Bilbao Crystallographic Server COREPRESENTATIONS PG

## Irreducible corepresentations of the Magnetic Point Group m'm'2 (N. 7.4.23)

### Table of characters of the unitary symmetry operations

 (1) (2) (3) C1 C2 C3 C4 GM1 A GM1 1 1 1 1 GM2 B GM2 1 -1 1 -1 GM4 2E GM3 1 -i -1 i GM3 1E GM4 1 i -1 -i
 The notation used in this table is an extension to corepresentations of the following notations used for irreducible representations: (1): Bradley CJ and Cracknell AP, (1972) The Mathematical Theory of Symmetry in Solids. Oxford: Clarendon Press. (2): Bradley CJ and Cracknell AP, (1972) The Mathematical Theory of Symmetry in Solids. Oxford: Clarendon Press, based on Mulliken RS (1933) Phys. Rev. 43, 279-302. (3): A. P. Cracknell, B. L. Davies, S. C. Miller and W. F. Love (1979) Kronecher Product Tables, 1, General Introduction and Tables of Irreducible Representations of Space groups. New York: IFI/Plenum, for the GM point.

### Lists of unitary symmetry operations in the conjugacy classes

 C1: 1 C2: 2001 C3: d1 C4: d2001

### Matrices of the representations of the group

The antiunitary operations are written in red color
NMatrix presentationSeitz symbolGM1GM2GM3GM4
1
 ` 1 0 0 0 1 0 0 0 1`
 ` 1 0 0 1`
1
 1
 1
 1
 1
2
 ` -1 0 0 0 -1 0 0 0 1`
 ` -i 0 0 i`
2001
 1
 -1
 -i
 i
3
 ` 1 0 0 0 1 0 0 0 1`
 ` -1 0 0 -1`
d1
 1
 1
 -1
 -1
4
 ` -1 0 0 0 -1 0 0 0 1`
 ` i 0 0 -i`
d2001
 1
 -1
 i
 -i
5
 ` 1 0 0 0 -1 0 0 0 1`
 ` 0 -1 1 0`
m'010
 1
 1
 1
 1
6
 ` -1 0 0 0 1 0 0 0 1`
 ` 0 -i -i 0`
m'100
 1
 -1
 i
 -i
7
 ` 1 0 0 0 -1 0 0 0 1`
 ` 0 1 -1 0`
dm'010
 1
 1
 -1
 -1
8
 ` -1 0 0 0 1 0 0 0 1`
 ` 0 i i 0`
dm'100
 1
 -1
 -i
 i
k-Subgroupsmag
 Bilbao Crystallographic Serverhttp://www.cryst.ehu.es