Bilbao Crystallographic Server arrow COREPRESENTATIONS PG

Irreducible corepresentations of the Magnetic Point Group -4' (N. 10.3.34)


Table of characters of the unitary symmetry operations


(1)
(2)
(3)
C1
C2
C3
C4
GM1
A
GM1
1
1
1
1
GM2GM2
BB
GM2GM2
2
-2
2
-2
GM4GM3
2E1E
GM3GM4
2
0
-2
0
The notation used in this table is an extension to corepresentations of the following notations used for irreducible representations:
(1): Bradley CJ and Cracknell AP, (1972) The Mathematical Theory of Symmetry in Solids. Oxford: Clarendon Press.
(2): Bradley CJ and Cracknell AP, (1972) The Mathematical Theory of Symmetry in Solids. Oxford: Clarendon Press, based on Mulliken RS (1933) Phys. Rev. 43, 279-302.
(3): A. P. Cracknell, B. L. Davies, S. C. Miller and W. F. Love (1979) Kronecher Product Tables, 1, General Introduction and Tables of Irreducible Representations of Space groups. New York: IFI/Plenum, for the GM point.

Lists of unitary symmetry operations in the conjugacy classes

C1: 1
C2: 2001
C3d1
C4d2001

Matrices of the representations of the group

The antiunitary operations are written in red color
NMatrix presentationSeitz symbolGM1GM2GM2GM3GM4
1
(
1 0 0
0 1 0
0 0 1
)
(
1 0
0 1
)
1
1
(
1 0
0 1
)
(
1 0
0 1
)
2
(
-1 0 0
0 -1 0
0 0 1
)
(
-i 0
0 i
)
2001
1
(
-1 0
0 -1
)
(
-i 0
0 i
)
3
(
1 0 0
0 1 0
0 0 1
)
(
-1 0
0 -1
)
d1
1
(
1 0
0 1
)
(
-1 0
0 -1
)
4
(
-1 0 0
0 -1 0
0 0 1
)
(
i 0
0 -i
)
d2001
1
(
-1 0
0 -1
)
(
i 0
0 -i
)
5
(
0 1 0
-1 0 0
0 0 -1
)
(
(1-i)2/2 0
0 (1+i)2/2
)
4'+001
1
(
0 -1
1 0
)
(
0 i
1 0
)
6
(
0 -1 0
1 0 0
0 0 -1
)
(
(1+i)2/2 0
0 (1-i)2/2
)
4'-001
1
(
0 1
-1 0
)
(
0 -1
-i 0
)
7
(
0 1 0
-1 0 0
0 0 -1
)
(
-(1-i)2/2 0
0 -(1+i)2/2
)
d4'+001
1
(
0 -1
1 0
)
(
0 -i
-1 0
)
8
(
0 -1 0
1 0 0
0 0 -1
)
(
-(1+i)2/2 0
0 -(1-i)2/2
)
d4'-001
1
(
0 1
-1 0
)
(
0 1
i 0
)
k-Subgroupsmag
Bilbao Crystallographic Server
http://www.cryst.ehu.es
Licencia de Creative Commons
For comments, please mail to
administrador.bcs@ehu.eus