion acting as a non-symmetry breaking order parameter.
This is what happens in LaMnO3 at 750K (Rodriguez-Carvajal
et al., 1998).

10. Distorted structures as commensurate modulated
structures.
Mode decomposition vs. superspace description

The description of commensurately distorted structures in terms
of symmetry-adapted distortion modes is closely related with
the alternative approach of treating them as modulated struc-
tures with the use of the superspace formalism (Perez-Mato
(1991), Janssen et al. (2004)). Displacive distortion modes are
in fact modulations with the wave vectors associated with their
corresponding irrep. Thus, in the previous example of SrZrO;
three modulations with wave vectors (1/2, 1/2, 0), (0, 0, 1/2) and
(1/2, 1/2, 1/2) are present.

To describe a commensurately distorted structure as a modu-
lated phase a set of primary modulation wave vectors is defined
and the distortion is given by a superposition of harmonics of
this set of primary wave vectors. The symmetry is given by a
superspace group, which defines the correlations and symmetry
restrictions that the atomic displacements must have for each of
these harmonics. In the case of incommensurate structures the
number of harmonics is unlimited, but in practice a hierarchy
exists among them and the first harmonics are expected to be
dominant, so that the expansion can be truncated. In a commen-
surate case, the number of possible harmonics is finite, and a
hierarchy between first and higher harmonics also exists, so that
in some cases the highest harmonics can be neglected. Under
these premises, the program JANA (Petricek et al., 2006), for
instance, is adapted to treat and refine, using the superspace
formalism, any commensurately distorted structure with up to
three independent primary modulation wave vectors.

In simple cases, a mode decomposition in terms of irrep dis-
tortion modes and a decomposition with modulation harmonics
under a postulated superspace group are fully equivalent, i.e.
each irrep distortion corresponds to a specific harmonic in the
modulation, and the secondary modes can in general be identi-
fied with higher order harmonics in the superspace description.
This happens when the average space group in the superspace
group is the one of the parent structure and a single primary
wave vector exists, so that the modulation is one-dimensional.
In more complex cases, the two methods may differ in the way
they decompose the global distortion. In general, if the unit cell
of the distorted phase is much larger than the parent one, a mode
decomposition would not bring much benefit to what is already
provided by the superspace approach, and would be somehow
less efficient, since the structure of the polarization vectors can
be trivially derived from the modulation wave vector. On the
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other hand, for supercells in the distorted phase, which are only
a small multiple of the parent phase, and involve modulations
along several directions, the mode approach is usually more
convenient. We illustrate these considerations with some exam-
ples. Further discussion on this matter can also be found in
Perez-Mato et al. (2010)

Let us consider first the simple case of the triclinic structure
of NbS3. Van Smaalen (1988) showed that the triclinic structure
of this compound with space group P1 could be described and
refined as a modulated structure with modulation wave vector
(0, 1/2, 0), with respect to a basic monoclinic structure hav-
ing space group P2;/m and a unit cell with half the volume.
The structure could be refined satisfactorily introducing a sin-
gle harmonic in the modulation, which implied to use a smaller
number of parameters than a conventional refinement in the
triclinic space group P1. The reason for this can be clearly
seen in the mode decomposition of the experimental structure
(Rijnsdorp & Jellinek, 1978), which is summarized in Table
15. The decomposition has been done with respect to a vir-
tual parent P2/m structure symmetrizing the experimental one,
such that the GM 1+ distortion has been minimized to zero. One
can see that the symmetry breaking distortion has two compo-
nents: a strong distortion Z1 with wave vector ¢ = (0, 1/2,0)
yielding the observed symmetry, and a much weaker secondary
distortion GM2+ at the Brillouin zone center, with an ampli-
tude more than one order of magnitude smaller. This secondary
mode also breaks the binary symmetry, but maintains the lattice
of the parent phase. Its weakness is another example of the hier-
archy among distinct irrep distortions in distorted structures.
In the superspace description this secondary distortion corre-
sponds to a second harmonic with wave vector 2¢, which for this
commensurate case is formally equivalent to (0, 0, 0), but that
the superspace description treats separately (Perez-Mato, 1991).
Hence, a superspace refinement of the structure considering
only sinusoidal modulations, as done in (Van Smaalen, 1988),
is fully equivalent to a refinement within a model with only the
primary distortion Z1, with the distortion GM2+ being forced
to have zero amplitude.

Let us consider now a more complex case in the much-
studied ferroelectric phase of K,SeQy. This structure has been
both analyzed as a modulated phase (Parisi & Bonadeo, 1997)
and in terms of irrep distortion modes (Perez-Mato et al., 1986).
It is a commensurate Pna2; structure, with a triplication of a
parent Pnma unit cell, which is the consequence of the lock-in
of the modulation wave vector ¢ = «a™ of a previous incom-
mensurate phase into the value @« = 1/3. It is then natural to
describe this structure as a one-dimensional modulated phase
with the same superspace group as the incommensurate phase,
but with a commensurate wave vector, as done in (Parisi &
Bonadeo, 1997).

We can, however, also apply the mode decomposition
explained above. To use AMPLIMODES we only need to intro-
duce the Pnma (parent) and Pna2, structures, and the transfor-
mation relating both groups: (—3a, ¢, b; 0, 0, 0). The results

are summarized in Table 16. As expected, we have a domi-
nant component for the irrep SM2, with wave vector (1/3,0,0)
%, This prevailing SM2 distortion is the primary unstable mode
that comes from the incommensurate phase through the lock-in
of the wave vector. This primary distortion corresponds to the
first harmonic of the modulation in the incommensurate phase
and determines the superspace group symmetry governing the
symmetry properties of all additional harmonics (Perez-Mato
et al., 1984). There is also a weaker distortion with the same
wave vector but different irrep, namely SM3. This secondary
distortion can be identified with the second harmonic in a mod-
ulated description. For a wave vector ¢ = (1/3,0,0), the sec-
ond harmonic distortion has the same wave vector as the first
harmonic, but in the superspace approach, as in the previous
example, it can be treated as a distinguishable second harmonic
of the modulation functions if we use the superspace group of
the preceding incommensurate phase. The symmetry properties
of the atomic displacements described by the irrep SM3 are then
equivalent to those introduced on the second harmonic modula-
tion by this superspace group. Similarly the additional GM4-
distortion is the polar distortion responsible for the spontaneous
polarization and ferroelectric properties in this commensurate
phase, and can be identified with a third harmonic in the atomic
modulations (Perez-Mato et al. (1986), Aramburu et al. (2006)).
In this example, it is noticeable that the two allowed secondary
distortions have smaller but significant amplitudes, so that a sat-
isfactory direct refinement of the structure using either modes or
superspace modulation functions requires the same number of
positional parameters as a conventional refinement.

As a third example we take the mode decomposition of
the ninefold commensurately modulated phase of thiourea
(SC(NH3);). This structure is an intermediate lock-in phase
sandwiched within the extensive range of an incommensu-
rate phase (Moudden et al., 1979). The parent non-modulated
structure has Pnma symmetry, and the modulation wave vec-
tor is ¢ = 1/9b*, with therefore a ninefold multiplication
of the unit cell. The structure has been refined both as an
incommensurately modulated structure using the superspace
approach (Zuiiga et al., 1989) and as a conventional super-
structure (Tanisaki et al., 1988). The two models were shown
to be approximately equivalent (Perez-Mato, 1991) (see below).
Table 17 illustrates the features of the structure refined as a con-
ventional superstructure when decomposed in irrep distortions
(the hydrogen positions have not been included). A distortion
with symmetry given by the irrep DT4 with a wave vector on the
line DT (0,4,0) of the Brillouin zone with 5 = 1/9 is dominant.
The amplitudes of the additional distortions are between 10 to
20 times smaller so that it can be clearly identified as the pri-
mary mode. Note that the four irrep distortions have as isotropy
subgroup the observed space group, and therefore from symme-
try arguments any of them could be the primary distortion. In
this case, the primary character of the distortion with ¢ = 1/9b*
can only be derived from the comparison of the amplitudes of
the different irrep distortions. Also, in contrast with K,SeQy, all

9 1t is important to stress that even keeping a fixed standard for the labelling of the irreps, the irrep labels may change for different equivalent choices of the irrep
wave vector. One should also take into account the dependence of the irrep label on the setting chosen for describing the parent structure.
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irrep distortions have in this example different wave vectors cor-
responding to distinct harmonics of the primary one. Depend-
ing on the parity of the irrep wave vector, the small represen-
tation associated with the distortion mode changes from DT4
to DT1. It is noticeable that the secondary third order harmonic
with wave vector 3¢ = (0, 1/3,0), of the same symmetry as the
primary distortion, has a larger amplitude than the second one,
with a different symmetry. This third harmonic is responsible
for the soliton like form of the atomic modulations in the super-
space description (Zuiiiga et al., 1989). The modulated refine-
ment in (Moudden er al., 1979) was done using only harmon-
ics up to 3rd order for describing the atomic modulations. This
means to neglect a possible fourth order harmonic, which in the
mode decomposition corresponds to the weaker DT1 distortion
with wave vector 4g = (0,4/9,0). Table 17 shows that in the
model refined as a conventional superstructure the amplitude of
this distortion, although very small, is larger than its standard
deviation. This difference is at the origin of the small differ-
ences between the atomic positions of the two models, shown
in (Perez-Mato, 1991).

It is interesting to compare in this last example the description
of each harmonic modulation obtained by the two approaches.
Table 18 shows the polarization vector of the primary DT4 dis-
tortion in the mode description. The description of the distortion
mode is quite redundant. The three cations S, C and N have a
single independent site in the parent unit cell and are split into 5,
5 and 9 independent sites, respectively, in the ninefold structure.
To describe the distortion mode it is necessary to give the mode
displacements for all atoms in the large asymmetric unit of the
distorted phase with 19 atoms. In these 19 atomic displacements
the trivial correlations between consecutive parent unit cells
along the modulation direction coming from the sinusoidal form
of the mode/modulation are inextricably entangled with the non
trivial ones coming from the DT4 character of the correspond-
ing irrep. In contrast, the definition of the first harmonic modu-
lation in the superspace approach only requires to give explic-
itly the three amplitudes that determine the first harmonic of
the modulation function for the three independent atoms in the
asymmetric unit of the parent phase (Zuiiiga et al., 1989). The
sinusoidal function so defined, together with the modulation
wave vector is sufficient to describe the displacements of the
equivalent atoms in the nine consecutive parent unit cells form-
ing the superstructure unit cell, while the correlation accord-
ing to irrep DT4 with those atoms that are symmetry related by
rotational operations in the parent phase is automatically intro-
duced by the superspace group operations (Janssen ef al. (2004),
Perez-Mato et al. (1987)).

As a final example we consider phase Gall of the element
Ga under pressure, which to our knowledge is the most extreme
case achieved in parameter reduction when describing a super-
structure as a modulated structure within the superspace formal-
ism. This phase of symmetry C222, (Degtyareva et al., 2004),
stable between 2 and 10 GPa, has a very large unit cell with
14 symmetry independent Ga atoms, but it has been shown to
be a simple commensurately modulated structure of a Fddd
structure with only a single symmetry independent atom at the

Wyckoff position 8a (1/8, 1/8, 1/8) (Perez-Mato et al., 2006).
The superspace group describing the symmetry properties of
the modulation was found to be Fddd(00+)0s0, with v = 9/13.
Hence the modulation wave vector was chosen (0 0 9/13) and
the conventional unit cell is multiplied by 13, with respect to the
virtual Fddd parent structure. Within the superspace approach
the number of possible harmonics for the single atomic modu-
lation required to define the full structure is 25. But the struc-
ture could be satisfactorily described with only three harmonics,
which meant a reduction from 38 to 4 positional parameters,
when passing from a conventional crystallographic descrip-
tion to a modulated one. The transformation relating the set-
ting of the Fddd parent structure with the experimental one
(Degtyareva et al., 2004) can be chosen as (a, —b, —13c; fé,
%, —%). The maximum atomic displacement in the distortion
relating both structures is of the order of 0.8 A and its mode
decomposition is summarized in Table 19. The number of pos-
sible irrep distortions is 25, in accordance with the number of
allowed harmonics in the superspace description, but the irreps
involved have only 13 possible wave vectors of type n/13 c*,
with two different possible small irreps for each of them except
for n = 13, which corresponds to the special point Z at the
Brillouin zone border and only one irrep is compatible. The
irrep distortions with n odd all have as isotropy subgroup the
observed symmetry and are from this viewpoint possible pri-
mary modes, while the even modes are all secondary, with
higher isotropy subgroups. The amplitudes obtained for the 25
symmetry components in the distortion shows the dominant role
played by the LD3 distortion with wave vector g = 9/13 c*,
in accordance with the superspace description. This LD3(9/13)
distortion is clearly the primary distortion, being more than one
order of magnitude larger than the rest of components, except
for two additional irrep distortions, which can be identified with
a second and a third harmonic. Indeed, the LD4[1/13] distortion
with a considerable amplitude has a wave vector equivalent to
3g, while LD2[8/13] can be identified with a second harmonic
with wave vector 2¢q equivalent to —8/13 c*. These three irrep
distortions correspond therefore to the three first harmonics,
which were considered sufficient in (Perez-Mato et al., 2006)
to describe the structure.

In general, for each wave vector n/13 ¢* two irrep distor-
tions exist with symmetries LD3 and LD4 for odd terms and
LDI1 and LD2 for even terms, except for the case n = 13,
with a single irrep Z2. Each of these irrep distortions corre-
sponds to one of the harmonics used in the superspace descrip-
tion. A modulation harmonic of order m(m = 2, ...,25) in the
superspace description is in fact a distortion with wave vec-
tor g, = 9m/13 ¢* which can be changed to an equivalent
wave vector ¢, = n/13 ¢* (n = 1,...,13) through a recip-
rocal lattice translation 2pc* (p integer): ¢, = qn + 2pc* or
—gm +2pc*. This change implies also to change the small irrep
associated with the wave vector, depending on the parity of p,
so that for n odd, it changes from LD3 (p-even) to LD4 (p-
odd), while for n even, the change is from LD1 (p-even) to
LD2 (p-odd). This property can be derived from the form of
the irreps, and their labeling through a wave vector represen-
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tative and a small irrep, that depends on the chosen wave vec-
tor (Cracknell et al., 1979). Thus, for instance the LD3[1/13]
distortion can be considered a 23rd harmonic, its wave vector
being g3 = 23 - (9/13)c* = —(1/13)c* + 8 - (2¢*) with p
even, while LD4[1/13] corresponds to the third order harmonic
with g3 = 3 - (9/13)c* = (1/13)c* 4+ 2¢*, and p odd. Follow-
ing these rules the correspondence between the 25 harmonics of
the superspace description and the 25 irrep components of the
mode decomposition can be done. This is given in the first col-
umn of Table 19. The equivalence between the two approaches
can be clearly seen, and also that the superspace approach can
deal with the symmetry constraints present in each harmonic in
a more efficient way.

The choice of the superspace group implies a decision about
which of the 25 irrep distortions is the primary modulation.
Once a superspace group is assumed, the superspace symme-
try automatically introduces the symmetry properties of each
harmonic, and a rough hierarchy in their importance is implic-
itly assumed. The mode decomposition, on the other hand, does
not assume a priori any predominance among the 25 irrep com-
ponents, and one has to define and indicate explicitly one by
one the symmetry properties of each possible irrep distortion
present in the structure. Only the actual mode decomposition
and the values of the distortion amplitudes for a given struc-
ture will allow to identify if there exist a primary prevailing
distortion. Even if a primary distortion has been a priori iden-
tified from experimental results, the identification of the sec-
ondary modes of lowest order among all possible irrep distor-
tions, susceptible of having more weight in the total distortion,
require non-trivial considerations about the relation between
irrep labeling and wave vector choice, as shown above.

Although the structure of Gall, as stressed in (Perez-Mato
et al., 2006), is clearly very well described by the three first
modulation harmonics, indicated in Table 19, there are some
additional distortion amplitudes, which seem to be signifi-
cant (being clearly larger than their standard deviations). It is
remarkable that even for these smaller components the underly-
ing hierarchy for odd harmonics coming from the primary mode
is observed; a fact that supports the consistency of these smaller
components of the reported structural model. Thus, as shown in
Table 19, the next two irrep distortions with the largest ampli-
tudes of 0.16 and 0.12 A can be identified with the 5th and 7th
modulation harmonic. On the other hand, the secondary modes
with n even, except the second harmonic, have amplitudes that
can be taken as zero, considering their standard deviation.

Summarizing, one can say that the use of symmetry-modes
in the description of distorted structures is quite similar to the
application of superspace symmetry. Both approaches allow
in commensurate distorted structures a division of the config-
uration space into symmetry-adapted subspaces , which have
usually very different weights in the total distortion. However,
the superspace symmetry of a commensurate structure is not
unique, and in this case the choice of the superspace group is
equivalent to a choice (among the possible ones) of the irrep
mode(s) that have a primary role and prevail in the distor-
tion. In contrast, a parameterization of the structure in terms

of symmetry-modes does not require introducing a priori such
hierarchy among the irrep components. On the other hand, the
superspace formalism introduces a much more efficient and
economical form of describing the irrep distortions, if these are
modulations with long wavelengths compared with the size of
the parent unit cell. Reversely, for superstructures with a small
cell multiplication, including cases with several independent
wave vectors, the symmetry-mode decomposition is more effi-
cient and simpler than the superspace method.

The choice of the most adequate superspace group for a
commensurate structure can in some cases be problematic or
ambiguous. In these cases, the symmetry-mode approach can
help to make the right choice of the superspace group by iden-
tifying one or several primary active irreps. It is in general pos-
sible to derive the resulting possible superspace groups from an
active irrep (Perez-Mato et al. (1984); Stokes et al. (2007)).

11. Mode Analysis in ab-initio calculations. A natural
basis of symmetry modes

11.1. Constraining the configuration space

Quantum ab-initio calculations within the formalism of the
density functional theory (DFT) Rabe et al. (2007), Yin &
Cohen (1982), Milman et al. (2000)) are becoming rather com-
mon tools to explain the stability of distorted phases and to
predict their structures. These calculations permit in general to
determine within a good approximation the energy and atomic
forces for any crystalline configuration. By this means, struc-
tures can be relaxed in the computer and a prediction for the
ground state of the system can be obtained. Despite complex
extensions and improvements of this basic relaxation process
(Oganov & Glass, 2006), these ab-initio calculations are lim-
ited by the fact that the configuration space being explored
must always be constrained to a small subspace. The choice of
this restricted subspace is a rather empirical matter, despite the
vocation of these calculations of being independent of experi-
mental knowledge.

Another limitation is the fact that these methods only calcu-
late properties at 0 K, and therefore are only valid for determin-
ing the ground state configuration, and not phases that are stabi-
lized by thermal effects. Some thermal effects can be calculated
with more computer costly ab-initio molecular dynamics (Car
& Parrinello, 1985), or with Monte Carlo calculations introduc-
ing further approximations as effective Hamiltonians (Zhong
et al., 1995). But also within these techniques, the empirical
constraint on the explored configuration space plays a funda-
mental role and can be critical to obtain correct predictions.

The reduction of the explored configuration space is often
done by considering a limited set of possible space groups (sub-
groups of the parent space group). From what was shown in the
sections above, it is rather obvious that a symmetry mode anal-
ysis can be a tool of extraordinary efficiency to identify the rel-
evant symmetries that are worth exploring. The distorted per-
ovskites discussed above are a clear example. Most of these
phases are caused by one or several symmetry modes, which
tend to be systematically unstable for many compositions. Dis-
tortions corresponding to the irreps R4+, M3+ and GM4- can
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be found acting as primary irrep distortions in many of these
phases, yielding quite a various but limited set of space group
symmetries. These possible space groups depend on the direc-
tion taken by each distortion mode within its irrep space, and
the actual combination of the three irreps realized in each case.

Let us consider, for instance the case of multiferroic BiFeOs.
Despite the intensive research on this material, its thermal
phase diagram is still under discussion. Its room temperature
phase has R3¢ symmetry, and can be decomposed into R4+
and GM4- contributions. If we are interested to determine other
phases of the phase diagram, it is then reasonable to expect
that these phases correspond to other possible combinations of
R4+ and GM4- distortions, or are due to only one of these two
irrep distortions. Using freely available tools as ISODISPLACE
(Campbell et al., 2006) one can get automatically all possible
space groups that can result from the action of these two irreps
as primary distortions, acting together or isolated. These sym-
metries are shown in Table 20 and are the obvious candidates
for any intermediate or competing phase. Furthermore, if we are
trying to characterize an intermediate paraelectric phase real-
ized before a full symmetrization into the parent cubic symme-
try (the so-called S-phase), then the obvious symmetry choices
are the isotropy subgroups corresponding to a single R4+ dis-
tortion, also listed Table 20. Six different space groups are then
possible. Only a couple of these symmetries have appeared in
the considerations of some of the published ab-initio or exper-
imental studies of BiFeO3; (Haumont et al. (2008), Kornev &
Bellaiche (2009), Kornev et al. (2007)) and the symmetry of
this intermediate phase is still a matter of discussion (Catalan &
Scott (2009), Selbach ef al. (2008)). Unfortunately, a systematic
exploration, either experimentally or with ab-initio techniques
consistent with the mode analysis, taking into account these six
possibilities, has not been done.

Some recent work has reported that this 5 phase of BiFeO;
has Pbnm symmetry (conventional Pnma) (Arnold et al., 2009).
As it can be seen in Table 20, this symmetry cannot be explained
by the action of a R4+ distortion or the combination of R4+ and
GM4-. This phase would be the Pnma configuration, typical of
many perovskites, that was discussed in section 9. As shown
there, it requires, besides a R4+ distortion, an M3+ distortion as
primary agent of the symmetry break. This Pnma phase would
then imply that not only the polar distortion GM4- disappears
at the ferroelectric-paraelectric transition, but also an additional
M3+ distortion simultaneously condenses. This is in principle
possible, as the transition is strongly first order. But a full vali-
dation of the model, given the uncertainties of powder diffrac-
tion analysis of pseudosymmetric structures, would require to
explore and to check first the simpler scenarios represented by
the action of only a R4+ distortion, whose possible space groups
are listed in Table 20. The need for defining a limited set of pos-
sible reasonable alternative symmetry scenarios is even more
peremptory if we would pretend to predict or determine these
phases by ab-initio methods. As seen in this example, the anal-
ysis of the known structures in terms of irrep distortions can be
a most valuable tool for this task.

11.2. Comparison of ab-initio structures with experimental
ones.

Ab-initio calculations are frequently used to deter-
mine/predict the structure corresponding to the ground state
of the studied compound. As stressed above, the calculation is
in general limited by the assumed symmetry of this state. Some
good approximations to the structures of thermally stabilized
phases can also be obtained by restricting the minimization
of the energy within a postulated or an experimentally known
space group symmetry. The comparison of these theoretical
structural models with experimental ones is usually done at a
qualitative level, comparing one to one the atomic positions.
We have seen in the previous sections that the decomposition
in terms of symmetry-modes provides a robust framework for
doing quantitative comparisons of experimental structures, hav-
ing equal or different symmetry. As shown in section 8, the
separation in a given structural distortion of the irrep distor-
tion amplitudes and the corresponding normalized polariza-
tion vectors, together with the distinction between primary and
secondary irrep distortions, permits quantitative comparisons
of different structural models with deeper insight, separating
marginal from fundamental structural features. This is also valid
for the comparison of ab-initio calculated relaxed structures
with experimental ones. The athermal character of the ab-initio
calculations is bound to yield distortion amplitudes in general
larger than those observed in experiment, while the polarization
vectors of the irrep distortions are expected to be rather robust,
weakly dependent on temperature and therefore well described
by the calculated models. By means of the symmetry-mode
decomposition, the extreme quantitative agreement of sound
ab-initio calculations with experimental structural features can
become patent.

As an example, let us consider the case of BisTizOy,. This
Aurivillius compound has a tetragonal /4/mmm configuration
as parent structure, and its room temperature ferroelectric phase
was the subject of some controversy. While powder x-ray and
neutron powder diffraction studies (Zhou et al. (2003), Her-
voches & Lightfoot (1999)) reported a structure with space
group B2cb (No. 41, B2eb in the new standard notation (Hahn,
2002)), which is the usual symmetry within the family, an early
single-crystal x-ray analysis (Rae et al., 1990) claimed that the
phase was monoclinic, with space group Blal, a subgroup of
B2cb. The monoclinic angle was 90 degrees within experimen-
tal resolution, making difficult the experimental detection of
this symmetry reduction with powder diffraction experiments.
However, a first-principles relaxation of the structure within the
discussed Blal symmetry and its comparison with the experi-
mental monoclinic structure, decomposed into irrep distortions
dissipates any possible doubt about the actual symmetry of
this phase (Perez-Mato et al., 2008). The Blal structure has
57 free positional atomic parameters, compared with 6 in the
parent tetragonal structure. The additional 51 degrees of free-
dom can be divided into seven distinct irrep subspaces. For our
purposes the specific labels and symmetry breaking properties
of these seven irreps are not important (more details can be
seen in (Perez-Mato et al., 2008)), except that three of them




research papers

are compatible with the space group B2cb, and the remain-
ing four are added by the reduction of the symmetry to Blal.
Ordering these seven subspaces in a fixed way, with the three
irreps consistent with the B2cb symmetry first, the experimen-
tal monoclinic structure can be described by a vector with seven
components/amplitudes (in A), namely (1.60, 1.43, 0.96, 0.62,
0.08, 0.22, 0.13), and seven specific normalized polarized vec-
tors defined in each subspace. The dimensions of the seven sub-
spaces are 8, 11, 3, 5, 8, 9 and 7, respectively. One can see in
the 7-component vector the prevailing weight of the first three
distortion components, i.e. the ones that are consistent with the
B2cb space group. The modulus of the 7-component vector, i.e.
the total amplitude of the structural distortion, is 2.45 A, while
the three first irrep components already constitute a distortion
of 2.35 A. The remaining orthogonal distortion that reduces the
symmetry to Blal has a total amplitude of 0.68 A. This lat-
ter is therefore much weaker, but certainly significant, with a
clear predominance of the first of the four additional irrep com-
ponents with an amplitude of 0.62 A. The computer calculated
relaxation of the structure within the Blal symmetry resulted
in a structure described using the same parameterization by the
following vector (1.77, 1.33, 1.07, 0.82, 0.10, 0.25, 0.11). As
expected, the amplitudes are in general slightly larger: 2.61A
vs. 2.45A for the total amplitude, 2.46A vs. 2.35A for the B2cb
distortion (first three components) and 0.87A vs. 0.68A for the
modulus of the remaining four components. This slight increase
is quite homogeneous for the seven amplitudes, the relative val-
ues following the same pattern as in the experimental structure.
This similitude of the two structural models can be quantified
by the parallelism of the directions defined by the two vectors
above; their scalar product is 0.995, very close to the ideal par-
allelism.

One can further compare the internal form of each irrep dis-
tortion component through the values of the scalar products
of their normalized polarization vectors derived from the two
structural models. These scalar products result to be —0.998,
—0.996, 0.998, 0.99, —0.73, —0.80, 0.64, respectively. This
means that a more adequate description of the calculated struc-
ture, defining polarization vectors similar to those used for
the description of the experimental structure, would require to
change the signs of some amplitudes: (—1.77, —1.33, 1.07,
0.82, —0.10, —0.25, 0.11). One can check that these corre-
lated changes of sign of some of the irrep distortion ampli-
tudes correspond to an equivalent domain-related configura-
tion, as discussed in section 7, and are therefore not impor-
tant. Note, however, that they imply that a conventional map-
ping of the two structures comparing one to one the atomic
positions makes no sense in general. In contrast, the detailed
comparison in terms of symmetry-modes demonstrates quan-
titatively the striking agreement of the two structural models,
once the expected larger amplitude of the theoretical distortion
is taken into account. The dominant irrep components in the
two structures perfectly agree, as shown by their scalar prod-
ucts; in particular, the irrep distortion defined by five param-
eters with amplitude 0.62 A, which is mainly responsible for
the symmetry reduction to Blal is reproduced by the theoret-

ical calculation up to a coincidence given by a scalar product
of 0.99. One can surely not only take for granted that the com-
pound is monoclinic, but also confirm the monoclinic structural
model. Note, however, how the agreement of the weaker sec-
ondary components is significantly worse. For the irrep compo-
nents with amplitudes of the order of 0.1 A, the scalar product of
their polarization components reduces to values of the order of
0.7. Although the polarization vectors of weaker distortions are
necessarily less accurate (the error increasing as the irrep distor-
tion amplitude decreases), the deterioration of the agreement is
somewhat larger than expected from this effect. It seems that
weaker marginal components are less well-determined, simi-
larly as it happens in the comparison of experimental structures.

The high level of agreement between ab-initio and experi-
mental structures shown in the example above is not excep-
tional, when done in this detailed quantitative form. In Perez-
Mato et al. (2009) the P2, experimental structure of SrAl,O4
was compared with an ab-initio relaxed structure and the coin-
cidence of both models is also excellent. This structure can be
considered a distortion from a P6322 parent phase. The sys-
tem has 5 irrep distortions; their symmetry labels and respec-
tive isotropy subgroups are indicated in Figure 16. Ordering the
components in the form (M2-1q, GM6, M3-1q, GMS5, GM4),
the vectors describing the amplitudes of the irrep distortion
components were (1.70, 1.39, 0.57, 0.32, 0.02) and (1.81, 1.35,
0.57, 0.24, 0.03) for the experimental and the ab-initio calcu-
lated structure, respectively, with their directions having 0.998
as scalar product. In addition, the scalar products of the polar-
ization vectors of the 5 irrep distortions in the two structures
were 0.998, 0.9997, 0.997, 0.96, 0.63. We can compare more in
detail the polarization vectors of the primary distortion having
1.70 A and 1.81 A amplitudes in the experimental and theo-
retical structures, labelled as M2-1qg. Using a set of 12 basis
modes, the experimental polarization vector for this distortion
is (—0.15, 0.10, —0.17, —0.22, —0.14, —0.11, —0.69, —0.53,
0.06, —0.14, 0.05, —0.31), while the one in the ab-initio relaxed
structure is (—0.14, 0.07, —0.15, —0.22, —0.13, —0.10, —0.69,
—0.54,0.05, —0.11, 0.02, —0.31). Note that due to the different
total amplitude of the distortion in the experimental and theo-
retical structures, and the contribution of the weaker irrep dis-
tortions, this nearly perfect agreement on this primary distortion
could not be detected by a direct comparison of the atomic coor-
dinates.

11.3. Primary and secondary distortions in ab-initio calcula-
tions

The different roles played by primary and secondary distor-
tions in the stabilization of distorted phases can be investigated
by means of ab-initio calculations of the energy landscape as
a function of the amplitudes of the different irrep distortions
detected in the experimental or in the ab-initio relaxed structure.
We have seen that the symmetry-mode decomposition permits
in general to distinguish the collective degrees of freedom that
are unstable in the parent phase and are responsible for the exis-
tence of the observed phase from those that are present in the
distortion, but are irrelevant for the transition mechanism, in the
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sense that the transition would take place independently of their
presence or not. These modes are in fact stable or “hard” modes,
despite their condensation through coupling with the primary
distortions.

As an example Figure 17 shows the energy variation in
SrAl,O4 (Perez-Mato et al., 2009), as a function of the ampli-
tude of the primary distortion GM6 observed in the experimen-
tal P2, structure, the one with amplitude 1.39 A (see above).
This energy variation is compared with the one resulting from
the secondary distortion M3-1q also present in the experimen-
tal structure with an amplitude of 0.57 A. A schematic view of
these distortions is given in Figure 18. While the polar GM6 dis-
tortion corresponds to an instability of the parent configuration,
the M3-1q distortion that has a weaker but significant weight
in the distortion is a “hard mode”. As shown in Figure 17, this
distortion component by itself is energetically unfavorable, and
if it could be hindered, the structural instability of the parent
structure would still persist.

The expected very different response to external perturba-
tions of the irrep distortions becomes evident when the resulting
ab-initio structures are analyzed in terms of symmetry modes.
Figure 19 shows the amplitudes of the two primary unstable
distortions, GM6 and M2-1q, present in the ab-initio calculated
structures as the monoclinic 3 angle is varied parametrically, its
equilibrium value being about 93.5 (or 86.5). In this compound
the monoclinic strain is bilinearly coupled with the irrep distor-
tion GM6, while only higher order coupling terms, biquadratic
or higher are allowed with the second distortion M2-1q. This
means that the GM6 distortion is expected to respond linearly
to changes in the monoclinic shear strain, while the response of
the M2-1q would be much weaker and not linear. Furthermore,
the change of sign of the monoclinic shear strain should imply
a corresponding switch of the GM6 distortion and the associ-
ated dielectric polarization, making the system transit into an
equivalent domain-related configuration, with the GM6 distor-
tion having an opposite amplitude, while the M2-1q distortion
is maintained, in accordance with the general rules discussed in
section 7. Figure 19 shows that indeed the responses of the two
irrep distortions to the forced shear strain follow this expected
pattern. In fact, the M2-1q distortion is essentially insensitive to
the change of the monoclinic angle, while the GM6 distortion
shows the expected switch and linear variation. Furthermore,
the variation of the internal structure of the two distortions,
monitored by the scalar product of their polarization vectors
with those for a reference value of the monoclinic angle, is min-
imal, demonstrating that in a first approximation the variation of
the structure is reduced to changes of some of the irrep distor-
tion amplitudes. On the other hand, the variation of the polar-
ization vector of the M3-1q distortion, is significantly larger. As
expected, this secondary distortion, being a higher order cou-
pling effect, with contributions of similar weight of different
hard modes, suffers a stronger variation in its internal structure.

11.4. The privileged basis of energy eigenmodes

In section 4, we introduced the special physically-adapted
basis of symmetry modes {eg(7,n)} constituted by the eigen-

modes of the matrix of second derivatives of the free energy
for the atomic displacements with respect to the parent config-
uration. Quantum ab-initio calculations within the DFT formal-
ism allow a theoretical determination of this privileged basis of
eigenmodes, at least in the athermal approximation (i.e. assum-
ing OK). Branches of stiffness constants «., ,(k) within the Bril-
louin zone, analogous to phonon branches, can be calculated.
The more unstable modes, i.e. those with most negative and
lowest stiffness constants, are expected to prevail in the dis-
torted phase (or phases) as primary modes. This is the basis
for the construction of effective Hamiltonians for thermal sim-
ulations, where only the degrees of freedom corresponding to
the lowest stiffness constant branches are included, the rest
being subsumed within the heat bath. This approach implies two
important approximations:

e Neglecting the secondary (hard) modes.
e The frozen primary distortions are supposed to corre-
spond to the lowest static eigenmodes.

Comparing the symmetry-mode decomposition of experimen-
tal or ab-initio relaxed structures with the calculated basis of
energy eigenmodes one can obtain an assessment of the valid-
ity of these approximations. In previous sections we have seen
examples where secondary distortions of different symmetry
than the primary distortion(s) are indeed quite negligible, as in
BaTiOs3, but we have also shown other cases where although
they have much smaller amplitudes, the secondary distortions
are clearly significant. One cannot quantify their importance in
the thermal properties from their weight in the frozen static dis-
tortion, but one can expect a rough direct proportion between
both.

Although hard secondary modes are irrelevant for the exis-
tence of the instabilities associated, they can play a fundamental
role in the stabilization of the primary mode(s) along a specific
direction within the irrep subspace, and therefore in the under-
standing of the phase diagram and the symmetries realized in
the different phases. The identification of these significant sec-
ondary irrep distortions by means of a symmetry-mode decom-
position of the experimental or the ab-initio relaxed structure
is then the first step for improving the effective Hamiltonian
method by including these additional degrees of freedom.

The validity of the second approximation within the effective
Hamiltonian method mentioned above can be checked using the
basis of calculated energy eigenmodes to describe the observed
primary distortions. In the examples above, the polarization
vectors of the irrep distortions were expressed in an arbitrar-
ily chosen basis of symmetry-adapted modes. Once the static
eigenmodes {eg(7,n)} for a certain irrep 7 are calculated, the
amplitudes a?n in eq. (11), describing the observed irrep distor-
tion e(7) in the basis of energy eigenmodes, can be immediately
obtained through the scalar products eg(7,n) - e(7).

Let us consider the X3- primary distortion (with respect
to a tetragonal [4/mmm parent configuration) present in the
orthorhombic phase of SrBi;Ta,Oy (Perez-Mato et al. (2004),
Orobengoa et al. (2009)). This distortion was shown to be
described by the vector (0.94, 0.34, 0.06, 0.06, 0.01, 0.03, 0.01)
in the basis of energy X3- eigenmodes of the parent structure,
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ordered from the lowest to the largest stiffness constant. In this
basis, only the first eigenmode is unstable, the other six having
all positive stiffness constants (Perez-Mato et al., 2004). One
can see that indeed the unstable mode is dominant in the con-
densed distortion, but hard X3- eigenmodes have also small but
significant contributions, which, as expected, decrease in gen-
eral with the hardness of the eigenmode (see section 4). In par-
ticular, the second eigenmode, which is the softest one after the
unstable one, but nevertheless stable, has a considerable weight
in the static X3- distortion. Similarly, a second primary distor-
tion of symmetry GMS5- of polar character, responsible for the
spontaneous polarization of this compound, was given in the
basis of calculated GM5- eigenmodes by the vector (0.88, 0.32,
0.14, 0.07, 0.09, 0.06, 0.28) with the components also ordered
from softer to harder eigenmodes (Perez-Mato et al., 2004).
Also here, only the first eigenmode is unstable, and one can see
an important contribution of the second mode, despite being sta-
ble. Furthermore, in this case, it is remarkable that the hardest
eigenmode, which corresponds to an internal vibrational mode
of the TaOg octahedra has a large weight in the distortion, break-
ing the general trend of decrease of the amplitudes with the
hardness of the eigenmode. This is due to a very strong anhar-
monic coupling of this mode with the unstable first eigenmode,
dominant in the frozen GMS5- distortion.

This mode analysis of the experimental structure, combined
with ab-initio calculations, shows that hard eigenmodes with
the same symmetry as the unstable ones, can participate signif-
icantly in the distorted phase. This effect can also be observed
in the distortions of simple ferroelectric perovskites. These hard
eigenmodes are, however, excluded from the restricted config-
uration subspace usually considered in the construction of ab-
initio effective Hamiltonians. This probably is one of the major
sources of error of the method.

12. Conclusions

The development of programs as AMPLIMODES (Orobengoa
et al., 2009) and ISODISPLACE (Campbell et al., 2006), and
their direct coupling with refinement programs allow today to
approach without much effort the structural characterization of
any ordered pseudosymmetric structure with the full power of
group representation theory. The decomposition of displacive
distorted structures into symmetry-adapted modes can be done
in a straightforward manner, and permits to distinguish strong
fundamental distortions from those having a marginal charac-
ter. A natural hierarchy among the different structural symme-
try components exists in general, and is one of the fundamental
advantages of this approach. The parameterization of the struc-
tures in terms of symmetry-modes gets closer to the physico-
chemical mechanisms responsible for their stability, and is spe-
cially adequate for comparative studies. This paper has been
devoted to demonstrate through various examples the power of
this mode crystallography when applied a posteriori to a known
structure, but it is obvious that its advantages are extensible
to its direct use in the determination of the structures, refin-
ing directly the collective symmetry mode-coordinates. This
is today within easy reach of anyone with the mentioned pro-
grams.
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Table 1

Asymmetric unit of the Amm2 structure of BaTiO3 at 190K according to Kwei
et al. (1993), compared with the reference structure Pm3m parent structure
expressed in the same setting. The unit cell of this latter is used for translating
the atomic displacements into absolute values. Note the splitting of the oxy-
gen orbit in the orthorhombic space group. The origin of the published Amm?2
structure has been shifted along z so that the atomic displacements relating both
structures do not include a global translation.

Amm?2 phase
(a=3.9828, b=5.6745, c=5.6916)

Ba 2 00 0.0

Ti 2b 05 00
Ol_.1 4e 05 0.2561(3)
012 2a 00 0.0

0.00508 00 0.0 0.0
0.5221(5) | 0.5 0.0 0.5
0.23944) | 0.5 025 0.25
0.4941(6) | 0.0 0.0 0.5

Table 2

Basis of symmetry modes of the parent structure Pm3m of BaTiOs, restricted
to the isotropy subgroup Amm?2. The atomic displacements for the polarization
vector of each mode is expressed in relative units with respect to the refer-
ence unit cell, indicating only the displacements of the Amm2 asymmetric unit
(see Table 1). Modes are normalized within a primitive unit cell of the Amm?2
structure. The modes are labelled by their irrep, the atom representative of the

Table 3

Polarization vector (normalized to 1 A) of the polar GM4- distortion mode
present in the orthorhombic phase of BaTiO3. The mode is defined using the
asymmetric unit of the reference structure and unit cell indicated in Table 1.
Displacements are expressed in relative units. This polarization vector corre-
sponds to the combination of the four GM4- basis vectors described in Table 2
with amplitudes 0.17, 0.76, -0.25, and -0.57 (in the same order as in Table 2).

Atom ox oy 0z
Ba 0.0000  0.0000  0.0308
Ti 0.0000  0.0000  0.1339
O1.1 | 0.0000 0.0349 -0.0665
012 | 0.0000 0.0000 -0.0317
Table 4

Summary of the decomposition (with respect to its P42 m parent structure) of
the Pba2 structure of Gdy(MoOy), at 190K reported in Jeitschko (1972) (total
distortion: 1.63A)

K-vector Irrep Dir.  Iso.Subgr, Dim. Amp. (A)
(0,0,0) GM1 (a) P42im 14 0.15
(0,0,0) GM3 (a) Cmm2 15 0.07

(1/2,172,0) M2M4 (ab) Pba2 22 1.62

Pm3m phase in Amm2 setting (reference structure)
(a=4.006, b= 5.665, c=5.665)

Table 5
Reference structure for Gd,(MoQy), corresponding to the P42, m phase in the
Pba?2 phase setting (a=10.455281, b=10.455281, c=10.67).

parent Wyckoff orbit involved in the mode and an additional numerical index Gdl 4c  0.18744  0.50000 0.73762
in the case of the existence of several independent modes for the same irrep and Gdl2  4c  0.00000 0.81256  0.26238
the same atom. Mol 4c  0.20663  0.50000  0.35695
mode ox oy 0z Mol 2 4c 0.00000 0.79337  0.64305
Mo2 4c  0.25000  0.25000  0.00000

GM4-, Ba Ba 0.000000  0.000000  0.176512 01 4c  0.19520 0.50000  0.51950
0122 4c  0.00000 0.80480  0.48050

GM4-, Ti Ti 0.000000  0.000000  0.176512 02 4c  0.12890  0.00000  0.31090
0222 4c  0.50000 0.87110  0.68910

GM4-. O1 O1_.1  0.000000  0.062406 0.062406 03 4c  0.13890  0.13720  0.70050

’ 0122  0.000000  0.000000  0.124813 0322 4c 036110 0.36280  0.70050

033 4c  0.63720 0.86110  0.29950

GM4-. Ol O1_.1  0.000000 -0.088256  0.088256 034 4c  0.86280  0.63890  0.29950

’ 012 0.000000  0.000000  0.000000 04 4c  0.13770  0.17700  0.09550

0422 4c  0.36230 0.32300  0.09550

GMS5-. 01 O1.1 0.00000  -0.062406  -0.062406 0423 4c  0.67700  0.86230  0.90450

’ 0122 0.00000 0.000000  0.124813 044 4c  0.82300 0.63770  0.90450
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Table 6
Polarization vectors of the GM1, GM3 and M2+M4 distortions present in the
Pba?2 phase of Gdy(MoOy),. The atomic displacements for the asymmetric unit
listed in Table 5, are listed in relative units with respect to the Pba2 reference
unit cell.

Table 10

Comparison of the mode decomposition of the P63cm phase of different ABX3
compounds. The third column indicates the dimension of each distortion sub-
space. For each compound the first row shows the amplitude of the irrep distor-
tion, while the second indicates the value of the scalar product of its polariza-

GM1 ‘ GM3 tion vecidi2wiNhitthat of the corresponding distortion in KNiClz. For GM2-, the
scalar product with that of TICoCl3 is also indicated in parenthesis. The struc-
Atom ox oy oz ‘ ox dy oz dwural modelgyhave beezaken from Visser et al. (1980) (KNiCl3), Jouini et al.
(1982) (TIFeBr3), Fink & Selfert (1982) (RbMnBr3), Cussen & Battle (2000)
Gd1 0.0018  0.0000  -0.0022 | 0.0007 0.0000  0.0004 0.0BMnODAEBK), NLIOxKi er al. (2006) (TICoCl3).
Gdl12 0.0000  -0.0018  0.0022 0.0000  0.0007 0.0004 0.0043 0.0Q896kropy0-0000, .
Mol | -0.0035 00000  0.0026 | -0.0056 0.0000 -0.0069 | 0.0000  -0.08feroup.00dd™ KNiCl;  TlFeBrs  RbMnBr;  BaMnO:
Mol-2 | 0.0000  0.0035 -0.0026 | 0.0000 -0.0056 -0.0069 | -0.0018  0.0000  0.0000
Mo2 0.0000  0.0000  0.0000 0.0000  0.0000  -0.0057 | -0.00812- -0.00Ag; e 0.00003 ampl. 0.21 0.36 0.39 0.14
o1 -0.0117  0.0000  -0.0094 | -0.0182  0.0000 0.0020 0.0000  -0.0073  0.0000 prod. 1(0.70)  0.98(0.53)  0.77(0.994)  -0.74(-0.99
0122 0.0000  0.0117 0.0094 0.0000  -0.0182  0.0020 0.0123 0.0000  0.0000
02 -0.0036  0.0000  -0.0016 | 0.0049  0.0000  0.0020 | 0.00800  0.0663/mcmy.0008  ampl.  0.07 0.10 0.02 0.04
022 0.0000  0.0036  0.0016 | 0.0000  0.0049  0.0020 | 0.0037  0.0000  0.0000 prod. 1 0.70 0.67 -0.55
03 -0.0052  -0.0073  -0.0047 | -0.0161 -0.0010  0.0017 0.0129  0.0122 -0.0116
032 | 00052 00073 -0.0047 | 00161 00010 00017 | 001% 0015900118 @Rl 170 115 1.72 042
033 | 00073 00052 00047 | 0.0010 -0.0161 00017 | -0.0129 00153 00041 Prod: ! -0.9997 1.0000 -0.9999
034 0.0073  -0.0052  0.0047 | -0.0010  0.0161 0.0017 | -0.0129  0.0153 0.0041
04 -0.0171  -0.0063  0.0005 0.0059  -0.0066  0.0010 | -0.0062 -0.0029 -0.0015
0422 0.0171 0.0063 0.0005 | -0.0059  0.0066  0.0010 | -0.0062 -0.0029  0.0015
0423 -0.0063  0.0171  -0.0005 | 0.0066  0.0059  0.0010 0.0038 0.0051 0.0015
044 0.0063  -0.0171  -0.0005 | -0.0066 -0.0059  0.0010 0.0038 0.0051  -0.0015
Table 11
Table 7 Polarization vectors of the K3, K1 and GM2- distortions present in the P63cm
Summary of the mode decomposition with respect to its P63/mmc parent struc- structure of TICoCl; (Nishiwaki et al., 2006). The asymmetric unit is equiva-
ture of the P63cm structure of KNiCly (Visser ef al., 1980). As reference a lent to that of Table 8. Displacements are given in relative units with respect to
symmetrized idealized P63/mmec structure has been used (see Table 8). (Total the experimental unit cell (a=11.86, b=11.86, c=5.98). Polarization vectors are
distortion: 1.72 A) normalized to 1A.
K-vector Irrep Dir. Iso.Subgr. Dim. Amp. (A) K3 ‘ Kl ‘ GM2-
(0,000 GMI+ (a)  P6s/mme 1 0.02 Atom oz ox oy 0z
(0,0,0) GM2- (a) P63mc 3 0.22
(1/3.1/3.0) K1 @0)  P6simem 3 0.07 Col -0.0488 | 0.0000  0.0000 | 0.0164
(1/3.1/3.0) K3 @.0) Péscm 2 1.70 Col2 | 0.0244 0.0000  0.0000 | 0.0164
TI1 0.0000 | -0.0186 0.0000 | -0.0611
Cll -0.0481 0.0047  0.0000 | 0.0149
Cl12 0.0240 0.0093  0.0232 | 0.0149
Table 8
Reference structure for KNiCl3 corresponding to its parent hexagonal P63/mmc
phase in the P63cm setting of its distorted structure (a=11.795, b=11.795
¢=5.926).
Nil 2a  0.000000  0.000000  0.000000
Nil.2 4b  0.666667  0.333333  0.000000
K1 6¢c  0.333334  0.000000  0.750000 Table 12
gi ) 162(:(1 8{152(6)223 8(3)2(3)22(3) g;zgggg h?[od: decomposition of the P63 phases of different ABX3 compounds com-
- - - : pared with the mode decomposition of the P63cm phase of KNiCls. The third
column indicates the direction of the irrep distortion in the irrep space. For each
compound the first column shows the amplitude of each irrep distortion, while
Table 9 the second indicates the value of the scalar product of its polarization vector
Polarization vectors of the K3, K1 and GM2- distortions present in the P63cm with that of the corresponding distortion in KNiCls, if existing. For irrep distor-
structure of KNiCl3. The asymmetric unit is that of Table 8. Displacements are tions only present in the P63 configuration, only their amplitudes are indicated.
given in relative units with respect to the reference unit cell (Table 8). Polariza- The structural models have been taken from (Visser ez al., 1980) for KNiCl3
tion vectors are normalized to 1A. and (Jongen et al., 2005) for the rest.
K3 ] K1 | GM2- wR = 0.10
K-vector Irrep ‘ dir. ‘ Isotropys subgr. ‘ Dim ‘ KNiCl3 KTiCl3
Atom oz ‘ X dy ‘ oz
(0,0,0) GM2- (a) P63mc 3 021 | 1 | 0.10 | -0.9992
Nil -0.0482 | 0.0000  0.0000 | -0.0311 (1/3,1/3,0) K1 (a,0) P63/mem 3 0.07 | 1 | 0.18 0.97
Nil2 | 0.0241 | 0.0000  0.0000 | -0.0311 (1/3,1/3,0) K3 (a,0) P63cm 2 170 | 1 | 2.11 -1
K1 0.0000 0.0288  0.0000 | -0.0437 (0,0,0) GM2+ (a) P63/m 1 0 0.74
Cll -0.0489 | -0.0078  0.0000 0.0249 (1/3,1/3,0) K2 (a,0) P6322 1 0 0.01
Cl12 | 0.0244 | -0.0029 -0.0137 | 0.0249 (1/3,1/3,0) K4 (a,0) P63/m 4 0 0.11
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Table 13

Summary of the mode decomposition with respect to its Pm3m parent struc-
ture of the Pnma structure of SrZrOj3 at 20C (Howard et al., 2000), NaTaO3
(Kennedy et al., 1999b) and LaMnO3 at 300K (Rodriguez-Carvajal et al.,
1998).

Table 18

Reference structure and polarization vector of the (0,1/9,0) DT4 distortion in
the ninefold Pnma phase of thiourea according to the structure reported as
model 1 in (Tanisaki et al., 1988) (hydrogen atoms not included) (a=7.545,
b=76.867, c=5.467).

rrep Isotropy Dimension Amplitude (A) Reference Structure
Subgroup S1ZrO3;  NaTaO3;  LaMnOj3 Atom X y z
S1 09924  0.0278  0.1147
R4+ Imma 1 1.19 0.97 1.19 S12  0.0076  0.0833  0.8853
R5+ Imma 2 0.07 0.03 0.09 S133 09924 0.1389  0.1147
X5+ Cmcm 2 0.34 0.23 0.56 S14 09924 02500  0.1147
M2+  P4/mbm 1 0.01 0.01 0.36 S1.5 09924 0.6944  0.1147
M3+  P4/mbm 1 0.79 0.78 0.90 Cl 0.0881 0.0278  0.8323
Cl2 09119 0.0833  0.1677
Cl13  0.0881 0.1389  0.8323
Cl4  0.0881 0.2500  0.8323
Table 14 Cl15  0.0881 0.6944  0.8323
Summary of the mode decomposition of the Cmcm and P4/mbm phases of N1 0.1275 0.0425 0.7202
NaTaO3. N12 0.8725  0.0981 0.2798
Irrep  Isotropy Subgroup  Dimension  Amplitude (A) N1.3  0.6275  0.0130  0.7798
Phase Cmcm N1.4 0.1275 0.1536 0.7202
NI.S  0.1275 02648  0.7202
R4+ 14/mem 1 0.49 N1.6 0.1275 03758  0.7202
R5+ T14/mmm 2 0.04 N1.7  0.1275  0.7092  0.7202
X5+ Pmma 2 0.12 N1.8  0.1275  0.8203  0.7202
M3+ P4/mbm 1 0.54 N19 0.1275 09314  0.7202
M4+ P4/mmm 1 0.01
Polarization vector
Phase P4/mbm Atom ox oy 0z
S1 -0.0034  0.0000  -0.0012
M3+ P4/mbm 1 0.38 S1.2 -0.0098 0.0000  -0.0035
S1.3 -0.0150  0.0000  -0.0054
S14  -0.0196  0.0000 -0.0070
S1.5  0.0184  0.0000  0.0066
Table 15 Cl -0.0012  0.0001  -0.0026
Summary of the mode decomposition of the P1 phase of NbS; (Rijnsdorp & Cl2 -0.0035 -0.0001 -0.0075
Jellinek, 1978) Cl3  -0.0054 0.0001 -0.0114
K-vector Irrep ‘ Direction ‘ Isotropy Subgroup ‘ Dimension ‘ Amplitude @dy+  -0.0071  0.0000  -0.0149
Cl5  0.0066  0.0000 0.0140
0,000 | GMI1+ (a) P2y/m 8 0.000¢5)N1 -0.0005  0.0002  -0.0047
(0,0,0) GM2+ (@) Pi 4 0.036(3N1-2  -0.0010  -0.0002  -0.0107
(0,1/2,0) Z1 (0,2) P1 12 0.520(4N1-3 0.0000  0.0002  0.0020
N14 -0.0013 0.0001 -0.0155
NI1.5  -0.0015 0.0000  -0.0191
N1.6 -0.0010 -0.0001 -0.0138
Table 16 N1.7  0.0015 -0.0001 0.0184
Summary of the mode decomposition of the three-fold lock-in phase of N1.8 0.0013 0.0001 0.0175
K»SeOy (Yamada et al., 1984) NI.9  0.0005  0.0002  0.0034
K-vector Trrep ‘ Direction ‘ Isotropy Subgroup | Dimension | Amplitude (A)
(0,0,0) GM1+ (a) Pnma 13 0.12
(0,0,0) GM4- (a) Pna2, 8 0.55
(1/3,0,0) SM2 (a,0) Pna2; 16 1.16
(1/3,0,0) SM3 (a,0) Pnma 26 0.39
Table 17

Summary of the mode decomposition of the ninefold phase of thiourea accord-
ing to the structure reported as model 1 in (Tanisaki et al., 1988) (hydrogen
atoms not included).

K-vector Irrep ‘ Direction ‘ Isotropy Subgroup ‘ Dimension ‘ Amplitude (A)
(0,0,0) GM1+ (a) Pnma 7 0.08(1)
(0,1/9,0) DT4 (a,-5.671a) Pnma 12 1.89(1)
(0,2/9,0) DT1 (a,0.364a) Pnma 12 0.13(1)
(0,1/3,0) DT4 (a,-1.732a) Pnma 12 0.19(2)
(0,4/9,0) DT1 (2,0.839a) Pnma 12 0.09(2)
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Table 19

Summary of the mode decomposition of the Gall phase with space group C222;
and 38 atomic positional parameters (Degtyareva et al., 2004) with respect to
a Fddd structure with a single independent atom at position 8a (%, %, %). The
first three harmonics dominating the distortion can be identified.

Order Isotropy

Harm. K-vector Trrep Subgroup Dimension  Amplitude (A)

23 (0,0,1/13)  LD3 C222, 2 0.11
3 0,0,1/13)  LD4 C222, 2 2.14
6 (0,0,2/13)  LDI F222 1 0.03
20 0,0,2/13)  LD2 Fddd 1 0.03
17 0,0,3/13)  LD3 €222 2 0.06
9 (0,0,3/13) LD4 C222, 2 0.05
12 0,0,4/13)  LDI1 Fddd 1 0.00
14 0,0,4/13) LD2 F222 1 0.03
11 0,0,5/13)  LD3 €222, 2 0.05
15 0,0,5/13)  LD4 C222, 2 0.11
18 0,0,6/13)  LDI1 F222 1 0.06
8 0,0,6/13)  LD2 Fddd 1 0.01
5 0,0,7/13)  LD3 C222; 2 0.16
21 (0,0,7713)  LD4 C222, 2 0.11
24 0,0,8/13)  LDI1 Fddd 1 0.03
(0,0,8/13)  LD2 F222 1 0.53

1 (0,0,9/13)  LD3 €222 2 3.59
25 0,0,9/13)  LD4 C222, 2 0.05
22 (0,0,10/13)  LDI1 F222 1 0.02
4 (0,0,10/13) LD2 Fddd 1 0.00
7 (0,0,11/13)  LD3 €222, 2 0.12
19 (0,0,11/13)  LD4 C222, 2 0.05
16 (0,0,12/13)  LDI1 Fddd 1 0.04
10 (0,0,12/13) LD2 F222 1 0.01
13 (0,0,1) 72 €222 2 0.07

Table 20

Isotropy subgroups of Pm3m corresponding to the presence of distortions of
symmetry GM4- and R4+, as obtained using ISOTROPY (Stokes & Hatch,
2002), relevant for considering possible symmetries of phases of BiFeOs3. The
first two columns show the special direction (one of a set of equivalent ones)
within the irrep space corresponding to the listed subgroup. The conventional
unit cell and the origin shift of the subgroup is indicated in parenthesis for each
subgroup. First, the possible symmetries when only one of the two irrep distor-
tions are listed. Then the possible subgroups for distortions including the two
irreps are shown.

distortion GM4- | distortion R4+ ‘
(a,0,0) - P4mm (b, ¢, a; 0, 0, 0)
(a,a,0) - Amm?2 (c,a — b,a+b;0,0,0)
(a,a,a) - R3m(@—b,b —c,a+b+c;0,0,0)
(a,b,0) - Pm (b, c,a;0,0,0)
(a,a,b) - Cm@+b,b—a,c;0,0,0)
(a,b,c) - Pl (a,b,c;0,0,0)
- (a,0,0) I4/mem (a+b,b — a,2c; 0,0, 0)
- (a,a,0) Imma (a+c,2b,c —a;0,0,0)
- (a,a,a) R3c(b—a,c—b,2a+2b+2c;0,0,0)
- (ab,0) C2/m (=2¢2b,a+¢; 0,1, 1)
- (a,a,b) C2lc(—a+2b —c,c —a,a+c;0, %, % )
- (a,b,c) Pl(b+c,a+c,a+b;0,0,0)
(a,a,a) (b,b,b) R3c(b —a,c —b2a+2b+2c0,0,0)
(@.0,0) (b.0.0) Fmm2 (2¢,2b, —2a; —%., 1. 0)
(a,0,0) (0,b,0) I4cm (b +¢, ¢ — b, 2a; 0, 0, 0)
(a,2,0) (6,0,0) Ima2 2¢,b—a,—a—b;—3,1 1)
(a,b,0) (c,0,0) Cm (—2a, —2¢,a — b; 0,0, 0)
(a,0,0) (b,0,b) Ima2 (b+c,b—c,—2a;—3.0,—1)
(a,a,0) (0,b,b) Ima2 (2¢,b —a, —a — b; 0,0, 0)
(a.2,0) (0.b,-b) Imm2 (@ —b,2c, —a — b; 0,0, })
(a,a,b) (0,c,-¢) Cm(—a—b—2c,b—a,a+b;0,0,0)
(a.2,0) (-c.b.-b) C2(b—a—2.a+ba—b:}. 5. -1
(a,a,b) (d,c.c) Cc(—a—b—2c.b—aa+b;—1,0 -1
(2,0,0) (c,0,b) C2(-2b,2a,b+c; %, —1,0)
(a,b,0) (0,c,d) Cm (—2a, —2¢c,a —b; —3,0, 1)
(a,b,c) (d,e,h) Pl (—a —c,a+b,a—b;0,0,0)

Figure 1
Projection along the x axis of the Amm?2 structure of BaTiO3 at 190K, according
to Kwei et al. (1993).




research papers

iy
b

[
4
e

— @ —>

W
X

(a) distortion mode GM5- (b) distortion mode GM4-

Figure 2

Scheme of the polarization vectors (projected on the plane yz) of the distortions
GMS5- (a) and GM4- (b) present in the Amm?2 structure of BaTiO3. The figure
shows in each case the distorted structure for an exaggerated amplitude of the
mode. Also schematic arrows indicating the atomic displacements are depicted
within a single unit cell.
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Figure 3

Structure of Gd,(MoOy), projected on the xy plane in the parent P42;m phase
(a),and in the distorted Pba2 phase (b). The smaller tetragonal unit cell of the
parent phase is indicated in (a).

P ZJl21 m
. secondary

primary

mode

mode
GM3
M2+M4 Cmm?2 (15 dim)
(22 dim)
Pba2
Figure 4

Graph of maximal subgroups relating the space groups of the parent and dis-
torted phases of Gd,(Mo00Oy),. For each subgroup, any irrep compatible with it
is indicated, together with the dimension of the corresponding distortion sub-
spaces.

Figure 5

Structure of leucite (KAISi;Og) projected along one of its trigonal axis in its
cubic phase. (a) High temperature Ia3d phase. (b) room-temperature tetragonal
14/a phase (Palmer et al., 1997)

GM3+
(10 dim)

GM4+
(16 dim)

Figure 6

Graph of maximal subgroups relating the space groups of the parent and dis-
torted phases of leucite. For each subgroup, the irrep yielding this symmetry
is indicated, together with the dimension of the corresponding distortion sub-
space.
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Figure 9
L Polarization vector of the distortions corresponding to the irreps K3 (a) and
(b) GM2- (b) in KNiCl;3. The scale of the displacement vectors has been enlarged.
(Done with FullProf Studio (Rodriguez-Carvajal, 1993))
Figure 7

(a) Temperature dependence of the amplitudes of the primary (GM4+) and
secondary (GM3+) distortions in leucite, according to the structures reported
in Palmer ez al. (1997). (b) scalar product of the 16- and 10-dimensional nor-
malized polarization vectors of the two distortions at each temperature with the

corresponding one in the reported structure at 4K.

P63 /mmc

GM2- K1
P6smc P63 /mcm

K3

P6scm

Figure 10

Figure 8 Polarization vector of the distortion corresponding to the irrep K1 in KNiCls,

Graph of maximal subgroups relating the space groups of the parent and dis- in a perpective view (a) and projected on the plane xy (b). The scale of the dis-

torted phases of KNiCls. For each subgroup, any irrep yielding this symmetry placement vectors has been enlarged.(Done with FullProf Studio (Rodriguez-
Carvajal, 1993))

is indicated.
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Figure 11
Graph of maximal subgroups relating the space groups of the parent and dis-
torted P63 phase of KTiCl3. For each subgroup, any irrep yielding this symme-
try is indicated. The two primary active irreps evidenced by the mode decom-
position are highlighted. Figure 14
Graph of maximal subgroups relating the space groups of the parent and the
Pnma phase of SrZrOs. For each subgroup, any irrep yielding this symmetry
is indicated. The subgroups corresponding to the two primary distortions are
highlighted.

Figure 12

Polarization vector of the primary distortion GM2+ present in the P63 struc-
tures of KTiClz, KTiBrs and KTils. (a) perspective view, (b) projection on the
plane xy. The scale of the displacement vectors has been enlarged. (Done with
FullProf Studio (Rodriguez-Carvajal, 1993))
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Figure 15
Figure 13 Scheme of the polarization vectors of the five different irrep distortion compo-
Structure of the Pnma phase of SrZrO3, showing the strong tilting of the octa- nents present in the Pnma structure of SrZrOs3. The figure shows in each case

hedra with respect to the parent perovskite. the distorted structure for an arbitrary amplitude of the distortion.
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Figure 16

Graph of maximal subgroups relating the space groups of the parent and dis-
torted phase of SrAl,O4. For each subgroup, any irrep yielding this symme-
try is indicated. The two subgroups corresponding to the primary active irreps
evidenced by the mode decomposition are highlighted. The dimension of the
configuration subspace corresponding to each irrep distortion is indicated in

parenthesis.
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Figure 17

Calculated relative variation of the energy per f.u. in SrAl,O4 as a function

M2-1q

(12)

of either the amplitude of the GM6 distortion, or the amplitude of the M3-1q

distortion, both present in the P2 structure of this system.
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Figure 19
Calculated variation of some of the irrep distortions present in the P2; structure
of SrAl, Oy as a function of the angle 5 of the monoclinic cell. (a) Amplitudes
of the primary GM6 and M2-1q distortions. (b) Scalar product of the polariza-
tion vectors of the calculated GM6, M2-1q and M3-1q distortions with those
corresponding to 8 = 90 degrees.




