Tensor calculation for Magnetic Point Groups
|
MTENSOR provides the symmetry-adapted form of tensor
properties for any magnetic point (or space) group. On the one hand, a
point or space group must be selected. On the other hand, a tensor must
be defined by the user or selected from the lists of known equilibrium,
optical, nonlinear optical susceptibility and transport tensors, gathered from
scientific literature. If a magnetic point or space group is defined and
a known tensor is selected from the lists the program will obtain the
required tensor from an internal database; otherwise, the tensor is
calculated live. Live calculation of tensors may take too much time and
even exceed the time limit, giving an empty result, if high-rank
tensors, and/or a lot of symmetry elements are introduced.
Tutorial of MTENSOR: download
Further information can be found here
If you are using this program in the preparation of an article, please cite this reference:
Gallego et al. "Automatic calculation of symmetry-adapted tensors in
magnetic and non-magnetic materials: a new tool of the Bilbao Crystallographic Server" Acta Cryst. A (2019) 75, 438-447.
If you are interested in other publications related to Bilbao Crystallographic Server, click here
Information about the selected tensor • 1 st rank Electric polarization vector Pi • Polar tensor invariant under time-reversal symmetry operation • Intrinsic symmetry symbol: V
|
Information about the selected tensor • 1 st rank Electrocaloric effect tensor pi • Polar tensor invariant under time-reversal symmetry operation • Defining equation: ΔS=piEi • Relates Electric field E with Entropy variation ΔS • Intrinsic symmetry symbol: V
|
Information about the selected tensor • 1 st rank Heat of polarization tensor ti • Polar tensor invariant under time-reversal symmetry operation • Defining equation: ΔS=tiΔPi • Relates Polarization vector P variation with Entropy variation ΔS • Intrinsic symmetry symbol: V
|
Information about the selected tensor • 1 st rank Piezoelectric polarization tensor under hydrostatic pressure dijj • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi=-dijjp • Relates Hydrostatic pressure p with Polarization vector P. • This tensor of rank 2 is obtained from the contraction of the last two indices of the elastic compliance tensor sijkl. • Intrinsic symmetry symbol: V
|
Information about the selected tensor • 1 st rank Pyroelectric tensor pi • Polar tensor invariant under time-reversal symmetry operation • Defining equation: ΔPi=piΔT • Relates Temperature variation ΔT with Polarization vector P variation • Intrinsic symmetry symbol: V
|
Information about the selected tensor • 1 st rank Axial toroidal moment Ai • Axial tensor invariant under time-reversal symmetry operation • Intrinsic symmetry symbol: eV
|
Information about the selected tensor • 1 st rank Polar Toroidal moment Ti • Polar tensor which inverts under time-reversal symmetry operation • Intrinsic symmetry symbol: aV
|
Information about the selected tensor • 1 st rank Pyrotoroidic tensor ri • Polar tensor which inverts under time-reversal symmetry operation • Defining equation: Ti=riΔT • Relates Temperature variation ΔT with Toroidal moment T • Intrinsic symmetry symbol: aV
|
Information about the selected tensor • 1 st rank Toroidalcaloric tensor rTi • Polar tensor which inverts under time-reversal symmetry operation • Defining equation: ΔS=rTiSi • Relates Toroidal field S with Entropy variation ΔS • Intrinsic symmetry symbol: aV
|
Information about the selected tensor • 1 st rank Magnetization vector Mi • Axial tensor which inverts under time-reversal symmetry operation • Intrinsic symmetry symbol: aeV
|
Information about the selected tensor • 1 st rank Magnetocaloric tensor qTi • Axial tensor which inverts under time-reversal symmetry operation • Defining equation: ΔS=qTiHi • Relates Magnetic field H with Entropy variation ΔS • Intrinsic symmetry symbol: aeV
|
Information about the selected tensor • 1 st rank Pyromagnetic tensor qi (direct effect) • Axial tensor which inverts under time-reversal symmetry operation • Defining equation: Mi=qiΔT • Relates Temperature variation ΔT with Magnetization M • Intrinsic symmetry symbol: aeV
|
Information about the selected tensor • 2 nd rank Dielectric impermeability tensor βij • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Ei=βijDj • Relates Electric displacement field D with Electric field E • Intrinsic symmetry symbol: [V2] • Symmetrized indexes due to intrinsic symmetry: • βij = βji
|
Information about the selected tensor • 2 nd rank Dielectric permittivity tensor εij • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Di=εijEj • Relates Electric field E with Electric displacement field D • Intrinsic symmetry symbol: [V2] • Symmetrized indexes due to intrinsic symmetry: • εij = εji
|
Information about the selected tensor • 2 nd rank Dielectric susceptibility tensor χeij • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi=χeijEj • Relates Electric field E with Polarization vector P variation • Intrinsic symmetry symbol: [V2] • Symmetrized indexes due to intrinsic symmetry: • χeij = χeji
|
Information about the selected tensor • 2 nd rank Heat of deformation tensor αij • Polar tensor invariant under time-reversal symmetry operation • Defining equation: ΔS=αijεij • Relates Strain tensor εij with Entropy variation ΔS • Intrinsic symmetry symbol: [V2] • Symmetrized indexes due to intrinsic symmetry: • αij = αji
|
Information about the selected tensor • 2 nd rank Magnetic permeability tensor μmij • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Bi=μmijHj • Relates Magnetic field H with Magnetic field B • Intrinsic symmetry symbol: [V2] • Symmetrized indexes due to intrinsic symmetry: • μmij = μmji
|
Information about the selected tensor • 2 nd rank Magnetic susceptibility tensor χmij • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Mi=χmijHj • Relates Magnetic field H with Magnetization M • Intrinsic symmetry symbol: [V2] • Symmetrized indexes due to intrinsic symmetry: • χmij = χmji
|
Information about the selected tensor • 2 nd rank Piezocaloric effect tensor βij • Polar tensor invariant under time-reversal symmetry operation • Defining equation: ΔS=βijσij • Relates Stress tensor σij with Entropy variation ΔS • Intrinsic symmetry symbol: [V2] • Symmetrized indexes due to intrinsic symmetry: • βij = βji
|
Information about the selected tensor • 2 nd rank Strain by hydrostatic pressure sijkk • Polar tensor invariant under time-reversal symmetry operation • Defining equation: εij=-sijkkp • Relates Hydrostatic pressure p with Strain tensor εij. • This tensor of rank 2 is obtained from the contraction of the last two indices of the elastic compliance tensor sijkl. • Intrinsic symmetry symbol: [V2] • Symmetrized indexes due to intrinsic symmetry: • sij = sji
|
Information about the selected tensor • 2 nd rank Strain tensor εij • Polar tensor invariant under time-reversal symmetry operation • Intrinsic symmetry symbol: [V2] • Symmetrized indexes due to intrinsic symmetry: • εij = εji
|
Information about the selected tensor • 2 nd rank Thermal expansion tensor αij • Polar tensor invariant under time-reversal symmetry operation • Defining equation: εij=αijΔT • Relates Temperature variation ΔT with Strain tensor εij • Intrinsic symmetry symbol: [V2] • Symmetrized indexes due to intrinsic symmetry: • αij = αji
|
Information about the selected tensor • 2 nd rank Thermoelasticity tensor βij • Polar tensor invariant under time-reversal symmetry operation • Defining equation: σij=-βijΔT • Relates Temperature variation ΔT with Stress tensor σij • Intrinsic symmetry symbol: [V2] • Symmetrized indexes due to intrinsic symmetry: • βij = βji
|
Information about the selected tensor • 2 nd rank Toroidic susceptibility tensor τij • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Ti=τijSj • Relates Toroidal field S with Toroidal moment T • Intrinsic symmetry symbol: [V2] • Symmetrized indexes due to intrinsic symmetry: • τij = τji
|
Information about the selected tensor • 2 nd rank Magnetotoroidic tensor ζij (direct effect) • Axial tensor invariant under time-reversal symmetry operation • Defining equation: Mi=ζijSj • Relates Toroidal field S with Magnetization M • Intrinsic symmetry symbol: eV2
|
Information about the selected tensor • 2 nd rank Magnetotoroidic tensor ζTij (inverse effect) • Axial tensor invariant under time-reversal symmetry operation • Defining equation: Ti=ζTijHj • Relates Magnetic field H with Toroidal moment T • Intrinsic symmetry symbol: eV2
|
Information about the selected tensor • 2 nd rank Electrotoroidic tensor θij (direct effect) • Polar tensor which inverts under time-reversal symmetry operation • Defining equation: Pi=θijSj • Relates Toroidal field S with Polarization P • Intrinsic symmetry symbol: aV2
|
Information about the selected tensor • 2 nd rank Electrotoroidic tensor θTij (inverse effect) • Polar tensor which inverts under time-reversal symmetry operation • Defining equation: Ti=θTijEj • Relates Electric field E with Toroidal moment T • Intrinsic symmetry symbol: aV2
|
Information about the selected tensor • 2 nd rank Magnetoelectric tensor αij (direct effect) • Axial tensor which inverts under time-reversal symmetry operation • Defining equation: Mi=αijEj • Relates Electric field E with Magnetization M • Intrinsic symmetry symbol: aeV2
|
Information about the selected tensor • 2 nd rank Magnetoelectric tensor αTij (inverse effect) • Axial tensor which inverts under time-reversal symmetry operation • Defining equation: Pi=αTijHj • Relates Magnetic field H with Polarization P • Intrinsic symmetry symbol: aeV2
|
Information about the selected tensor • 3 rd rank Acoustoelectricity tensor ρijk • Polar tensor invariant under time-reversal symmetry operation • Defining equation: σij=ρijkJk • Relates Alternating electric current density J with Stress tensor σij • Intrinsic symmetry symbol: [V2]V • Symmetrized indexes due to intrinsic symmetry: • ρijk = ρjik • Abbreviated notation: ρijk → ρij • ij → i if i=j, ij → 9-(i+j) if i≠j
|
Information about the selected tensor • 3 rd rank Isothermal piezoelectric tensor eTijk (inverse effect) • Polar tensor invariant under time-reversal symmetry operation • Defining equation: σij=eTijkEk • Relates Electric field E with Stress tensor σij • Intrinsic symmetry symbol: [V2]V • Symmetrized indexes due to intrinsic symmetry: • eTijk = eTjik • Abbreviated notation: eTijk → eTij • ij → i if i=j, ij → 9-(i+j) if i≠j
|
Information about the selected tensor • 3 rd rank Piezoelectric tensor dTijk (inversee ffect) dTijk • Polar tensor invariant under time-reversal symmetry operation • Defining equation: εij=dTijkEk • Relates Electric field E with Strain tensor εij • Intrinsic symmetry symbol: [V2]V • Symmetrized indexes due to intrinsic symmetry: • dTijk = dTjik • Abbreviated notation: dTijk → dTij • ij → i if i=j, ij → 9-(i+j) if i≠j
|
Information about the selected tensor • 3 rd rank Isothermal piezoelectric tensor eijk (direct effect) • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Di=eijkεjk • Relates Strain tensor εij with Electric displacement field D • Intrinsic symmetry symbol: V[V2] • Symmetrized indexes due to intrinsic symmetry: • eijk = eikj • Abbreviated notation: eijk → eij • jk → j if j=k, jk → 9-(j+k) if j≠k
|
Information about the selected tensor • 3 rd rank Piezoelectric tensor dijk(directeffect) dijk • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi=dijkσjk • Relates Stress tensor σij with Polarization vector P • Intrinsic symmetry symbol: V[V2] • Symmetrized indexes due to intrinsic symmetry: • dijk = dikj • Abbreviated notation: dijk → dij • jk → j if j=k, jk → 9-(j+k) if j≠k
|
Information about the selected tensor • 3 rd rank Second order magnetoelectric tensor αTijk (inverse effect) • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi=αTijkHjHk • Relates Magnetic field H with Polarization P • Intrinsic symmetry symbol: V[V2] • Symmetrized indexes due to intrinsic symmetry: • αTijk = αTikj
|
Information about the selected tensor • 3 rd rank Piezotoroidic tensor γijk (direct effect) • Polar tensor which inverts under time-reversal symmetry operation • Defining equation: εij=γijkSk • Relates Toroidal field S with Strain tensor εij • Intrinsic symmetry symbol: a[V2]V • Symmetrized indexes due to intrinsic symmetry: • γijk = γjik • Abbreviated notation: γijk → γij • ij → i if i=j, ij → 9-(i+j) if i≠j
|
Information about the selected tensor • 3 rd rank Piezotoroidic tensor γTijk (inverse effect) • Polar tensor which inverts under time-reversal symmetry operation • Defining equation: Ti=γTijkσjk • Relates Stress tensor σij with Toroidal moment T • Intrinsic symmetry symbol: aV[V2] • Symmetrized indexes due to intrinsic symmetry: • γTijk = γTikj • Abbreviated notation: γTijk → γTij • jk → j if j=k, jk → 9-(j+k) if j≠k
|
Information about the selected tensor • 3 rd rank Piezomagnetic tensor ΛTijk (inverse effect) • Axial tensor which inverts under time-reversal symmetry operation • Defining equation: εij=ΛTijkHk • Relates Magnetic field H with Strain tensor εij • Intrinsic symmetry symbol: ae[V2]V • Symmetrized indexes due to intrinsic symmetry: • ΛTijk = ΛTjik • Abbreviated notation: ΛTijk → ΛTij • ij → i if i=j, ij → 9-(i+j) if i≠j
|
Information about the selected tensor • 3 rd rank Piezomagnetic tensor Λijk (direct effect) • Axial tensor which inverts under time-reversal symmetry operation • Defining equation: Mi=Λijkσjk • Relates Stress tensor σij with Magnetization M • Intrinsic symmetry symbol: aeV[V2] • Symmetrized indexes due to intrinsic symmetry: • Λijk = Λikj • Abbreviated notation: Λijk → Λij • jk → j if j=k, jk → 9-(j+k) if j≠k
|
Information about the selected tensor • 3 rd rank Second order magnetoelectric tensor αijk (direct effect) • Axial tensor which inverts under time-reversal symmetry operation • Defining equation: Mi=αijkEjEk • Relates Electric field E with Magnetization M • Intrinsic symmetry symbol: aeV[V2] • Symmetrized indexes due to intrinsic symmetry: • αijk = αikj
|
Information about the selected tensor • 4 th rank Elastic compliance tensor Sijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: εij=Sijklσkl • Relates Stress tensor σij with Strain tensor εij • Intrinsic symmetry symbol: [[V2][V2]] • Symmetrized indexes due to intrinsic symmetry: • Sijkl = Sjikl • Sijkl = Sijlk • Sijkl = Sklij • Abbreviated notation: Sijkl → Sij • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank Elastic stiffness tensor Cijkl Cijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: σij=Cijklεkl • Relates Strain tensor εij with Stress tensor σij • Intrinsic symmetry symbol: [[V2][V2]] • Symmetrized indexes due to intrinsic symmetry: • Cijkl = Cjikl • Cijkl = Cijlk • Cijkl = Cklij • Abbreviated notation: Cijkl → Cij • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank Viscosity tensor ηijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: σij=ηijkl∂εkl/∂t • Relates Strain tensor rate ∂εij/∂t with Stress tensor σij • Intrinsic symmetry symbol: [[V2][V2]] • Symmetrized indexes due to intrinsic symmetry: • ηijkl = ηjikl • ηijkl = ηijlk • ηijkl = ηklij • Abbreviated notation: ηijkl → ηij • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank Damage effect tensor Dijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: σij=Dijklσkl • Relates Stress tensor σij (before damage) with Effective stress tensor σij (after damage) • Intrinsic symmetry symbol: [V2][V2] • Symmetrized indexes due to intrinsic symmetry: • Dijkl = Djikl • Dijkl = Dijlk • Abbreviated notation: Dijkl → Dij • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank Electrostriction tensor γijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: εij=γijklEkEl • Relates Electric field E and Electric field E with Strain tensor εij • Intrinsic symmetry symbol: [V2][V2] • Symmetrized indexes due to intrinsic symmetry: • γijkl = γjikl • γijkl = γijlk • Abbreviated notation: γijkl → γij • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank Magnetostriction tensor Nijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: εij=NijklMkMl • Relates Magnetization M and Magnetization M with Strain tensor εij • Intrinsic symmetry symbol: [V2][V2] • Symmetrized indexes due to intrinsic symmetry: • Nijkl = Njikl • Nijkl = Nijlk • Abbreviated notation: Nijkl → Nij • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank Flexoelectric New μijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi=μijkl∇jεkl • Relates strain tensor gradient ∇jεkl with polarization vector P • According to Eliseev and Morozovska, Phys. Rev. B 98, 094108 (2018) the intrinsic symmetry of this tensor is not V2[V2] but V[V3]. This allows to further reduce the number of independent coefficients. • Intrinsic symmetry symbol: V[V3] • Symmetrized indexes due to intrinsic symmetry: • μijkl = μikjl • μijkl = μilkj • μijkl = μijlk • Abbreviated notation: μijkl → μijk • jk → j if j=k, jk → 9-(j+k) if j≠k
|
Information about the selected tensor • 4 th rank Elastothermoelectric power tensor Eijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: ΔΣij=Eijklεkl • Relates Strain tensor εij with Thermoelectric power tensor variation ΔΣij • Intrinsic symmetry symbol: V2[V2] • Symmetrized indexes due to intrinsic symmetry: • Eijkl = Eijlk • Abbreviated notation: Eijkl → Eijk • kl → k if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank Flexoelectric tensor μijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi=μijkl∇jεkl • Relates Strain tensor gradient ∇iεjk with Polarization vector P • Intrinsic symmetry symbol: V2[V2] • Symmetrized indexes due to intrinsic symmetry: • μijkl = μijlk • Abbreviated notation: μijkl → μijk • kl → k if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank Piezothermoelectric power tensor Πijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: ΔΣij=Πijklσkl • Relates Stress tensor σij with Thermoelectric power tensor variation ΔΣij • Intrinsic symmetry symbol: V2[V2] • Symmetrized indexes due to intrinsic symmetry: • Πijkl = Πijlk • Abbreviated notation: Πijkl → Πijk • kl → k if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank Flexomagnetic tensor Qijkl • Axial tensor which inverts under time-reversal symmetry operation • Defining equation: Mi=Qijkl∇jσkl • Relates Stress tensor gradient ∇iσjk with Magnetization M • Intrinsic symmetry symbol: aeV2[V2] • Symmetrized indexes due to intrinsic symmetry: • Qijkl = Qijlk • Abbreviated notation: Qijkl → Qijk • kl → k if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank Piezomagnetoelectric tensor πijkl • Axial tensor which inverts under time-reversal symmetry operation • Defining equation: Pi=πijklHjσkl • Relates Magnetization M and Stress tensor σij with Polarization vector P • Intrinsic symmetry symbol: aeV2[V2] • Symmetrized indexes due to intrinsic symmetry: • πijkl = πijlk • Abbreviated notation: πijkl → πijk • kl → k if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 5 th rank Acoustic activity tensor bijklm • Polar tensor invariant under time-reversal symmetry operation • Defining equation: σij=bijklm∇mεkl • Relates Strain tensor gradient ∇lεij with Stress tensor σij • Intrinsic symmetry symbol: [[V2][V2]]V • Symmetrized indexes due to intrinsic symmetry: • bijklm = bjiklm • bijklm = bijlkm • bijklm = bklijm • Abbreviated notation: bijklm → bijk • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 5 th rank Second-order piezoelectric tensor dijklm • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi=dijklmσjkσlm • Relates Stress tensor σij and Stress tensor σij with Polarization vector P • Intrinsic symmetry symbol: V[[V2][V2]] • Symmetrized indexes due to intrinsic symmetry: • dijklm = dikjlm • dijklm = dijkml • dijklm = dilmjk • Abbreviated notation: dijklm → dijk • jk → j if j=k, jk → 9-(j+k) if j≠k • lm → k if l=m, lm → 9-(l+m) if l≠m
|
Information about the selected tensor • 6 th rank Third order elastic compliance tensor Sijklmn • Polar tensor invariant under time-reversal symmetry operation • Defining equation: εij=Sijklmnσklσmn • Relates Stress tensor σij and Stress tensor σij with Strain tensor εij • Intrinsic symmetry symbol: [[V2][V2][V2]] • Symmetrized indexes due to intrinsic symmetry: • Sijklmn = Sjiklmn • Sijklmn = Sijlkmn • Sijklmn = Sijklnm • Sijklmn = Sijmnkl = Sklijmn = Sklmnij = Smnijkl = Smnklij • Abbreviated notation: Sijklmn → Sijk • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l • mn → k if m=n, mn → 9-(m+n) if m≠n
|
Information about the selected tensor • 6 th rank Third order elastic stiffness tensor Cijklmn • Polar tensor invariant under time-reversal symmetry operation • Defining equation: σij=Cijklmnεklεmn • Relates Strain tensor εij and Strain tensor εij with Stress tensor σij • Intrinsic symmetry symbol: [[V2][V2][V2]] • Symmetrized indexes due to intrinsic symmetry: • Cijklmn = Cjiklmn • Cijklmn = Cijlkmn • Cijklmn = Cijklnm • Cijklmn = Cijmnkl = Cklijmn = Cklmnij = Cmnijkl = Cmnklij • Abbreviated notation: Cijklmn → Cijk • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l • mn → k if m=n, mn → 9-(m+n) if m≠n
|
Information about the selected tensor • 8 th rank Damage tensor Rijklmnpq • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Cijkl=RijklmnpqCmnpq • Relates Elastic stiffness tensor Cijkl (before damage) with Elastic stiffness tensor Cijkl (after damage) • Intrinsic symmetry symbol: [[[V2][V2]][[V2][V2]]] • Symmetrized indexes due to intrinsic symmetry: • Rijklmnpq = Rjiklmnpq • Rijklmnpq = Rijlkmnpq • Rijklmnpq = Rijklnmpq • Rijklmnpq = Rijklmnqp • Rijklmnpq = Rklijmnpq • Rijklmnpq = Rijklpqmn • Rijklmnpq = Rmnpqijkl • Abbreviated notation: Rijklmnpq → Rijkl • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l • mn → k if m=n, mn → 9-(m+n) if m≠n • pq → l if p=q, pq → 9-(p+q) if p≠q
|
Information about the selected tensor • 8 th rank Fourth order elastic compliance tensor Sijklmnpq • Polar tensor invariant under time-reversal symmetry operation • Defining equation: εij=Sijklmnpqσklσmnσpq • Relates Stress tensor σij and Stress tensor σij and Stress tensor σij with Strain tensor εij • Intrinsic symmetry symbol: [[V2][V2][V2][V2]] • Symmetrized indexes due to intrinsic symmetry: • Sijklmnpq = Sjiklmnpq • Sijklmnpq = Sijlkmnpq • Sijklmnpq = Sijklnmpq • Sijklmnpq = Sijklmnqp • Sijklmnpq = Sijklpqmn = Sijmnklpq = Sijmnpqkl = Sijpqklmn = Sijpqmnkl = Sklijmnpq = Sklijpqmn = Sklmnijpq = Sklmnpqij = Sklpqijmn = Sklpqmnij = Smnijklpq = Smnijpqkl = Smnklijpq = Smnklpqij = Smnpqijkl = Smnpqklij = Spqijklmn = Spqijmnkl = Spqklijmn = Spqklmnij = Spqmnijkl = Spqmnklij • Abbreviated notation: Sijklmnpq → Sijkl • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l • mn → k if m=n, mn → 9-(m+n) if m≠n • pq → l if p=q, pq → 9-(p+q) if p≠q
|
Information about the selected tensor • 8 th rank Fourth order elastic stiffness tensor Cijklmnpq • Polar tensor invariant under time-reversal symmetry operation • Defining equation: σij=Cijklmnpqεklεmnεpq • Relates Strain tensor εij and Strain tensor εij and Strain tensor εij with Stress tensor σij • Intrinsic symmetry symbol: [[V2][V2][V2][V2]] • Symmetrized indexes due to intrinsic symmetry: • Cijklmnpq = Cjiklmnpq • Cijklmnpq = Cijlkmnpq • Cijklmnpq = Cijklnmpq • Cijklmnpq = Cijklmnqp • Cijklmnpq = Cijklpqmn = Cijmnklpq = Cijmnpqkl = Cijpqklmn = Cijpqmnkl = Cklijmnpq = Cklijpqmn = Cklmnijpq = Cklmnpqij = Cklpqijmn = Cklpqmnij = Cmnijklpq = Cmnijpqkl = Cmnklijpq = Cmnklpqij = Cmnpqijkl = Cmnpqklij = Cpqijklmn = Cpqijmnkl = Cpqklijmn = Cpqklmnij = Cpqmnijkl = Cpqmnklij • Abbreviated notation: Cijklmnpq → Cijkl • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l • mn → k if m=n, mn → 9-(m+n) if m≠n • pq → l if p=q, pq → 9-(p+q) if p≠q
|
Information about the selected tensor • 2 nd rank Index ellipsoid βij • Polar tensor invariant under time-reversal symmetry operation • Intrinsic symmetry symbol: [V2] • Symmetrized indexes due to intrinsic symmetry: • βij = βji
|
Information about the selected tensor • 2 nd rank Second-order thermo-optical effect tensor Tij. • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Δβij=Tij(ΔT)2 • Relates Temperature variation ΔT and Temperature variation ΔT with the symmetric part of the Dielectric impermeability tensor variation Δβij • Intrinsic symmetry symbol: [V2] • Symmetrized indexes due to intrinsic symmetry: • Tij = Tji
|
Information about the selected tensor • 2 nd rank Thermo-optical effect tensor tij • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Δβij=tijΔT • Relates Temperature variation ΔT with the symmetric part of the Dielectric impermeability tensor variation Δβij • Intrinsic symmetry symbol: [V2] • Symmetrized indexes due to intrinsic symmetry: • tij = tji
|
Information about the selected tensor • 2 nd rank Verdet tensor (related to Faraday effect) Vij • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Δβij=εijmVmkHk (with εijm Levi-Civita axial antisymmetric tensor) • Relates magnetic field H with the antisymmetric part of the dielectric impermeability tensor variation Δβij • Related with Faraday effect coefficients F: Fijk=εijmVmk, where εijm Levi-Civita axial antisymmtric tensor. • Intrinsic symmetry symbol: V2
|
Information about the selected tensor • 2 nd rank Optical activity tensor gij • Axial tensor invariant under time-reversal symmetry operation • Defining equation: G=gijlilj • Relates Direction cosines li and Direction cosines lj with Optical activity coefficient G • Intrinsic symmetry symbol: e[V2] • Symmetrized indexes due to intrinsic symmetry: • gij = gji
|
Information about the selected tensor • 2 nd rank Thermogyration tensor gij • Axial tensor invariant under time-reversal symmetry operation • Defining equation: Δgij=gijT • Relates Temperature T with Optical activity tensor variation Δgij • Intrinsic symmetry symbol: e[V2] • Symmetrized indexes due to intrinsic symmetry: • gij = gji
|
Information about the selected tensor • 2 nd rank Spontaneous Faraday effect βij • Polar tensor which inverts under time-reversal symmetry operation • Intrinsic symmetry symbol: a{V2} • Symmetrized indexes due to intrinsic symmetry: • βij = -βji
|
Information about the selected tensor • 3 rd rank Natural optical activity γijk • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Δβij=i γijkkk • Relates light wave vector with dielectric impermeability tensor variation (antisymmetric part). • Connected with gyrotropic second-rank axial tensor glk=k0/2εijkgijl, with εijk Levi-Civita axial antisymmetric tensor and k0 modulus of light wave vector in vacuum. Gyration given by G=glkklkk/k02. • Real in non-disipative media. • Intrinsic symmetry symbol: {V2}V • Symmetrized indexes due to intrinsic symmetry: • γijk = -γjik
|
Information about the selected tensor • 3 rd rank Pockels (electrooptic) effect zijk • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Δβij=zijkEk • Relates Electric field E with the symmetric part of the Dielectric impermeability tensor variation Δβij • Intrinsic symmetry symbol: [V2]V • Symmetrized indexes due to intrinsic symmetry: • zijk = zjik • Abbreviated notation: zijk → zij • ij → i if i=j, ij → 9-(i+j) if i≠j
|
Information about the selected tensor • 3 rd rank Thermoelectro-optical effect tensor r(T)ijk • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Δβij=r(T)ijkEkΔT • Relates Electric field E and Temperature variation ΔT with the symmetric part of the Dielectric impermeability tensor variation Δβij • Intrinsic symmetry symbol: [V2]V • Symmetrized indexes due to intrinsic symmetry: • r(T)ijk = r(T)jik • Abbreviated notation: r(T)ijk → r(T)ij • ij → i if i=j, ij → 9-(i+j) if i≠j
|
Information about the selected tensor • 3 rd rank Magneto-optical tensor (Faraday effect) Fijk • Axial tensor invariant under time-reversal symmetry operation • Defining equation: Δβij=FijkHk • Relates Magnetic field H with the antisymmetric part of the Dielectric impermeability tensor variation Δβij. • Pure imaginary in non-dissipative media. • Intrinsic symmetry symbol: e{V2}V • Symmetrized indexes due to intrinsic symmetry: • Fijk = -Fjik
|
Information about the selected tensor • 3 rd rank Thermomagneto-optical effect tensor f(T)ijk • Axial tensor invariant under time-reversal symmetry operation • Defining equation: Δβij=f(T)ijkHkΔT • Relates Magnetic field H and Temperature variation ΔT with the antisymmetric part of the Dielectric impermeability tensor variation Δβij • Intrinsic symmetry symbol: e{V2}V • Symmetrized indexes due to intrinsic symmetry: • f(T)ijk = -f(T)jik
|
Information about the selected tensor • 3 rd rank Electrogyration effect tensor γijk • Axial tensor invariant under time-reversal symmetry operation • Defining equation: Δgij=γijkEk • Relates Electric field E with Optical activity tensor variation Δgij • Intrinsic symmetry symbol: e[V2]V • Symmetrized indexes due to intrinsic symmetry: • γijk = γjik
|
Information about the selected tensor • 3 rd rank Spontaneous Gyrotropic Birefringence γijk • Polar tensor which inverts under time-reversal symmetry operation • Defining equation: Δβij=i γijkkk • Relates light wave vector with dielectric impermeability tensor variation (symmetric part). • Pure imaginary in non-dissipative media. • Intrinsic symmetry symbol: a[V2]V • Symmetrized indexes due to intrinsic symmetry: • γijk = γjik • Abbreviated notation: γijk → γij • ij → i if i=j, ij → 9-(i+j) if i≠j
|
Information about the selected tensor • 3 rd rank Magneto-optic Kerr effect qijk • Axial tensor which inverts under time-reversal symmetry operation • Defining equation: Δβij=qijkHk • Relates Magnetic field H with Dielectric impermeability tensor variation Δβij (symmetric part) • Intrinsic symmetry symbol: ae[V2]V • Symmetrized indexes due to intrinsic symmetry: • qijk = qjik
|
Information about the selected tensor • 4 th rank Birefringence in Cubic Crystals γijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Δβij= γijlmklkm • Relates light wave vector and light wave vector with dielectric impermeability tensor variation (symmetric part). • Real in non-dissipative media. • Intrinsic symmetry symbol: [V2][V2] • Symmetrized indexes due to intrinsic symmetry: • γijkl = γjikl • γijkl = γijlk • Abbreviated notation: γijkl → γij • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank Elasto-optical tensor pijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Δβij=pijklεkl • Relates Strain tensor εij with the symmetric part of the Dielectric impermeability tensor variation Δβij • Intrinsic symmetry symbol: [V2][V2] • Symmetrized indexes due to intrinsic symmetry: • πijkl = πjikl • πijkl = πijlk • Abbreviated notation: πijkl → πij • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank Kerr effect tensor Rijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Δβij=RijklEkEl • Relates Electric field E and Electric field E with the symmetric part of the Dielectric impermeability tensor variation Δβij • Intrinsic symmetry symbol: [V2][V2] • Symmetrized indexes due to intrinsic symmetry: • Rijkl = Rjikl • Rijkl = Rijlk • Abbreviated notation: Rijkl → Rij • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank Piezo-optical tensor πijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Δβij=πijklσkl • Relates Stress tensor σij with the symmetric part of the Dielectric impermeability tensor variation Δβij • Intrinsic symmetry symbol: [V2][V2] • Symmetrized indexes due to intrinsic symmetry: • πijkl = πjikl • πijkl = πijlk • Abbreviated notation: πijkl → πij • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank Second-order magneto-optical (Cotton-Mouton effect) tensor Cijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Δβij=CijklHkHl • Relates Magnetic field H and Magnetic field H with the symmetric part of the Dielectric impermeability tensor variation Δβij • Intrinsic symmetry symbol: [V2][V2] • Symmetrized indexes due to intrinsic symmetry: • Cijkl = Cjikl • Cijkl = Cijlk • Abbreviated notation: Cijkl → Cij • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank Thermopiezo-optical effect tensor π(T)ijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Δβij=π(T)ijklσklΔT • Relates Stress tensor σij and Temperature variation ΔT with the symmetric part of the Dielectric impermeability tensor variation Δβij • Intrinsic symmetry symbol: [V2][V2] • Symmetrized indexes due to intrinsic symmetry: • π(T)ijkl = π(T)jikl • π(T)ijkl = π(T)ijlk • Abbreviated notation: π(T)ijkl → π(T)ij • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank Magnetoelectro-optical effect tensor mijkl • Axial tensor invariant under time-reversal symmetry operation • Defining equation: Δβij=mijklHkEl • Relates Magnetic field H and Electric field E with the antisymmetric part of the Dielectric impermeability tensor variation Δβij • Intrinsic symmetry symbol: e{V2}V2 • Symmetrized indexes due to intrinsic symmetry: • mijkl = -mjikl
|
Information about the selected tensor • 4 th rank Piezogyration tensor Cijkl • Axial tensor invariant under time-reversal symmetry operation • Defining equation: Δgij=Cijklσkl • Relates Stress tensor σij with Optical activity tensor variation Δgij • Intrinsic symmetry symbol: e[V2][V2] • Symmetrized indexes due to intrinsic symmetry: • Cijkl = Cjikl • Cijkl = Cijlk • Abbreviated notation: Cijkl → Cij • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank Quadratic electrogyration effect tensor βijkl • Axial tensor invariant under time-reversal symmetry operation • Defining equation: Δgij=βijklEkEl • Relates Electric field E and Electric field E with Optical activity tensor variation Δgij • Intrinsic symmetry symbol: e[V2][V2] • Symmetrized indexes due to intrinsic symmetry: • βijkl = βjikl • βijkl = βijlk
|
Information about the selected tensor • 4 th rank Nonmutual Optical Activity γijkl • Polar tensor which inverts under time-reversal symmetry operation • Defining equation: Δβij= γijlmklkm • Relates light wave vector and light wave vector with dielectric impermeability tensor variation (antisymmetric part). • Pure imaginary in non-dissipative media. • Intrinsic symmetry symbol: a{V2}[V2] • Symmetrized indexes due to intrinsic symmetry: • γijkl = -γjikl • γijkl = γijlk • Abbreviated notation: γijkl → γijk • ij → i if i=j, ij → 9-(i+j) if i≠j
|
Information about the selected tensor • 4 th rank Quadratic magneto-optic Kerr effect Bijkl • Polar tensor which inverts under time-reversal symmetry operation • Defining equation: Δβij=BijklHkHl • Relates Magnetic field H and Magnetic field H with the antisymmetric part of the Dielectric impermeability tensor variation Δβij • Intrinsic symmetry symbol: a{V2}[V2] • Symmetrized indexes due to intrinsic symmetry: • Bijkl = -Bjikl • Bijkl = Bijlk • Abbreviated notation: Bijkl → Bijk • ij → i if i=j, ij → 9-(i+j) if i≠j
|
Information about the selected tensor • 5 th rank Piezoelectro-optical effect tensor zijklm • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Δβij=zijklmσklEm • Relates Stress tensor σij and Electric field E with the symmetric part of the Dielectric impermeability tensor variation Δβij • Intrinsic symmetry symbol: [V2][V2]V • Symmetrized indexes due to intrinsic symmetry: • zijklm = zjiklm • zijklm = zijlkm • Abbreviated notation: zijklm → zijk • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 5 th rank Piezomagneto-optical effect tensor ωijklm • Axial tensor invariant under time-reversal symmetry operation • Defining equation: Δβij=ωijklmHkσlm • Relates Magnetic field H and Stress tensor σij with the antisymmetric part of the Dielectric impermeability tensor variation Δβij • Intrinsic symmetry symbol: e{V2}V[V2] • Symmetrized indexes due to intrinsic symmetry: • ωijklm = -ωjiklm • ωijklm = ωijkml • Abbreviated notation: ωijklm → ωijkl • lm → l if l=m, lm → 9-(l+m) if l≠m
|
Information about the selected tensor • 5 th rank Gradient piezogyration tensor βijklm • Axial tensor invariant under time-reversal symmetry operation • Defining equation: Δgij=βijklm∇mσkl • Relates Stress tensor gradient ∇kσij with Optical activity tensor variation Δgij • Intrinsic symmetry symbol: e[V2][V2]V • Symmetrized indexes due to intrinsic symmetry: • βijklm = βjiklm • βijklm = βijlkm • Abbreviated notation: βijklm → βijk • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 6 th rank Second-order piezo-optical tensor Πijklmn • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Δβij=Πijklmnσklσmn • Relates Stress tensor σij and Stress tensor σij with the symmetric part of Dielectric impermeability tensor variation Δβij • Intrinsic symmetry symbol: [V2][[V2][V2]] • Symmetrized indexes due to intrinsic symmetry: • Πijklmn = Πjiklmn • Πijklmn = Πijlkmn • Πijklmn = Πijklnm • Πijklmn = Πijmnkl • Abbreviated notation: Πijklmn → Πijk • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l • mn → k if m=n, mn → 9-(m+n) if m≠n
|
Information about the selected tensor • 6 th rank Quadratic piezogyration tensor Cijklmn • Axial tensor invariant under time-reversal symmetry operation • Defining equation: Δgij=Cijklmnσklσmn • Relates Stress tensor σij and Stress tensor σij with Optical activity tensor variation Δgij • Intrinsic symmetry symbol: e[V2][[V2][V2]] • Symmetrized indexes due to intrinsic symmetry: • Cijklmn = Cjiklmn • Cijklmn = Cijlkmn • Cijklmn = Cijklnm • Cijklmn = Cijmnkl • Abbreviated notation: Cijklmn → Cijk • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l • mn → k if m=n, mn → 9-(m+n) if m≠n
|
Information about the selected tensor • 3 rd rank General second-order susceptibility (non dissipative media and no dispersion) χ(ω3;ω2,ω1)ijk • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi(ω3)=χijk(ω3;ω2,ω1)Ej(ω2)Ek(ω1) • Relates Electric field of frequency ω1 and Electric field of frequency ω2 with Polarization of frequency ω3. • Tensor of real coefficients (imaginary part null). Kleinman symmetry. • Intrinsic symmetry symbol: [V3] • Symmetrized indexes due to intrinsic symmetry: • χ(ω3;ω2,ω1)ijk = χ(ω3;ω2,ω1)jik • χ(ω3;ω2,ω1)ijk = χ(ω3;ω2,ω1)kji • χ(ω3;ω2,ω1)ijk = χ(ω3;ω2,ω1)ikj • Abbreviated notation: χ(ω3;ω2,ω1)ijk → χ(ω3;ω2,ω1)ij • ij → i if i=j, ij → 9-(i+j) if i≠j
|
Information about the selected tensor • 3 rd rank Optical rectification (non-dissipative media and no dispersion) χ(0;ω,-ω)ijk • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi(0)=χijk(0;ω,-ω)Ej(ω)Ek(-ω) • Relates Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 0. • Tensor of real coefficients (imaginary part null). Kleinman symmetry. • Intrinsic symmetry symbol: [V3] • Symmetrized indexes due to intrinsic symmetry: • χ(0;ω,-ω)ijk = χ(0;ω,-ω)jik • χ(0;ω,-ω)ijk = χ(0;ω,-ω)kji • χ(0;ω,-ω)ijk = χ(0;ω,-ω)ikj • Abbreviated notation: χ(0;ω,-ω)ijk → χ(0;ω,-ω)ij • ij → i if i=j, ij → 9-(i+j) if i≠j
|
Information about the selected tensor • 3 rd rank Second-harmonic generation (non-dissipative media and no dispersion) χ(2ω;ω,ω)ijk • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi(2ω)=χijk(2ω;ω,ω)Ej(ω)Ek(ω) • Relates Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 2ω. • Tensor of real coefficients (imaginary part null). Kleinman symmetry. • Intrinsic symmetry symbol: [V3] • Symmetrized indexes due to intrinsic symmetry: • χ(2ω;ω,ω)ijk = χ(2ω;ω,ω)jik • χ(2ω;ω,ω)ijk = χ(2ω;ω,ω)kji • χ(2ω;ω,ω)ijk = χ(2ω;ω,ω)ikj • Abbreviated notation: χ(2ω;ω,ω)ijk → χ(2ω;ω,ω)ij • ij → i if i=j, ij → 9-(i+j) if i≠j
|
Information about the selected tensor • 3 rd rank General optical rectification (dissipative media) χ(0;ω,-ω)ijk • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi(0)=χijk(0;ω,-ω)Ej(ω)Ek(-ω) • Relates Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 0. • Tensor of complex coefficients. Real in non-dissipative media. • Onsager relations imply 1'χijk(0;ω,-ω)=χikj(0;ω,-ω) • Intrinsic symmetry symbol: V[V2]*
|
Information about the selected tensor • 3 rd rank Optical rectification (non-dissipative media)Real part χ(0;ω,-ω)ijk • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi(0)=χijk(0;ω,-ω)Ej(ω)Ek(-ω) • Relates Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 0. • Tensor of complex coefficients. Only the real part of χijk(0;ω,-ω) is considered. • Intrinsic symmetry symbol: V[V2] • Symmetrized indexes due to intrinsic symmetry: • χ(0;ω,-ω)ijk = χ(0;ω,-ω)ikj • Abbreviated notation: χ(0;ω,-ω)ijk → χ(0;ω,-ω)ij • jk → j if j=k, jk → 9-(j+k) if j≠k
|
Information about the selected tensor • 3 rd rank Second-harmonic generation (non-dissipative media). Real part. χ(2ω;ω,ω)ijk • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi(2ω)=χijk(2ω;ω,ω)Ej(ω)Ek(ω) • Relates Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 2ω. • Tensor of complex coefficients. Only the real part of χijk(2ω;ω,ω) is considered. • Intrinsic symmetry symbol: V[V2] • Symmetrized indexes due to intrinsic symmetry: • χ(2ω;ω,ω)ijk = χ(2ω;ω,ω)ikj • Abbreviated notation: χ(2ω;ω,ω)ijk → χ(2ω;ω,ω)ij • jk → j if j=k, jk → 9-(j+k) if j≠k
|
Information about the selected tensor • 3 rd rank General second-order susceptibility (non-dissipative media). Real part. χ(ω3;ω2,ω1)ijk • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi(ω3)=χijk(ω3;ω2,ω1)Ej(ω2)Ek(ω1) • Relates Electric field of frequency ω1 and Electric field of frequency ω2 with Polarization of frequency ω3. • Tensor of complex coefficients. Only the real part of χijk(ω3;ω2,ω1) is considered. • Intrinsic symmetry symbol: V3
|
Information about the selected tensor • 3 rd rank General second-order susceptibility by magnetic dipole (non-dissipative media and no dispersion) χm(ω3;ω2,ω1)ijk • Axial tensor invariant under time-reversal symmetry operation • Defining equation: Mi(ω3)=χmijk(ω3;ω2,ω1)Ej(ω2)Ek(ω1) • Relates Electric field of frequency ω1 and Electric field of frequency ω2 with Magnetization of frequency ω3. • Tensor of pure imaginary coefficients (real part null). Kleinman symmetry. • Intrinsic symmetry symbol: e[V3] • Symmetrized indexes due to intrinsic symmetry: • χm(ω3;ω2,ω1)ijk = χm(ω3;ω2,ω1)jik • χm(ω3;ω2,ω1)ijk = χm(ω3;ω2,ω1)kji • χm(ω3;ω2,ω1)ijk = χm(ω3;ω2,ω1)ikj • Abbreviated notation: χm(ω3;ω2,ω1)ijk → χm(ω3;ω2,ω1)ij • ij → i if i=j, ij → 9-(i+j) if i≠j
|
Information about the selected tensor • 3 rd rank Second-harmonic generation by magnetic dipole (non-dissipative media and no dispersion) χm(2ω;ω,ω)ijk • Axial tensor invariant under time-reversal symmetry operation • Defining equation: Mi(2ω)=χmijk(2ω;ω,ω)Ej(ω)Ek(ω) • Relates Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 2ω. • Tensor of pure imaginary coefficients (real part null). Kleinman symmetry. • Intrinsic symmetry symbol: e[V3] • Symmetrized indexes due to intrinsic symmetry: • χm(2ω;ω,ω)ijk = χm(2ω;ω,ω)jik • χm(2ω;ω,ω)ijk = χm(2ω;ω,ω)kji • χm(2ω;ω,ω)ijk = χm(2ω;ω,ω)ikj • Abbreviated notation: χm(2ω;ω,ω)ijk → χm(2ω;ω,ω)ij • ij → i if i=j, ij → 9-(i+j) if i≠j
|
Information about the selected tensor • 3 rd rank Second-harmonic generation by magnetic dipole (non-dissipative media). Imaginary part. χm(2ω;ω,ω)ijk • Axial tensor invariant under time-reversal symmetry operation • Defining equation: Mi(2ω)=χmijk(2ω;ω,ω)Ej(ω)Ek(ω) • Relates Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 2ω. • Tensor of complex coefficients. Only the imaginary part of χmijk(2ω;ω,ω) is considered. • Intrinsic symmetry symbol: eV[V2] • Symmetrized indexes due to intrinsic symmetry: • χm(2ω;ω,ω)ijk = χm(2ω;ω,ω)ikj • Abbreviated notation: χm(2ω;ω,ω)ijk → χm(2ω;ω,ω)ij • jk → j if j=k, jk → 9-(j+k) if j≠k
|
Information about the selected tensor • 3 rd rank General second-order susceptibility by magnetic dipole (non-dissipative media) Imaginary part χm(ω3;ω2,ω1)ijk • Axial tensor invariant under time-reversal symmetry operation • Defining equation: Mi(ω3)=χmijk(ω3;ω2,ω1)Ej(ω2)Ek(ω1) • Relates Electric field of frequency ω1 and Electric field of frequency ω2 with Magnetization of frequency ω3. • Tensor of complex coefficients. Only the imaginary part of χmijk(ω3;ω2,ω1) is considered. • Intrinsic symmetry symbol: eV3
|
Information about the selected tensor • 3 rd rank Optical rectification (non-dissipative media)Imaginary part χ(0;ω,-ω)ijk • Polar tensor which inverts under time-reversal symmetry operation • Defining equation: Pi(0)=χijk(0;ω,-ω)Ej(ω)Ek(-ω) • Relates Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 0. • Tensor of complex coefficients. Only the imaginary part of χijk(0;ω,-ω) is considered. • Intrinsic symmetry symbol: aV{V2} • Symmetrized indexes due to intrinsic symmetry: • χ(0;ω,-ω)ijk = -χ(0;ω,-ω)ikj
|
Information about the selected tensor • 3 rd rank Second-harmonic generation (non-dissipative media). Imaginary part. χ(2ω;ω,ω)ijk • Polar tensor which inverts under time-reversal symmetry operation • Defining equation: Pi(2ω)=χijk(2ω;ω,ω)Ej(ω)Ek(ω) • Relates Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 2ω. • Tensor of complex coefficients. Only the imaginary part of χijk(2ω;ω,ω) is considered. • Intrinsic symmetry symbol: aV[V2] • Symmetrized indexes due to intrinsic symmetry: • χ(2ω;ω,ω)ijk = χ(2ω;ω,ω)ikj • Abbreviated notation: χ(2ω;ω,ω)ijk → χ(2ω;ω,ω)ij • jk → j if j=k, jk → 9-(j+k) if j≠k
|
Information about the selected tensor • 3 rd rank General second-order susceptibility (non-dissipative media). Imaginary part. χ(ω3;ω2,ω1)ijk • Polar tensor which inverts under time-reversal symmetry operation • Defining equation: Pi(ω3)=χijk(ω3;ω2,ω1)Ej(ω2)Ek(ω1) • Relates Electric field of frequency ω1 and Electric field of frequency ω2 with Polarization of frequency ω3. • Tensor of complex coefficients. Only the imaginary part of χijk(ω3ω,ω) is considered. • Intrinsic symmetry symbol: aV3
|
Information about the selected tensor • 3 rd rank Second-harmonic generation by magnetic dipole (non-dissipative media). Real part. χm(2ω;ω,ω)ijk • Axial tensor which inverts under time-reversal symmetry operation • Defining equation: Mi(2ω)=χmijk(2ω;ω,ω)Ej(ω)Ek(ω) • Relates Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 2ω. • Tensor of complex coefficients. Only the real part of χmijk(2ωω,ω) is considered. • Intrinsic symmetry symbol: aeV[V2] • Symmetrized indexes due to intrinsic symmetry: • χm(2ω;ω,ω)ijk = χm(2ω;ω,ω)ikj • Abbreviated notation: χm(2ω;ω,ω)ijk → χm(2ω;ω,ω)ij • jk → j if j=k, jk → 9-(j+k) if j≠k
|
Information about the selected tensor • 3 rd rank General second-order susceptibility by magnetic dipole (non-dissipative media) Real part χm(ω3;ω2,ω1)ijk • Axial tensor which inverts under time-reversal symmetry operation • Defining equation: Mi(ω3)=χmijk(ω3;ω2,ω1)Ej(ω2)Ek(ω1) • Relates Electric field of frequency ω1 and Electric field of frequency ω2 with Magnetization of frequency ω3. • Tensor of complex coefficients. Only the real part of χmijk(ω3;ω2,ω1) is considered. • Intrinsic symmetry symbol: aeV3
|
Information about the selected tensor • 3 rd rank General second-harmonic generation (dissipative media) χ(2ω;ω,ω)ijk • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi(2ω)=χijk(2ω;ω,ω)Ej(ω)Ek(ω) • Relates Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 2ω. • Tensor of complex coefficients. • Symmetry operations including time reversal do not introduce any restriction in the tensor but they connect it with the tensor for difference frequency generation: 1'χijk(2ω;ω,ω)=χjik(ω;2ω,-ω)=χkij(ω;2ω,-ω) • Intrinsic symmetry symbol: (V[V2])* • Symmetrized indexes due to intrinsic symmetry: • χ(2ω;ω,ω)ijk = χ(2ω;ω,ω)ikj • Abbreviated notation: χ(2ω;ω,ω)ijk → χ(2ω;ω,ω)ij • jk → j if j=k, jk → 9-(j+k) if j≠k
|
Information about the selected tensor • 3 rd rank General second-order susceptibility (dissipative media) χ(ω3;ω2,ω1)ijk • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi(ω3)=χijk(ω3;ω2,ω1)Ej(ω2)Ek(ω1) • Relates Electric field of frequency ω1 and Electric field of frequency ω2 with Polarization of frequency ω3. • Tensor of complex coefficients. • Symmetry operations including time reversal do not introduce any restriction in the tensor but they connect it with the tensor for difference frequency generation: 1' χijk(ω3;ω2,ω1)=χjik(ω2;ω3,-ω1)=χkij(ω1;ω3,-ω2) • Intrinsic symmetry symbol: (V3)*
|
Information about the selected tensor • 4 th rank Degenerate four-wave mixing χ(ω;-ω,ω,ω)ijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi(ω)=χijkl(ω;-ω,ω,ω)Ej(-ω)Ek(ω)El(ω) • Relates Electric field of frequency ω and Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency ω. • Tensor of complex coefficients. • Onsager relations imply: 1'χijkl(ω;-ω,ω,ω)=χklij(ω;-ω,ω,ω). • Intrinsic symmetry symbol: [[V2][V2]]* • Symmetrized indexes due to intrinsic symmetry: • χ(ω;-ω,ω,ω)ijkl = χ(ω;-ω,ω,ω)jikl • χ(ω;-ω,ω,ω)ijkl = χ(ω;-ω,ω,ω)ijlk • Abbreviated notation: χ(ω;-ω,ω,ω)ijkl → χ(ω;-ω,ω,ω)ij • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank Electric-field induced second-harmonic generation (non-dissipative media and no dispersion) χ(2ω;0,ω,ω)ijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi(2ω)=χijkl(2ω;0,ω,ω)Ej(0)Ek(ω)El(ω) • Relates Electric field of frequency 0 and Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 2ω. • Tensor of real coefficients (imaginary part null). Kleinman symmetry. • Intrinsic symmetry symbol: [V4] • Symmetrized indexes due to intrinsic symmetry: • χ(2ω;0,ω,ω)ijkl = χ(2ω;0,ω,ω)jikl • χ(2ω;0,ω,ω)ijkl = χ(2ω;0,ω,ω)kjil • χ(2ω;0,ω,ω)ijkl = χ(2ω;0,ω,ω)ljki • χ(2ω;0,ω,ω)ijkl = χ(2ω;0,ω,ω)ikjl • χ(2ω;0,ω,ω)ijkl = χ(2ω;0,ω,ω)ilkj • χ(2ω;0,ω,ω)ijkl = χ(2ω;0,ω,ω)ijlk • Abbreviated notation: χ(2ω;0,ω,ω)ijkl → χ(2ω;0,ω,ω)ij • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank General third-order susceptibility (non-dissipative media and no dispersion) χ(ω4;ω3,ω2,ω1)ijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi(ω4)=χijkl(ω4;ω3,ω2,ω1)Ej(ω3)Ek(ω2)El(ω1) • Relates Electric field of frequency ω1 and Electric field of frequency ω2 and Electric field of frequency ω3 with Polarization of frequency ω4. • Tensor of real coefficients (imaginary part null). Kleinman symmetry. • Intrinsic symmetry symbol: [V4] • Symmetrized indexes due to intrinsic symmetry: • χ(ω4;ω3,ω2,ω1)ijkl = χ(ω4;ω3,ω2,ω1)jikl • χ(ω4;ω3,ω2,ω1)ijkl = χ(ω4;ω3,ω2,ω1)kjil • χ(ω4;ω3,ω2,ω1)ijkl = χ(ω4;ω3,ω2,ω1)ljki • χ(ω4;ω3,ω2,ω1)ijkl = χ(ω4;ω3,ω2,ω1)ikjl • χ(ω4;ω3,ω2,ω1)ijkl = χ(ω4;ω3,ω2,ω1)ilkj • χ(ω4;ω3,ω2,ω1)ijkl = χ(ω4;ω3,ω2,ω1)ijlk • Abbreviated notation: χ(ω4;ω3,ω2,ω1)ijkl → χ(ω4;ω3,ω2,ω1)ij • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank Third-harmonic generation (non-dissipative media and no dispersion) χ(3ω;ω,ω,ω)ijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi(3ω)=χijkl(3ω;ω,ω,ω)Ej(ω)Ek(ω)El(ω) • Relates Electric field of frequency ω and Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 3ω. • Tensor of real coefficients (imaginary part null). Kleinman symmetry. • Intrinsic symmetry symbol: [V4] • Symmetrized indexes due to intrinsic symmetry: • χ(3ω;ω,ω,ω)ijkl = χ(3ω;ω,ω,ω)jikl • χ(3ω;ω,ω,ω)ijkl = χ(3ω;ω,ω,ω)kjil • χ(3ω;ω,ω,ω)ijkl = χ(3ω;ω,ω,ω)ljki • χ(3ω;ω,ω,ω)ijkl = χ(3ω;ω,ω,ω)ikjl • χ(3ω;ω,ω,ω)ijkl = χ(3ω;ω,ω,ω)ilkj • χ(3ω;ω,ω,ω)ijkl = χ(3ω;ω,ω,ω)ijlk • Abbreviated notation: χ(3ω;ω,ω,ω)ijkl → χ(3ω;ω,ω,ω)ij • ij → i if i=j, ij → 9-(i+j) if i≠j • kl → j if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank Four-wave mixing χ(ω1;-ω2,ω1,ω2)ijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi(ω1)=χijkl(ω1;-ω2,ω1,ω2)Ej(-ω2)Ek(ω1)El(ω2) • Relates Electric field of frequency ω1 and Electric field of frequency ω2 and Electric field of frequency ω2 with Polarization of frequency ω1. • Tensor of complex coefficients. • Onsager relations imply: 1'χijkl(ω1;-ω2,ω1,ω2)=χklij(ω1;-ω2,ω1,ω2). • Intrinsic symmetry symbol: [V2V2]*
|
Information about the selected tensor • 4 th rank Third-harmonic generation (non-dissipative media). Real part. χ(3ω;ω,ω,ω)ijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi(3ω)=χijkl(3ω;ω,ω,ω)Ej(ω)Ek(ω)El(ω) • Relates Electric field of frequency ω and Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 3ω. • Tensor of complex coefficients. Only the real part of χijkl(3ω;ω,ω,ω) is considered. • Intrinsic symmetry symbol: V[V3] • Symmetrized indexes due to intrinsic symmetry: • χ(3ω;ω,ω,ω)ijkl = χ(3ω;ω,ω,ω)ikjl • χ(3ω;ω,ω,ω)ijkl = χ(3ω;ω,ω,ω)ilkj • χ(3ω;ω,ω,ω)ijkl = χ(3ω;ω,ω,ω)ijlk • Abbreviated notation: χ(3ω;ω,ω,ω)ijkl → χ(3ω;ω,ω,ω)ijk • jk → j if j=k, jk → 9-(j+k) if j≠k
|
Information about the selected tensor • 4 th rank General third-order susceptibility (non-dissipative media). Real part. χ(ω4;ω3,ω2,ω1)ijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi(ω4)=χijkl(ω4;ω3,ω2,ω1)Ej(ω3)Ek(ω2)El(ω1) • Relates Electric field of frequency ω1 and Electric field of frequency ω2 and Electric field of frequency ω3 with Polarization of frequency ω4. • Tensor of complex coefficients. • Only the real part of χijkl(ω4;ω3,ω2,ω1) is considered. • Intrinsic symmetry symbol: V4
|
Information about the selected tensor • 4 th rank Electric-field induced second-harmonic generation (non-dissipative media). Real part. χ(2ω;0,ω,ω)ijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi(2ω)=χijkl(2ω;0,ω,ω)Ej(0)Ek(ω)El(ω) • Relates Electric field of frequency 0 and Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 2ω. • Tensor of complex coefficients. Only the real part of χijkl(2ω0,ω,ω) is considered. • Intrinsic symmetry symbol: V2[V2] • Symmetrized indexes due to intrinsic symmetry: • χ(2ω;0,ω,ω)ijkl = χ(2ω;0,ω,ω)ijlk • Abbreviated notation: χ(2ω;0,ω,ω)ijkl → χ(2ω;0,ω,ω)ijk • kl → k if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank Third-harmonic generation (non-dissipative media). Imaginary part. χ(3ω;ω,ω,ω)ijkl • Polar tensor which inverts under time-reversal symmetry operation • Defining equation: Pi(3ω)=χijkl(3ω;ω,ω,ω)Ej(ω)Ek(ω)El(ω) • Relates Electric field of frequency ω and Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 3ω. • Tensor of complex coefficients. Only the imaginary part of χijkl(3ω;ω,ω,ω) is considered. • Intrinsic symmetry symbol: aV[V3] • Symmetrized indexes due to intrinsic symmetry: • χ(3ω;ω,ω,ω)ijkl = χ(3ω;ω,ω,ω)ikjl • χ(3ω;ω,ω,ω)ijkl = χ(3ω;ω,ω,ω)ilkj • χ(3ω;ω,ω,ω)ijkl = χ(3ω;ω,ω,ω)ijlk • Abbreviated notation: χ(3ω;ω,ω,ω)ijkl → χ(3ω;ω,ω,ω)ijk • jk → j if j=k, jk → 9-(j+k) if j≠k
|
Information about the selected tensor • 4 th rank General third-order susceptibility (non-dissipative media). Imaginary part. χ(ω4;ω3,ω2,ω1)ijkl • Polar tensor which inverts under time-reversal symmetry operation • Defining equation: Pi(ω4)=χijkl(ω4;ω3,ω2,ω1)Ej(ω3)Ek(ω2)El(ω1) • Relates Electric field of frequency ω1 and Electric field of frequency ω2 and Electric field of frequency ω3 with Polarization of frequency ω4. • Tensor of complex coefficients. • Only the imaginary part of χijkl(ω4;ω3,ω2,ω1)is considered. • Intrinsic symmetry symbol: aV4
|
Information about the selected tensor • 4 th rank Electric-field induced second-harmonic generation (non-dissipative media). Imaginary part. χ(2ω0,ω,ω)ijkl • Polar tensor which inverts under time-reversal symmetry operation • Defining equation: Pi(2ω)=χijkl(2ω;0,ω,ω)Ej(0)Ek(ω)El(ω) • Relates Electric field of frequency 0 and Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 2ω. • Tensor of complex coefficients.Only the imaginary part of χijkl(2ω;0,ω,ω) is considered. • Intrinsic symmetry symbol: aV2[V2] • Symmetrized indexes due to intrinsic symmetry: • χ(2ω;0,ω,ω)ijkl = χ(2ω;0,ω,ω)ijlk • Abbreviated notation: χ(2ω;0,ω,ω)ijkl → χ(2ω;0,ω,ω)ijk • kl → k if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank General third-harmonic generation (dissipative media) χ(3ω;ω,ω,ω)ijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi(3ω)=χijkl(3ω;ω,ω,ω)Ej(ω)Ek(ω)El(ω) • Relates Electric field of frequency ω and Electric field of frequency ω and Electric field of frequency ω with Polarization of frequency 3ω. • Tensor of complex coefficients. • Symmetry operations including time reversal do not introduce any restriction in the tensor but they connect it with a tensor for a different third order process: 1'χijkl(3ω;ω,ω,ω)=χjikl(ω;3ω,-ω,-ω)=χkijl(ω;3ω,-ω,-ω)=χlijk(ω;3ω,-ω,-ω). • Intrinsic symmetry symbol: (V[V3])* • Symmetrized indexes due to intrinsic symmetry: • χ(3ω;ω,ω,ω)ijkl = χ(3ω;ω,ω,ω)ikjl • χ(3ω;ω,ω,ω)ijkl = χ(3ω;ω,ω,ω)ilkj • χ(3ω;ω,ω,ω)ijkl = χ(3ω;ω,ω,ω)ijlk • Abbreviated notation: χ(3ω;ω,ω,ω)ijkl → χ(3ω;ω,ω,ω)ijk • jk → j if j=k, jk → 9-(j+k) if j≠k
|
Information about the selected tensor • 4 th rank General third-order susceptibility (dissipative media) χ(ω4;ω3,ω2,ω1)ijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Pi(ω4)=χijkl(ω4;ω3,ω2,ω1)Ej(ω3)Ek(ω2)El(ω1) • Relates Electric field of frequency ω1 and Electric field of frequency ω2 and Electric field of frequency ω3 with Polarization of frequency ω4. • Tensor of complex coefficients. • Symmetry operations including time reversal do not introduce any restriction in the tensor but they connect it with a tensor for other third order processes: 1'χijkl(ω4;ω3,ω2,ω1)=χjikl(ω3;ω4,-ω2,-ω1)=χkijl(ω2;ω4,-ω3,-ω1)=χlijk(ω1;ω4,-ω3,-ω2). • Intrinsic symmetry symbol: (V4)*
|
Information about the selected tensor • 2 nd rank Diffusion tensor Dij • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Ji=Dij∇jC • Relates Concentration gradient ∇C with Diffusive flux J • Intrinsic symmetry symbol: [V2]*
|
Information about the selected tensor • 2 nd rank Dufour effect (reversal thermodiffusion) tensor βij • Polar tensor invariant under time-reversal symmetry operation • Defining equation: qi=βij∇jC • Relates Concentration gradient ∇C with Heat flux q • Intrinsic symmetry symbol: [V2]*
|
Information about the selected tensor • 2 nd rank Electric conductivity tensor σij • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Ji=σijEj • Relates Electric field E with Electric current density J • Intrinsic symmetry symbol: [V2]*
|
Information about the selected tensor • 2 nd rank Electric resistivity tensor ρij • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Ei=ρijJj • Relates Electric current density J with Electric field E • Intrinsic symmetry symbol: [V2]*
|
Information about the selected tensor • 2 nd rank Electrodiffusion tensor γij (direct effect) • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Ji=γijEjT • Relates Electric field E with Diffusive flux J • Intrinsic symmetry symbol: [V2]*
|
Information about the selected tensor • 2 nd rank Electrodiffusion tensor γTij (inverse effect) • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Ji=γTij∇jC • Relates Concentration gradient ∇C with Electric current density J • Intrinsic symmetry symbol: [V2]*
|
Information about the selected tensor • 2 nd rank Soret effect (thermodiffusion) tensor βij • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Ji=βij∇jT • Relates Temperature gradient ∇T with Diffusive flux J • Intrinsic symmetry symbol: [V2]*
|
Information about the selected tensor • 2 nd rank Thermal conductivity tensor κij • Polar tensor invariant under time-reversal symmetry operation • Defining equation: qi=κij∇Tj • Relates Temperature gradient ∇T with Heat flux q • Intrinsic symmetry symbol: [V2]*
|
Information about the selected tensor • 2 nd rank Thermal diffusivity tensor αij • Polar tensor invariant under time-reversal symmetry operation • Defining equation: ∂T/∂t=αij∇T∇T • Relates Temperature gradient ∇T and Temperature gradient ∇T with Time derivative of the temperature ∂T/∂t • Intrinsic symmetry symbol: [V2]*
|
Information about the selected tensor • 2 nd rank Thermal resistivity tensor rij • Polar tensor invariant under time-reversal symmetry operation • Defining equation: ∇Ti=rijqj • Relates Heat flux q with Temperature gradient ∇T • Intrinsic symmetry symbol: [V2]*
|
Information about the selected tensor • 2 nd rank Peltier effect tensor πij • Polar tensor invariant under time-reversal symmetry operation • Defining equation: qi=πijJj • Relates Electric current density J with Heat flux q. • Symmetry operations including time reversal do not introduce any restriction in the tensor but they connect it with the Thermoelectric power (Seebeck) effect tensor β. •1'πijkl=βjikl. • Intrinsic symmetry symbol: (V2)*
|
Information about the selected tensor • 2 nd rank Thermoelectric power (Seebeck effect) tensor βij • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Ei=βij∇Tj • Relates Electric field E with Temperature gradient ∇T. • Symmetry operations including time reversal do not introduce any restriction in the tensor but they connect it with the Peltier effect tensor π. •1'βijkl=πjikl • Intrinsic symmetry symbol: (V2)*
|
Information about the selected tensor • 2 nd rank Thomson heat tensor τij • Polar tensor invariant under time-reversal symmetry operation • Defining equation: ∂q/∂t=τij∇TiJj • Relates Temperature gradient ∇T and Electric current density J with Heat production rate ∂q/∂t. • Symmetry operations including time reversal do not introduce any restriction in the tensor but they connect it with another tensor property. • Intrinsic symmetry symbol: (V2)*
|
Information about the selected tensor • 3 rd rank Hall effect (magnetorresistance) tensor Rijk • Axial tensor invariant under time-reversal symmetry operation • Defining equation: Ei=RijkJjHk • Relates Electric current density J and Magnetic field H with Electric field E • Intrinsic symmetry symbol: e{V2}*V
|
Information about the selected tensor • 3 rd rank Righi-Leduc, Maggi-Righi-Leduc and magnetothermal effects tensor Qijk • Axial tensor invariant under time-reversal symmetry operation • Defining equation: qi=Qijk∇TjHk • Relates Temperature gradient ∇T and Magnetic field H with Heat flux q • Intrinsic symmetry symbol: e{V2}*V
|
Information about the selected tensor • 3 rd rank Ettinghausen effect tensor Mijk • Axial tensor invariant under time-reversal symmetry operation • Defining equation: qi=MijkJjHk • Relates Electric current density J and Magnetic field H with Heat flux q. • Symmetry operations including time reversal do not introduce any restriction in the tensor but they connect it with the Nernst effect tensor N. •1'Mijkl=Njikl. • Intrinsic symmetry symbol: (eV3)*
|
Information about the selected tensor • 3 rd rank Nernst effect tensor Nijk • Axial tensor invariant under time-reversal symmetry operation • Defining equation: Ei=Nijk∇TjHk • Relates Temperature gradient ∇T and Magnetic field H with Electric field E. • Symmetry operations including time reversal do not introduce any restriction in the tensor but they connect it with the Ettinghausen effect tensor M. •1'Nijkl=Mjikl. • Intrinsic symmetry symbol: (eV3)*
|
Information about the selected tensor • 4 th rank Magnetic resistance tensor Tijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Ei=TijklJjHkHl • Relates Electric current density J and Magnetic field H and Magnetic field H with Electric field E • Intrinsic symmetry symbol: [V2]*[V2] • Symmetrized indexes due to intrinsic symmetry: • Tijkl = Tijlk
|
Information about the selected tensor • 4 th rank Magneto-heat-conductivity tensor Sijkl Sijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: qi=Sijkl(∇T)jHkHl • Relates Temperature gradient (∇T), Magnetic field H and Magnetic field H with Heat flux q. • Onsager relations imply 1'Sij=Sji • Intrinsic symmetry symbol: [V2]*[V2] • Symmetrized indexes due to intrinsic symmetry: • Sijkl = Sijlk • Abbreviated notation: Sijkl → Sijk • kl → k if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank Piezoresistivity (Strain Gauge effect) tensor πijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Δρij=πijklσkl • Relates Stress tensor σij with Electric resistivity tensor variation Δρij • Intrinsic symmetry symbol: [V2]*[V2] • Symmetrized indexes due to intrinsic symmetry: • πijkl = πijlk • Abbreviated notation: πijkl → πijk • kl → k if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank Magneto Peltier effect Pijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: qi=PijklHkHlJj • Relates current density and magnetic field and magnetic field with heat flux. • Symmetry operations including time reversal do not introduce any restriction in the tensor but they connect it with the magneto-Seebeck effect tensor α. •1'Pijkl=αjikl • Intrinsic symmetry symbol: (V2[V2])* • Symmetrized indexes due to intrinsic symmetry: • Pijkl = Pijlk • Abbreviated notation: Pijkl → Pijk • kl → k if k=l, kl → 9-(k+l) if k≠l
|
Information about the selected tensor • 4 th rank Magneto Seebeck effect αijkl • Polar tensor invariant under time-reversal symmetry operation • Defining equation: Ei=αijkl(∇T)jHkHl • Relates temperature gradient ∇T and magnetic field and magnetic field with electric field. • Symmetry operations including time reversal do not introduce any restriction in the tensor but they connect it with the magneto-Peltier effect tensor P. •1'αijkl=Pjikl • Intrinsic symmetry symbol: (V2[V2])* • Symmetrized indexes due to intrinsic symmetry: • αijkl = αijlk • Abbreviated notation: αijkl → αijk • kl → k if k=l, kl → 9-(k+l) if k≠l
|
|
|
|
|