Bilbao Crystallographic Server arrow COREPRESENTATIONS PG

Irreducible corepresentations of the Projective Magnetic Point Group 2π'm'm


Table of characters of the unitary symmetry operations


1
m01
d1
dm01
A'A''
2
0
2
0
1E2E
2
0
-2
0

Multiplication table of the symmetry operations


1
m01
d1
dm01
2'
m'10
d2'
dm'10
1
1
m01
d1
dm01
2'
m'10
d2'
dm'10
m01
m01
d1
dm01
1
m'10
d2'
dm'10
2'
d1
d1
dm01
1
m01
d2'
dm'10
2'
m'10
dm01
dm01
1
m01
d1
dm'10
2'
m'10
d2'
2'
2'
dm'10
d2'
m'10
1
dm01
d1
m01
m'10
m'10
2'
dm'10
d2'
m01
1
dm01
d1
d2'
d2'
m'10
2'
dm'10
d1
m01
1
dm01
dm'10
dm'10
d2'
m'10
2'
dm01
d1
m01
1

Table of projective phases in group multiplication


1
m01
d1
dm01
2'
m'10
d2'
dm'10
1
1
1
1
1
1
1
1
1
m01
1
1
1
1
i
-i
i
-i
d1
1
1
1
1
1
1
1
1
dm01
1
1
1
1
i
-i
i
-i
2'
1
-i
1
-i
-1
i
-1
i
m'10
1
i
1
i
i
1
i
1
d2'
1
-i
1
-i
-1
i
-1
i
dm'10
1
i
1
i
i
1
i
1

Matrices of the representations of the group

The antiunitary operations are written in red color
NMatrix presentationSeitz symbolA'A''1E2E
1
(
1 0
0 1
)
(
1 0
0 1
)
1
(
1 0
0 1
)
(
1 0
0 1
)
2
(
1 0
0 -1
)
(
0 -1
1 0
)
m01
(
-1 0
0 1
)
(
-i 0
0 i
)
3
(
1 0
0 1
)
(
-1 0
0 -1
)
d1
(
1 0
0 1
)
(
-1 0
0 -1
)
4
(
1 0
0 -1
)
(
0 1
-1 0
)
dm01
(
-1 0
0 1
)
(
i 0
0 -i
)
5
(
-1 0
0 -1
)
(
-i 0
0 i
)
2'
(
0 -1
1 0
)
(
0 -1
1 0
)
6
(
-1 0
0 1
)
(
0 -i
-i 0
)
m'10
(
0 -i
-i 0
)
(
0 1
1 0
)
7
(
-1 0
0 -1
)
(
i 0
0 -i
)
d2'
(
0 -1
1 0
)
(
0 1
-1 0
)
8
(
-1 0
0 1
)
(
0 i
i 0
)
dm'10
(
0 -i
-i 0
)
(
0 -1
-1 0
)
k-Subgroupsmag
Bilbao Crystallographic Server
http://www.cryst.ehu.es
For comments, please mail to
administrador.bcs@ehu.eus