Workshop
on the use and applications of the structural and magnetic tools of the BILBAO CRYSTALLOGRAPHIC SERVER

Leioa, 27 June -1 July 2022

SPACE-GROUP SYMMETRY

SYMMETRY DATABASES OF BILBAO CRYSTALLOGRAPHIC SERVER

Mois I. Aroyo
 Universidad del Pais Vasco, Bilbao, Spain
 eman ta zabal zazu

Crystal Symmetry

Real crystal

Real crystals are finite objects in physical space which due to static (impurities and structural imperfections like disorder, dislocations, etc) or dynamic (phonons) defects are not perfectly symmetric.

Ideal crystal (ideal crystal structures)

Infinite periodic spatial arrangement of the atoms (ions, molecules) with no static or dynamic defects

Crystal pattern:

A model of the ideal crystal (crystal structure) in point space consisting of a strictly 3-dimensional periodic set of points

An abstraction of the atomic nature of the ideal structure, perfectly periodic

SPACE GROUPS

Space group G:

 are symmetry operations of the crystal pattern

Point group of the space groups Pg_{g} :

The factor group of the space group G with respect to the translation subgroup $T: P_{G} \cong G / H$

$$
(\mathbf{W}, \mathbf{w}) \longrightarrow \mathbf{W} \quad \mathbf{P}_{\mathrm{G}}=\{\mathbf{W} \mid(\mathbf{W}, \mathbf{w}) \in G\}
$$

INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY

 VOLUME A: SPACE-GROUP SYMMETRY

 VOLUME A: SPACE-GROUP SYMMETRY}

Space-group symmetry Edited by Mois I. Aroyo Sixth edition

Extensive tabulations and illustrations of the 17 plane groups and of the 230 space groups of the 17 plane groups and of the 230 space groups

-headline with the relevant group symbols; -diagrams of the symmetry elements and of the general position;
-specification of the origin and the asymmetric unit;
-list of symmetry operations;
-generators;
-general and special positions with multiplicities, site symmetries, coordinates and reflection conditions;
-symmetries of special projections;

GENERAL LAYOUT:LEFT-HAND PAGE

${ }^{(1)} \mathrm{Cmm} 2$
(2) No. 35
$C_{2 v}^{11}$
Cmm 2
$m m 2$
Orthorhombic

(3)

(4) Origin on mm 2
(5) Asymmetric unit $0 \leq x \leq \frac{1}{2} ; 0 \leq y \leq \frac{1}{2} ; 0 \leq z \leq 1$
(6) Symmetry operations

For $(0,0,0)+$ set
(2) $20,0, z$
(3) $m x, 0, z$
(4) $m 0, y, z$

General Layout: Right-hand page

(1) CONTINUED
(2)

Generators selected (1); $t(1,0,0) ; t(0,1,0) ; t(0,0,1) ; t\left(\frac{1}{2}, \frac{1}{2}, 0\right) ;(2) ;(3)$
(3) Positions

Multiplicity,
Wyckoff letter,
Site symmetry
$8 \quad f \quad 1$
(1) x, y, z
(2) \bar{x}, \bar{y}, z
(3) x, \bar{y}, z
(4) \bar{x}, y, z

4	e	$m \ldots$	$0, y, z$	$0, \bar{y}, z$
4	d	.m.	$x, 0, z$	$\bar{x}, 0, z$
4	c	$\ldots 2$	$\frac{1}{4}, \frac{1}{4}, z$	$\frac{1}{4}, \frac{3}{4}, z$
2	b	$m m 2$	$0, \frac{1}{2}, z$	
2	a	$m m 2$	$0,0, z$	

No. 35
Cmm 2

Reflection conditions

General:
$h k l: \quad h+k=2 n$
$0 k l: k=2 n$
$h 0 l: h=2 n$
$h k 0: h+k=2 n$
$h 00: h=2 n$
$0 k 0: k=2 n$
Special: as above, plus
no extra conditions
no extra conditions
$h k l: h=2 n$
no extra conditions
no extra conditions
(4) Symmetry of special projections
Along [001] c 2 mm
$\mathbf{a}^{\prime}=\mathbf{a} \quad \mathbf{b}^{\prime}=\mathbf{b}$
Along [100] $p 1 m 1$
$\mathbf{a}^{\prime}=\frac{1}{2} \mathbf{b} \quad \mathbf{b}^{\prime}=\mathbf{c}$
Origin at $x, 0,0$

HEADLINE BLOCK

Short Hermann-
Mauguin symbol

Schoenflies symbol

Crystal class
(point group)
Crystal system
Cmm 2
$C_{2 v}^{11}$
$m m 2$
Orthorhombic

Cmm 2
Number of space group

Full Hermann-
Mauguin symbol

Patterson symmetry Cmmm
Patterson
symmetry

HERMANN-MAUGUIN SYMBOLISM

Hermann-Mauguin symbols for space groups

The Hermann-Mauguin symbol for a space group consists of a sequence of letters and numbers, here called the constituents of the HM symbol.
(i) The first constituent is always a symbol for the conventional cell of the translation lattice of the space group
(ii) The second part of the full HM symbol of a space group consists of one position for each of up to three representative symmetry directions. To each position belong the generating symmetry operations of their representative symmetry direction. The position is thus occupied either by a rotation, screw rotation or rotoinversion and/ or by a reflection or glide reflection.
(iii) Simplest-operation rule:

$$
\begin{array}{ll}
\text { pure rotations > screw rotations; } \\
\text { pure rotations > rotoinversions } \\
\text { reflection } m>a ; b ; c>n & \text { '‘' means }
\end{array} \quad \text { 'has priority' }
$$

Lattice systems: classification based on the symmetry of the lattice

$\overline{1}$ triclinic

$2 / m$ monoclinic

$4 / m 2 / m 2 / m$

$h P$
$6 / m 2 / m 2 / m$
($6 / \mathrm{mmm}$) hexagonal

$h R$
$\overline{3} 2 / m$
$(\overline{3} m)$ rhombohedral

c P

cI

cF
$\underset{(m \overline{3} m)}{4 / m \overline{3}} 2 / m \quad$ cubic

Symmetry directions

A direction is called a symmetry direction of a crystal structure if it is parallel to an axis of rotation, screw rotation or rotoinversion or if it is parallel to the normal of a reflection or glide-reflection plane. A symmetry direction is thus the direction of the geometric element of a symmetry operation, when the normal of a symmetry plane is used for the description of its orientation.

Hermann-Mauguin symbols for space groups

Directions that belong to the same set of equivalent symmetry directions are collected between braces. The first entry in each set is taken as the representative of that set.

Lattice	Symmetry direction (position in HermannMauguin symbol)		
	Primary	Secondary	Tertiary
Triclinic	None		
Monoclinic*	[010] ('unique axis b ') [001] ('unique axis c ')		
Orthorhombic	[100]	[010]	[001]
Tetragonal	[001]	$\left\{\begin{array}{l} {[100]} \\ {[010]} \end{array}\right\}$	$\left\{\begin{array}{l}{[1 \overline{1} 0]} \\ {[110]}\end{array}\right\}$
Hexagonal	[001]	$\left\{\begin{array}{l}{[100]} \\ {[010]} \\ {[\overline{110}]}\end{array}\right\}$	$\left\{\begin{array}{l}{[\mathbf{1} \overline{10}]} \\ {[\mathbf{1 2 0}]} \\ {[\overline{\mathbf{2}} \mathbf{0}]}\end{array}\right\}$
Rhombohedral (hexagonal axes)	[001]	$\left\{\begin{array}{l}{[100]} \\ {[010]} \\ {[\overline{110}]}\end{array}\right\}$	
Rhombohedral (rhombohedral axes)	[111]	$\left\{\begin{array}{l}{[\mathbf{1} \overline{1} 0]} \\ {[01 \overline{1}]} \\ {[\overline{101}]}\end{array}\right\}$	
Cubic	$\left\{\begin{array}{l}{[100]} \\ {[010]} \\ {[001]}\end{array}\right\}$	$\left\{\begin{array}{l}{\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]} \\ {\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]} \\ {\left[\begin{array}{lll}\mathbf{1} & 1 & \overline{1}] \\ \overline{1} & 1 & 1\end{array}\right.}\end{array}\right\}$	$\left\{\begin{array}{l}{[\mathbf{1 1 0} 10[110]} \\ {[\mathbf{0 1 1}][011]} \\ {[\overline{101}][\mathbf{1 0 1}]}\end{array}\right\}$

Example:

Hermann-Mauguin symbols for space groups

SPACE-GROUP SYMMETRY OPERATIONS

Symmetry Operations Characteristics

TYPE of the symmetry operation preserve or not handedness

SCREW/GLIDE component

GEOMETRIC ELEMENT

ORIENTATION of the geometric element

LOCATION of the geometric element

Crystallographic symmetry operations

characteristics:

fixed points of isometries
 $(\mathrm{W}, \mathrm{w}) \mathrm{X}_{\mathrm{f}}=\mathrm{X}_{\mathrm{f}}$

 geometric elementsTypes of isometries preserve handedness
the whole space fixed
identity:
translation t :
rotation:
screw rotation:
no fixed point
one line fixed rotation axis
no fixed point screw axis

$$
\tilde{\mathbf{x}}=\mathbf{x}+\mathbf{t}
$$

$$
\phi=k \times 360^{\circ} / N
$$

screw vector

Crystallographic symmetry operations

Screw rotation

n-fold rotation followed by a fractional
translation $\frac{P}{n} \mathbf{t}$ parallel to the rotation axis

Its application n times results in a translation parallel to the rotation axis

Types of isometries

do not

preserve handedness

characteristics:

roto-inversion:

inversion:
reflection:
glide reflection:
no fixed point glide plane

Crystallographic symmetry operations

Glide plane

reflection followed by a fractional translation $\frac{1}{2} \mathbf{t}$ parallel to the plane

Its application 2 times results in a translation parallel to the plane

Description of isometries: 3D

coordinate system: $\quad\{O, \mathbf{a}, \mathbf{b}, \mathbf{c}\}$

isometry:

$$
\left\lvert\, \begin{aligned}
& \tilde{x}=W_{11} x+W_{12} y+W_{13} z+w_{1} \\
& \tilde{y}=W_{21} x+W_{22} y+W_{23} z+w_{2} \\
& \tilde{z}=W_{31} x+W_{32} y+W_{33} z+w_{3}
\end{aligned}\right.
$$

Matrix formalism

$$
\left(\begin{array}{l}
\tilde{x} \\
\tilde{y} \\
\tilde{z}
\end{array}\right)=\left(\begin{array}{l}
W_{11} W_{12} W_{13} \\
W_{21} W_{22} W_{23} \\
W_{31} W_{32} W_{33}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)
$$

linear/matrix
part

translation column part

$\tilde{\boldsymbol{x}}=\boldsymbol{W} \boldsymbol{x}+\boldsymbol{w}$
$\tilde{\boldsymbol{x}}=(\boldsymbol{W}, \boldsymbol{w}) \boldsymbol{x}$ or $\tilde{\boldsymbol{x}}=\{\boldsymbol{W} \mid \boldsymbol{w}\} \boldsymbol{x}$
matrix-column
Seitz symbol pair

EXERCISES

Problem I.6.2.I

Referred to an 'orthorhombic' coordinated system ($\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}$; $\alpha=\beta=\gamma=90$) two symmetry operations are represented by the following matrix-column pairs:

Determine the images X_{i} of a point X under the symmetry operations ($\mathrm{W}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}$) where

Can you guess what is the geometric 'nature' of ($\left.\mathrm{W}_{1}, \mathrm{w}_{1}\right)$? And of $\left(W_{2}, w_{2}\right)$?

$$
X=\begin{array}{|l|}
\hline 0,70 \\
\hline 0,31 \\
\hline 0,95 \\
\hline
\end{array}
$$

Hint:
A drawing could be rather helpful

Combination of isometries

$$
(\boldsymbol{W}, \boldsymbol{w})=(\boldsymbol{V}, \boldsymbol{v})(\boldsymbol{U}, \boldsymbol{u})=(\boldsymbol{V} \boldsymbol{U}, \boldsymbol{V} \boldsymbol{u}+\boldsymbol{v})
$$

$$
\begin{aligned}
& \text { (U,u) } \\
& \tilde{\boldsymbol{x}}=\boldsymbol{U} \boldsymbol{x}+\boldsymbol{u} ; \\
& \tilde{\tilde{\boldsymbol{x}}}=\boldsymbol{V} \tilde{\boldsymbol{x}}+\boldsymbol{v} \text {; } \\
& \tilde{\tilde{\boldsymbol{x}}}=\boldsymbol{V}(\boldsymbol{U} \boldsymbol{x}+\boldsymbol{u})+\boldsymbol{v} ; \\
& \tilde{\tilde{\boldsymbol{x}}}=\boldsymbol{V} \boldsymbol{U} \boldsymbol{x}+\boldsymbol{V} \boldsymbol{u}+\boldsymbol{v}=\boldsymbol{W} \boldsymbol{x}+\boldsymbol{w} . \\
& \tilde{\tilde{\boldsymbol{x}}}=(\boldsymbol{V}, \boldsymbol{v}) \tilde{\boldsymbol{x}}=(\boldsymbol{V}, \boldsymbol{v})(\boldsymbol{U}, \boldsymbol{u}) \boldsymbol{x}=(\boldsymbol{W}, \boldsymbol{w}) \boldsymbol{x}
\end{aligned}
$$

Problem I.6.2.I

Consider the matrix-column pairs of the two symmetry operations:

Determine and compare the matrix-column pairs of the combined symmetry operations:

$$
\begin{aligned}
& (W, w)=\left(W_{1}, W_{1}\right)\left(W_{2}, W_{2}\right) \\
& (W, w)^{\prime}=\left(W_{2}, w_{2}\right)\left(W_{1}, w_{1}\right)
\end{aligned}
$$

combination of isometries:

$$
\left(\boldsymbol{W}_{2}, \boldsymbol{w}_{2}\right)\left(\boldsymbol{W}_{1}, \boldsymbol{w}_{1}\right)=\left(\boldsymbol{W}_{2} \boldsymbol{W}_{1}, \boldsymbol{W}_{2} \boldsymbol{w}_{1}+\boldsymbol{w}_{2}\right)
$$

Inverse isometries

Determine the inverse symmetry operations ($\left.\mathrm{W}_{\mathrm{l}}, \mathrm{w}_{\mathrm{l}}\right)^{-1}$ and $\left(\mathrm{W}_{2}, \mathrm{w}_{2}\right)^{-1}$ where

Determine the inverse symmetry operation (W,w)-1

$$
(W, w)=\left(W_{1}, w_{1}\right)\left(W_{2}, w_{2}\right)
$$

inverse of isometries:

$$
(\boldsymbol{W}, \boldsymbol{w})^{-1}=\left(\boldsymbol{W}^{-1},-\boldsymbol{W}^{-1} \boldsymbol{w}\right)
$$

Short-hand notation for the description of isometries

isometry:

$$
\begin{aligned}
& \mathrm{X} \circ \xrightarrow[(\mathbf{W}, \mathbf{w})]{ } \circ \tilde{\mathrm{X}} \\
& \left\lvert\, \begin{array}{l}
\tilde{x}=W_{11} x+W_{12} y+W_{13} z+w_{1} \\
\tilde{y}= \\
\tilde{z}=W_{21} x+W_{22} y+W_{23} z+w_{2} \\
\tilde{z}=W_{31} x+W_{32} y+W_{33} z+w_{3}
\end{array}\right.
\end{aligned}
$$

notation rules: -left-hand side: omitted -coefficients $0,+1,-1$
-different rows in one line

examples:

EXERCISES

Problem I.6.2.3

Construct the matrix-column pair (W, w) of the following coordinate triplets:
(I) x, y, z
(2) $-x, y+1 / 2,-z+1 / 2$
(3) $-x,-y,-z$
(4) $x,-y+I / 2, z+I / 2$

PRESENTATION OF SPACE-GROUP SYMMETRY OPERATIONS

IN
 INTERNATIONAL TABLES
 FOR CRYSTALLOGRAPHY,
 VOL.A

Space group Cmm2 (No. 35)

Diagram of symmetry elements

How are the symmetry operations represented in ITA ?

Diagram of general position points

Symmetry operations

For $(0,0,0)+$ set
(1) 1
(2) $20,0, z$
(3) $m x, 0, z$
(4) $m 0, y, z$

For $\left(\frac{1}{2}, \frac{1}{2}, 0\right)+$ set
(1) $t\left(\frac{1}{2}, \frac{1}{2}, 0\right)$
(2) $2 \frac{1}{4}, \frac{1}{4}, z$
(3) $a x, \frac{1}{4}, z$
(4) $b \frac{1}{4}, y, z$

General Position

Coordinates

$$
(0,0,0)+\quad\left(\frac{1}{2}, \frac{1}{2}, 0\right)+
$$

$8 \quad f \quad 1$
(1) x, y, z
(2) \bar{x}, \bar{y}, z
(3) x, \bar{y}, z
(4) \bar{x}, y, z

General position

(i) coordinate triplets of an image point \tilde{X} of the original point $X=$| $\frac{x}{y}$ |
| :--- |
| $\frac{y}{x}$ |
| under (W, w) of $G ~$ |

-presentation of infinite image points \widetilde{X} under the action of (W, w) of G
(ii) short-hand notation of the matrix-column pairs (W, w) of the symmetry operations of G
-presentation of infinite symmetry operations of G
$(\mathrm{W}, \mathrm{w})=\left(\mathrm{l}, \mathrm{t}_{\mathrm{n}}\right)\left(\mathrm{W}, \mathrm{w}_{0}\right), 0 \leq \mathrm{w}_{\mathrm{i}}<\mathrm{l}$

Space Groups: infinite order

Coset decomposition $\mathrm{G}: \mathrm{T}_{\mathrm{G}}$

isomorphic to the point group P_{G} of G
Point group $\mathrm{P}_{\mathrm{G}}=\left\{\mathrm{I}, \mathrm{W}_{2}, \mathrm{~W}_{3}, \ldots, \mathrm{~W}_{\mathrm{i}}\right\}$

Example: $\mathrm{PI} 2 / \mathrm{ml}$

Coset decomposition $\mathrm{G}: \mathrm{T}_{\mathrm{G}}$

Point group $P_{G}=\{I, 2, \bar{I}, m\}$

inversion centres (\bar{T}, t) :

EXAMPLE

Coset decomposition $\mathrm{PI} 2_{\mathrm{I}} / \mathrm{cl}$: T

Point group?

(1) x, y, z
(2) $\bar{x}, y+\frac{1}{2}, \bar{z}+\frac{1}{2}$
(3) $\bar{x}, \bar{y}, \bar{z}$
(4) $x, \bar{y}+\frac{1}{2}, z+\frac{1}{2}$
$\left(\mathrm{I}, \mathrm{t}_{\mathrm{j}}\right) \quad\left(2,0 \mathrm{~L} / 2 \mathrm{1} / 2+\mathrm{t}_{\mathrm{j}}\right) \quad\left(\mathrm{I}, \mathrm{t}_{\mathrm{j}}\right) \quad\left(\mathrm{m}, 0 \mathrm{~L} / 21 / 2+\mathrm{t}_{\mathrm{i}}\right)$
inversion

centers

2iscrew axes
$\left(2, u^{1 / 2}+\mathrm{v}^{1 / 2}+\mathrm{w}\right)$

Symmetry Operations Block

GEOMETRIC INTERPRETATION OF THE MATRIXCOLUMN PRESENTATION OF THE SYMMETRY OPERATIONS

TYPE of the symmetry operation

SCREW/GLIDE component

ORIENTATION of the geometric element
LOCATION of the geometric element

Example: Cmm2

Diagram of symmetry elements
$8 \quad f \quad 1$
Coordinates
$(0,0,0)+\left(\frac{1}{2}, \frac{1}{2}, 0\right)+$

Diagram of general position points

Symmetry operations

For $(0,0,0)+$ set
(1) 1
(2) $20,0, z$
(3) $m x, 0, z$
(4) $m 0, y, z$

For $\left(\frac{1}{2}, \frac{1}{2}, 0\right)+$ set
(1) $t\left(\frac{1}{2}, \frac{1}{2}, 0\right)$
(2) $2 \frac{1}{4}, \frac{1}{4}, z$
(3) $a \quad x, \frac{1}{4}, z$
(4) $b \frac{1}{4}, y, z$

P121/c1
Space group P2//c (No. 14)
$P 2_{1} / c$
No. 14

$$
2 / m
$$

UNIQUE AXIS b, CELL CHOICE 1

EXAMPLE

Generators selected (1); $t(1,0,0) ; t(0,1,0) ; t(0,0,1) ;(2) ;(3)$
Positions
Multiplicity, Coordinates
Wyckoff letter,
Site symmetry

Cordias

BILBAO

CRYSTALLOGRAPHIC SERVER

bilbao crystallographic server

Contact us
About us
Publications

ECM31-Oviedo Satellite

rystallography online: workshop on the e and applications of the structural tools of the Bilbao Crystallographic Server

20-21 August 2018

ws:

- New Article in Nature 07/2017: Bradlyn et al. "Topological quantum chemistry" Nature (2017). 547, 298-305.
- New program: BANDREP 04/2017: Band representations and Elementary Band representations of Double Space Groups.
- New section: Double point and space groups
- New program: DGENPOS

04/2017: General positions of Double
Space Groups

- New program: REPRESENTATIONS DPG

Raman and Hyper-Raman scattering

NAOOM7. Imoducible ronrosontatione of

Point-group symmetry

bilbao crystallographic server

Publications
rystallography online: workshop on e and applications of the structural t of the Bilbao Crystallographic Serve

ECM31-Oviedo Satellite

Contact us
About us

	Space-group symmetry
GENPOS	Generators and General Positions of Space Groups
WYCKPOS	Wyckoff Positions of Space Groups
HKLCOND	Reflection conditions of Space Groups
MAXSUB	Maximal Subgroups of Space Groups
SERIES	Series of Maximal Isomorphic Subgroups of Space Groups
WYCKSETS	Equivalent Sets of Wyckoff Positions
NORMALIZER	Normalizers of Space Groups
KVEC	The k-vector types and Brillouin zones of Space Groups
SYMMETRY OPERATIONS	Geometric interpretation of matrix column representations of symmetry operations
IDENTIFY GROUP	Identification of a Space Group from a set of generators in an arbitrary setting

Structure Utilities

Subperiodic Groups: Layer, Rod and Frieze Groups

New Article in Nature 07/2017: Bradlyn et al. "Topological quantum chemistry" Nature (2017). 547, 298-305.

- New program: BANDREP 04/2017: Band representations and Elementary Band representations of Double Space Groups.
- New section: Double point and space groups
- New program: DGENPOS

04/2017: General positions of Double Space Groups

- New program: REPRESENTATIONS DPG

Structure Databases

Raman and Hyper-Raman scattering

Point-group symmetry

[^0]
Bilbao Crystallographic Server

Problem: Matrix-column presentation Geometrical interpretation

GENPOS

Generators and General Positions

How to select the group

The space groups are specified by their sequential number as given in the International Tables for Crystallography, Vol. A. You can give this number, if you know it, or you can choose it from the table with the space group numbers and symbols if you click on the button [choose it].

To see the data in a non conventional setting click on [Non conventional Setting] or [its Settinnel for eherkinn the nnn

Please, enter the sequential number of group as given in the International Tables for Crystallography, Vol. A or
choose it

Generators only
Show:
All General
Positions

Example: Space group P2//c (14)

Space-group
 symmetry operations

General Positions of the Group $14\left(P 2_{1} / c\right)$ [unique axis b]

Click here to get the general positions in text format
short-hand notation
$\underset{\text { presentation }}{\text { matrix-column }}\left(\begin{array}{l}W_{11} W_{12} W_{13} \\ W_{21} W_{22} W_{23} \\ W_{31} W_{32} W_{33}\end{array}\right)\left(\begin{array}{l}w_{1} \\ w_{2} \\ w_{3}\end{array}\right)$

Geometric interpretation

Seitz symbols

General positions

ITA data
$4 \quad e \quad 1$
(1) x, y, z
(2) $\bar{x}, y+\frac{1}{2}, \bar{z}+\frac{1}{2}$
(3) $\bar{x}, \bar{y}, \bar{z}$
(4) $x, \bar{y}+\frac{1}{2}, z+$

Symmetry operations
(1) 1
(2) $2\left(0, \frac{1}{2}, 0\right) \quad 0, y, \frac{1}{4}$
(3) $\overline{1} \quad 0,0,0$
(4) $c \quad x, \frac{1}{4}, z$

SEITZ SYMBOLS FOR SYMMETRY OPERATIONS

Seitz symbols $\{R \mid t\}$

rotation (or linear) part R
short-hand description of the matrix-column presentations of the symmetry operations of the space groups

- specify the type and the order of the symmetry operation;
- orientation of the symmetry element by the direction of the axis for rotations and rotoinversions, or the direction of the normal to reflection planes.

1 and $\overline{1}$
m
2, $\frac{3}{3}, \frac{4}{4}$ and $\frac{6}{6}$
identity and inversion
reflections
rotations
rotoinversions
translation parts of the coordinate triplets of the General position blocks

EXAMPLE

Seitz symbols for symmetry operations of hexagonal and trigonal crystal systems

ITA description				Seitz symbol
No.	coord. triplet	type	orien- tation	
1$)$	x, y, z	1		1
2$)$	$\bar{y}, x-y, z$	3^{+}	$0,0, z$	3_{001}^{+}
3$)$	$\bar{x}+y, \bar{x}, z$	3^{-}	$0,0, z$	3_{001}^{-}
4$)$	\bar{x}, \bar{y}, z	2	$0,0, z$	2_{001}
5)	$y, \bar{x}+y, z$	6^{-}	$0,0, z$	6_{001}^{-}
6$)$	$x-y, x, z$	6^{+}	$0,0, z$	6_{001}^{+}
7$)$	y, x, \bar{z}	2	$x, x, 0$	2_{110}
8$)$	$x-y, \bar{y}, \bar{z}$	2	$x, 0,0$	2_{100}
9$)$	$\bar{x}, \bar{x}+y, \bar{z}$	2	$0, y, 0$	2_{010}
10$)$	$\bar{y}, \bar{x}, \bar{z}$	2	$x, \bar{x}, 0$	$2_{1 \overline{1} 0}$
11$)$	$\bar{x}+y, y, \bar{z}$	2	$x, 2 x, 0$	2_{120}
12$)$	$x, x-y, \bar{z}$	2	$2 x, x, 0$	2_{210}

ITA description				$\begin{array}{\|c} \text { Seitz } \\ \text { symbol } \end{array}$
No.	coord. triplet	type	orientation	
13)	$\bar{x}, \bar{y}, \bar{z}$	1		1
14)	$y, \bar{x}+y, \bar{z}$	$\overline{3}^{+}$	0,0,z	$\overline{3}_{001}^{+}$
15)	$x-y, x, \bar{z}$	$\overline{3}$	0,0,z	$\overline{3}_{001}^{-}$
16)	x, y, \bar{z}	m	$x, y, 0$	m_{001}
17)	$\bar{y}, x-y, \bar{z}$	$\overline{6}$	0,0,z	$\overline{6}_{001}^{-}$
18)	$\bar{x}+y, \bar{x}, \bar{z}$	$\overline{6}^{+}$	0,0,z	$\overline{6}_{001}^{+}$
19)	\bar{y}, \bar{x}, z	m	x, \bar{x}, z	11
20)	$\bar{x}+y, y, z$	m	$x, 2 x, z$	m_{100}
21)	$x, x-y, z$	m	$2 x, x, z$	m_{0}
22)	y, x, z	m	x, x, z	$m_{1 i 10}$
23)	$x-y, \bar{y}, z$	m	$x, 0, \mathrm{z}$	m_{120}
24)	$\bar{x}, \bar{x}+y, z$	m	$0, y, z$	m_{210}

Glazer et al. Acta Cryst A 70, 300 (2014)

Generators selected (1); $t(1,0,0) ; t(0,1,0) ; t(0,0,1) ;(2) ;(3)$

Positions

Multiplicity, Coordinates
Wyckoff letter, Site symmetry

$\begin{array}{lll}4 & e & 1\end{array}$
(1) x, y, z
(2) $\bar{x}, y+\frac{1}{2}, \bar{z}+\frac{1}{2}$
(3) $\bar{x}, \bar{y}, \bar{z}$
(4) $x, \bar{y}+\frac{1}{2}, z+\frac{1}{2}$

Geometric interpretation

Symmetry operations
(1) 1
(2) $2\left(0, \frac{1}{2}, 0\right) \quad 0, y, \frac{1}{4}$
(3) $\overline{1} \quad 0,0,0$
(4) $c \quad x, \frac{1}{4}, z$

Seitz symbols
$\begin{array}{lll}\text { (1) }\{1 / 0\} & \text { (2) }\{2010101 / 21 / 2\} & \text { (3) } \overline{\{1 \mid 0}\}\end{array}$
NOT in ITA

Bilbao Crystallographic Server

Problem: Geometric Interpretation of (W,w)

SYMMETRY
 OPERATION

Symmetry Operation

This program calculates the geometric interpretation of matrix column representation of symmetry operation for a given crystal system or space group.

Input:

i) The crystal system or the space group number.
ii) The matrix column representation of symmetry operation.

If you want to work on a non conventional setting click on Non conventional setting, this will show you a form where you have to introduce the transformation matrix relating the conventional setting of the group you have chosen with the non conventional one you are interested in.

Output:
We obtain the geometric interpretation of the symmetry operation.

Construct the matrix-column pairs (W,w) of the following coordinate triplets:
(I) x, y, z
(2) $-x, y+1 / 2,-z+1 / 2$
(3) $-x,-y,-z$
(4) $x,-y+I / 2, z+I / 2$

Characterize geometrically these matrix-column pairs taking into account that they refer to a monoclinic basis with unique axis b (type of operation, glide/screw component, location of the symmetry operation).

Use the program SYMMETRY OPERATIONS for the geometric interpretation of the matrix-column pairs of the symmetry operations.

Problem I.6.2.4

Determine the orientation and location of the three mutually perpendicular 2-fold rotation axes in the space groups P222, P222 ${ }_{1}$, $P 2$ | 2 , 2 and $P 2$ | 2 | 2 .

EXERCISES

Problem I.6.2.2

I. Characterize geometrically the matrix-column pairs listed under General position of the space group $P 4 m m$ in ITA.
2. Consider the diagram of the symmetry elements of P4mm. Try to determine the matrix-column pairs of the symmetry operations whose symmetry elements are indicated on the unit-cell diagram.
3. Compare your results with the results of the program SYMMETRY OPERATIONS

GENERAL AND

SPECIAL WYCKOFF POSITIONS
SITE-SYMMETRY

General and special Wyckoff positions

Orbit of a point X_{o} under $G: G\left(X_{o}\right)=\left\{(W, w) X_{o},(W, w) \in G\right\}$ Multiplicity
Site-symmetry group $S_{o}=\{(\mathrm{W}, \mathrm{w})\}$ of a point X_{\circ}

$$
(W, w) X_{o}=X_{o}
$$

Multiplicity: $|\mathrm{P}| /\left|\mathrm{S}_{\mathrm{o}}\right|$

General position X_{0}

$$
S=\{(1,0)\} \simeq \mathbf{1}
$$

Multiplicity: $|\mathrm{P}|$

Special position X_{0}
$S>1=\{(1,0), \ldots$,
Multiplicity: $|\mathrm{P}| /\left|\mathrm{S}_{\mathrm{o}}\right|$

Oriented symbols of site-symmetry groups

General position

(i) coordinate triplets of an image point \widetilde{X} of the original point $X=$| $\frac{x}{y}$ |
| :--- |
| $\frac{y}{\mid}$ | under (W, w) of G

-presentation of infinite image points \widetilde{X} under the action of (W, w) of $G: 0 \leq x_{i}<1$
(ii) short-hand notation of the matrix-column pairs (W, w) of the symmetry operations of G -presentation of infinite symmetry operations of G
$(\mathrm{W}, \mathrm{w})=\left(\mathrm{l}, \mathrm{t}_{\mathrm{n}}\right)\left(\mathrm{W}, \mathrm{w}_{0}\right), 0 \leq \mathrm{w}_{\mathrm{i}}<\mathrm{l}$

General Position of Space groups

- the coordinate triplets of an image point \tilde{X} of the original point $X=$| x |
| :--- |
| $\frac{x}{y}$ |
| $\frac{z}{z}$ | under (W, w) of G
- presentation of infinite image points \widetilde{X} of X under the action of (W, w) of $G: 0 \leq x_{i}<1$
$(1,0) X \quad\left(W_{2}, w_{2}\right) X$
$\left(W_{m}, w_{m}\right) X$
$\left(W_{i}, w_{i}\right) X$
$\left(\mathrm{l}, \mathrm{t}_{1}\right) \mathrm{X} \quad\left(\mathrm{W}_{2}, \mathrm{w}_{2}+\mathrm{t}_{1}\right) X \ldots$
$\left(W_{m}, w_{m}+t_{1}\right) X$
$\left(W_{i}, w_{i}+t_{1}\right) X$
$\left(1, \mathrm{t}_{2}\right) X \quad\left(\mathrm{~W}_{2}, \mathrm{w}_{2}+\mathrm{t}_{2}\right) X \ldots$
$\left(W_{m}, W_{m}+t_{2}\right) X \ldots \quad\left(W_{i}, W_{i}+t_{2}\right) X$
$\left(I, t_{j}\right) X \quad\left(W_{2}, w_{2}+t_{j}\right) X \ldots \quad\left(W_{m}, w_{m}+t_{j}\right) X \ldots \quad\left(W_{i}, w_{i}+t_{j}\right) X$

Example: Calculation of the Site-symmetry groups

Group P-I

Positions
Multiplicity,
Wyckoff letter,
Site symmetry

$2 \quad i \quad 1$
(1) x, y, z
(2) $\bar{x}, \bar{y}, \bar{z}$
$\mathrm{S}=\left\{(\mathrm{W}, \mathrm{w}),(\mathrm{W}, \mathrm{w}) \mathrm{X}_{\mathrm{o}}=\mathrm{X}_{\mathrm{o}}\right\}$
(
$\mathrm{S}_{\mathrm{f}}=\left\{(1,0),(-1,000) \mathrm{X}_{\mathrm{f}}=\mathrm{X}_{\mathrm{f}}\right\}$
$S_{\mathrm{f}} \simeq\{I,-I\}$ isomorphic

QUIZ: Calculation of the Site-symmetry groups

Positions

Group P-I

Multiplicity, Wyckoff letter, Site symmetry
$2 \quad i \quad 1$
(1) x, y, z
(2) $\bar{x}, \bar{y}, \bar{z}$

Hint: $\mathrm{S}=\left\{(\mathrm{W}, \mathrm{w}),(\mathrm{W}, \mathrm{w}) \mathrm{X}_{\mathrm{o}}=\mathrm{X}_{0}\right\}$

Problem I.6.2.5

Space group P4mm

General and special Wyckoff positions of P4mm

	8	1		(1) x, y, z (5) x, \bar{y}, z		(7) \bar{y}, \bar{x}, z		(4) y, \bar{x}, z (8) y, x, z
		4		. m.	x, $\frac{1}{2}, z$	$\bar{x}, \frac{1}{2}, z$	$\frac{1}{2}, x, z$	$\frac{1}{2}, \bar{x}, z$
		4	e	. m.	$x, 0, z$	$\bar{x}, 0, z$	$0, x, z$	$0, \bar{x}, z$
				m	x, x, z	\bar{x}, \bar{x}, z	\bar{x}, x, z	x, \bar{x}, z
-¢		2	c	2 mm .	,0,z	0, $\frac{1}{2}, z$		
		1	b	4 mm	$\frac{1}{2}, \frac{1}{2}, z$			
- ${ }^{\circ}$		1	a	4 mm	0,0,z			

Symmetry operations
(1) 1
(2) $20,0, z$
(3) $4^{+} 0,0, z$
(4) $4^{-} 0,0, z$
(5) $m x, 0, z$
(6) $m 0, y, z$
(7) $m x, \bar{x}, z$
(8) $m x, x, z$

Bilbao Crystallographic Server

Problem:

Wyckoff positions

 Site-symmetry groups
WYCKPOS

 Coordinate transformations
Wyckoff Positions

space group

How to select the group
The space groups are specified by their number as given in the International Tables for Crystallography, Vol. A. You can give this number, if you know it, or you can choose it from the table with the space group numbers and symbols if you click on the link choose it.

If you are using this program in the preparation of a paper, please cite it in the following form:

Aroyo, et. al. Zeitschrift fuer Kristallographie (2006), 221, 1, 15-27.
Standard basis

Please, enter the sequential number of group as given in International Tables for

 Crystallography, Vol. A or choose it:

ITA-Settings for the Space Group 68 zes must be read by columns. \mathbf{P} is the transformation f

$$
(a, b, c)_{n}=(a, b, c)_{s} P
$$

ITA number	Setting	P	P^{-1}
68	Ccce [origin 1]	a,b,c	a,b,c
68	A e a a [origin 1]	c,a,b	b,c,a
68	$B b$ eb [origin 1]	b,c,a	c,a,b
68	Ccce [origin 2]	a,b,c	a,b,c
68	A eaa [origin 2]	c,a,b	b,c,a
68	$B b$ eb [origin 2]	b,c,a	c,a,b

Ccce
$D_{2 h}^{22}$
C $2 / c 2 / c 2 / e$
No. 68
mmm
(2) $\bar{x}+\frac{1}{2}, \bar{y}, z$
(3) $\bar{x}, y, \bar{z}+\frac{1}{2}$
(4) $x+\frac{1}{2}, \bar{y}, \bar{z}+\frac{1}{2}$
(1) x, y, z
(6) $x+\frac{1}{2}, y, \bar{z}$
(7) $x, \bar{y}, z+\frac{1}{2}$
(8) $\bar{x}+\frac{1}{2}, y, z+\frac{1}{2}$
(5) $\bar{x}, \bar{y}, \bar{z}$
$\frac{1}{4}, 0, z$
$\frac{3}{4}, 0, \bar{z}+\frac{1}{2}$
$\frac{3}{4}, 0, \bar{z}$
$\frac{1}{4}, 0, z+\frac{1}{2}$
$0, \frac{3}{4}, z+\frac{1}{2}$

Wyckoff Positions of Group 68 (Ccce)

Orthorhombic

Space-group symmetry
Edided by Misis.Aryo
Sixth edition

8 f. 2 .
$0, y, \frac{1}{4}$
x, $\frac{1}{4}, \frac{1}{4}$
$0,0,0$
$\frac{1}{2}, 0,0$
$0,0, \frac{1}{2}$
8 d $\overline{1}$
$\frac{1}{4}, \frac{3}{4}, 0$
$0, \frac{1}{4}, \frac{3}{4}$
$0, \frac{3}{4}, \frac{1}{4}$
$4 \quad a \quad 222$
$0, \frac{1}{4}, \frac{1}{4}$
$0, \frac{3}{4}, \frac{3}{4}$

Space Group : 68 (Ccce) [origin choice 2
Point : $(0,1 / 4,1 / 4)$
Wyckoff Position : 4a
Site Symmetry Group 222

Bilbao Crystallographic Server

Example WYCKPOS: Wyckoff Positions Ccce (68)

$2 \times, 1 / 4,1 / 4$
Space Group : 68 (Ccce) [origin choice 2]
Point: (1/2,1/4,1/4)
Wyckoff Position : 4b
Site Symmetry Group 222

x, y, z	$\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$	1
$-\mathrm{x}+1, \mathrm{y},-\mathrm{z}+1 / 2$	$\left(\begin{array}{rrrc}-1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 / 2\end{array}\right)$	2 1/2,y,1/4
$-x+1,-y+1 / 2, z$	$\left(\begin{array}{rrrc}-1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 1 / 2 \\ 0 & 0 & 1 & 0\end{array}\right)$	2 1/2,1/4,z
$x,-y+1 / 2,-z+1 / 2$	$\left(\begin{array}{rrrc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 / 2 \\ 0 & 0 & -1 & 1 / 2\end{array}\right)$	$2 \mathrm{x}, 1 / 4,1 / 4$

Problem I.6.2.5 (cont.)

Consider the special Wyckoff positions of the the space group P4mm.

Determine the site-symmetry groups of Wyckoff positions $I a$ and $I b$. Compare the results with the listed ITA data

The coordinate triplets $(x, I / 2, z)$ and $(1 / 2, x, z)$, belong to Wyckoff position 4 . Compare their site-symmetry groups.

Compare your results with the results of the program WYCKPOS.

SPACE-GROUPS DIAGRAMS

Cmm2 (No. 35)

Space-group diagrams

Symmetry-element diagrams

three different projections
three different settings permutations of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$

$B m 2 m$

Diagram of general position points

			Extended Hermann-Mauguin symbols for the six settings of the same unit cell					
No. of space group	Schoenflies symbol	Mauguin symbol abc	abc (standard)	bace	cab	c̄ba	bca	ac̄b
35	$C_{2 v}^{11}$	Cmm2	$\begin{gathered} C m m 2 \\ b a 2 \\ \hline \end{gathered}$	$\begin{gathered} C m m 2 \\ b a 2 \end{gathered}$	$\begin{gathered} A 2 \mathrm{~mm} \\ 2 \mathrm{cb} \end{gathered}$	$\begin{gathered} A 2 \mathrm{~mm} \\ 2 \mathrm{cb} \end{gathered}$	$\begin{gathered} B m 2 m \\ c 2 a \end{gathered}$	$\begin{gathered} B m 2 m \\ c 2 a \end{gathered}$

Symmetry elements corresponding to operations of order 2 occur every half a period

Diagrams of symmetry elements

Mirror and glide planes

Symmetry element	Glide component $\|\overrightarrow{\mathbf{g}}\|$	Symbol	Graphical symbol	
			\perp Plane of projection	｜｜Plane of projection ${ }^{\text {a }}$
Mirror plane Plane of symmetry	－	m	L	
Glide plane with axial glide component	$\frac{\vec{a}}{2}$	a	－－－－	$\lceil\square$
	$\overrightarrow{\text { b }}$	b	ーーーーー	
	$\frac{\vec{c}}{2}$	c	．．．．．．．．．．．．．．．．．．．．	

Mirror and glide planes

Symmetry element	Glide component $\|\overrightarrow{\mathbf{g}}\|$	Symbol	Graphical symbol		
			\perp Plane of projection	\|	Plane of projection ${ }^{\text {a }}$
Double glide plane with two glide vectors	$\frac{\vec{a}}{2}, \frac{\vec{b}}{2}$	e	-. - .. - ..	\downarrow	
Glide plane with diagonal glide component	$\frac{\vec{a}+\vec{b}}{2}$	n		N	
	$\frac{\vec{a}+\vec{c}}{2}$		-.-.-.-.-.-		
	$\frac{\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}}{2}$				
	$\frac{\vec{a}+\vec{b}+\vec{c}^{\text {b }}}{2}$				
"Diamond" glide plane	$\frac{\vec{a}+\vec{b}}{4}$	d		${ }_{\frac{3}{8}}{ }^{4}$	
	$\frac{\vec{a}+\vec{c}}{4}$				
	$\frac{\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}}{4}$				
	$\frac{\vec{a}+\vec{b}+\overrightarrow{\mathrm{c}}}{4}$				

Rotation and screw-rotation axes

Symmetry element	Screw component $\|\vec{s}\|$	Symbol	Graphical symbol	
Onefold rotation axis \equiv identity	-	1		
Inversion center Center of symmetry	-	$\overline{1}$	$\mathrm{o}^{\text {a }}$	
Twofold rotation axis	-	2	10 \perp Plane of Projection	
			\|	Plane of projection ${ }^{\text {a }}$
Twofold screw axis	$\frac{1}{2}\|\vec{\tau}\|$	21	\perp Plane of Projection	
			\|	Plane of projection ${ }^{\text {a }}$

Rotation and screwrotation axes

Symmetry element	Screw component $\|\overrightarrow{\mathbf{s}}\|$	Symbol	Graphical symbol
Threefold rotation axis	-	3	$\Delta \triangle$
Threefold rotoinversion axis	-	$\overline{3}$	Δ
Threefold screw axes	$\frac{1}{3}\|\vec{\tau}\|$	31	$\boldsymbol{\lambda}$
	$\frac{2}{3}\|\vec{\tau}\|$	32	A
Fourfold rotation axis	-	4	$\square \square$
Fourfold rotoinversion axis	-	$\overline{4}$	\square
Fourfold screw axes	$\frac{1}{4}\|\vec{\tau}\|$	41	E
	$\frac{2}{4}\|\vec{\tau}\|$	42	\square
	$\frac{3}{4}\|\vec{\tau}\|$	43	\square
Sixfold rotation axis	-	6	- 0
Sixfold rotoinversion axis	-	$\overline{6}$	A
Sixfold screw axes	$\frac{1}{6} c_{0}$	61	入
	$\frac{2}{6} c_{0}$	62	λ
	$\frac{3}{6} c_{0}$	63	4
	${ }_{6}{ }^{4} \mathrm{c}_{0}$	64	\checkmark
	$\frac{5}{6} c_{0}$	65	人

EXAMPLE

Space group Cmm2 (No. 35)

(6) Symmetry operations

For $(0,0,0)+$ set

Geometric

interpretation
(1) 1
(2) $20,0, z$
(3) $m x, 0, z$
(4) $m 0, y, z$

For $\left(\frac{1}{2}, \frac{1}{2}, 0\right)+$ set
(1) $t\left(\frac{1}{2}, \frac{1}{2}, 0\right)$
(2) $2 \frac{1}{4}, \frac{1}{4}, z$
(3) a $x, \frac{1}{4}, z$
(4) b $\frac{1}{4}, y, z$
glide plane, $\mathbf{t}=1 / 2 \mathbf{a}$ at $y=1 / 4, \perp \mathbf{b}$ glide plane, $\mathbf{t}=1 / 2 \mathbf{b}$ at $\mathrm{x}=\mathrm{I} / 4, \perp \mathbf{a}$

General Position
Matrix-column
Coordinates

$8 \quad f \quad 1$
(1) x, y, z
(2) \bar{x}, \bar{y}, z
(3) x, \bar{y}, z
(4) \bar{x}, y, z

$$
x+I / 2,-y+I / 2, z \quad-x+I / 2, y+I / 2, z
$$

Example: P4mm

Diagram of symmetry elements

Diagram of general position points

(1) 1
(5) $m x, 0, z$
$\begin{array}{cc}\text { (2) } 20,0, z \\ \text { (6) } m 0, y, z & \text { (3) } 4^{+} 0,0,2 \\ \text { (7) } m x, \bar{x}, z\end{array}$
$\frac{(44) 4-0,0, z}{(8) m \quad m, x, z}$
(1) x, y, z
(2) \bar{x}, \bar{y}, z
(3) \bar{y}, x, z
(5) x, \bar{y}, z
(6) \bar{x}, y, z
(7) \bar{y}, \bar{x}, z
(4) y, \bar{x}, z
(8) y, x, z

Symmetry elements

Geometric element $\stackrel{+}{+}$

Fixed points

Symmetry operations that share the same geometric element

Examples

Rotation axis

\}

Ist,...(n-1) ${ }^{\text {th }}$ powers +
all coaxial equivalents all coaxial equivalents
plane
defining operation+
all coplanar equivalents
defining operation+
all coplanar equivalents

All rotations and screw rotations with the same axis, the same angle and sense of rotation and the same screw vector (zero for rotation) up to a lattice translation vector.

All glide reflections with the same reflection plane, with glide of d.o. (taken to be zero for reflections) by a lattice translation vector.

Symmetry operations and symmetry elements

Geometric elements and Element sets

Name of symmetry element	Geometric element	Defining operation (d.o)	Operations in element set
Mirror plane	Plane A	Reflection in A	D.o. and its coplanar equivalents*
Glide plane	Plane A	Glide reflection in $A ; 2 \nu(\operatorname{not} \nu)$ a lattice translation	D.o. and its coplanar equivalents*
Rotation axis	Line b	Rotation around b, angle $2 \pi / n$ $n=2,3,4$ or 6	1 st, $\ldots,(n-1)$ th powers of d.o. and their coaxial equivalents ${ }^{\dagger}$
Screw axis	Line b	Screw rotation around b, angle $2 \pi / n$, $u=j / n$ times shortest lattice translation along b, right-hand screw, $n=2,3,4$ or $6, j=1, \ldots,(n-1)$	1 st, $\ldots,(n-1)$ th powers of d.o. and their coaxial equivalents ${ }^{\dagger}$
Rotoinversion axis	Line b and point P on b	Rotoinversion: rotation around b, angle $2 \pi / n$, and inversion through $P, n=3,4$ or 6	D.o. and its inverse
Center	Point P	Inversion through P	D.o. only

Example: P4mm

Diagram of symmetry elements

Element set of $(00 z)$ line

Symmetry operations 1 st, $2^{\text {nd }}, 3$ rd powers + that share $(0,0, z)$ as geometric element

Element set of $(0,0, z)$ line

All rotations and screw rotations with the same axis, the same angle and sense of rotation and the same screw vector (zero for rotation) up to a lattice translation vector.

2	$-x,-y, z$
$4+$	$-y, x, z$
$4-$	$y,-x, z$
$2(0,0, I)$	$-x,-y, z+I$
\cdots	\cdots

Space group Cmm2 (No. 35)

Symmetry operations

For $(0,0,0)+$ set
(1) 1
(2) $20,0, z$
(3) $m x, 0, z$
(4) $m 0, y, z$

For $\left(\frac{1}{2}, \frac{1}{2}, 0\right)+$ set
(1) $t\left(\frac{1}{2}, \frac{1}{2}, 0\right)$
(2) $2 \frac{1}{4}, \frac{1}{4}, z$
(3) $a x, \frac{1}{4}, z$
(4) $b \frac{1}{4}, y, z$

Diagram of symmetry elements

Example: PI2I

Diagram of general position points

Diagram of symmetry elements

Diagram of general position points

Symmetry element diagram (left) and General position diagram (right) of the space group $P 2$, No. 3 (unique axis b, cell choice 1).

Diagram of general position points

Direction of projection $c \rightarrow$ vertical coordinate z

An atom with coordinate $z>0$ ("+").

Two atoms mapped by an operation of the first kind (handedness preserving operation) with coordinates $z(>0)$ and $1 / 2+z$ respectively.

Two atoms mapped by an operation of the second kind (handedness reversing operation: note the "comma") with coordinates x, y, z and x, y, \bar{z} respectively, overlapped in projection. The vertical segment represents a "cut" of the atom above (left) which allows to see half of the atom below (right).

Example: P4mm

Diagram of symmetry elements

(1) 1
(5) $m x, 0, z$
(1) 1
(5) $m x, 0, z$
(2) $20,0,2$
(3) $4^{+} 0,0,2$
(4) $4^{-} 0,0,2$
(1) x, y, z
(2) \bar{x}, \bar{y}, z
(3) \bar{y}, x, z
(5) x, \bar{y}, z
(6) \bar{x}, y, z
(7) \bar{y}, \bar{x}, z
(4) y, \bar{x}, z
(8) $m x, x, z$
(6) $m 0, y, z$
(7) $m x, \bar{x}, z$

Diagram of general position points

Example: la $\overline{3} \mathrm{~d}$ (No. 230)

Diagrams of general position points
For the graphical presentation of the general-position points of cubic groups, the general-position points are grouped around points of higher site symmetry and represented in the form of polyhedra.
orthogonal projection

perspective projection

polyhedra (twisted trigonal antiprism) centres at (1/8,1/8,1/8) and its equivalent points, site symmetry .32 .

Example: la $\overline{3} \mathrm{~d}$ (No. 230)

orthogonal projection

polyhedra (twisted trigonal antiprism) centres at ($0,0,0$) and its equivalent points, site symmetry .-3.

ORIGINS AND ASYMMETRIC UNITS

Space group Cmm2 (No. 35): left-hand page ITA

Cmm 2

No. 35
$m m 2$

Orthorhombic
Patterson symmetry Cmmm

Origin on $m m 2$

Origin statement

The site symmetry of the origin is stated, if different from the identity.
A further symbol indicates all symmetry elements (including glide planes and screw axes) that pass through the origin, if any.

Space groups with two origins

For each of the two origins the location relative to the other origin is also given.

Example: Different origins for Pnnn

Pnnn
No. 48
$D_{2 h}^{2}$
P2/n 2/n $2 / n$
$m m m$
Orthorhombic

Patterson symmetry Pmmm

ORIGIN CHOICE 1

Origin at 222, at $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$ from $\overline{1}$

Origin at $\overline{1}$ at $n n n$, at $-\frac{1}{4},-\frac{1}{4},-\frac{1}{4}$ from 222

Asymmetric unit*

Unit cell

*In mathematics, it is called "fundamental region"
ITA: An asymmetric unit of a space group is a (simply connected) smallest closed part of space from which, by application of all symmetry operations of the space group, the whole of space is filled.

Example:Asymmetric unit Cmm2 (No. 35)

ITA: Asymmetric unit

$$
0 \leq x \leq \frac{1}{4} ; \quad 0 \leq y \leq \frac{1}{2} ; \quad 0 \leq z \leq 1
$$

Surface area: green = inside the asymmetric unit, red = outside
 Basis vectors: $\mathrm{a}=\mathrm{red}, \mathrm{b}=$ green, $\mathrm{c}=\mathrm{blue}$

```
Number of vertices: 8
    0, 1/2, 0
    0, 1/2, 1
    1/4, 1/2, 1
    1/4, 0, 1
    0, 0, 0
    1/4, 1/2, 0
    0, 0, 1
    1/4, 0, 0
```


Guide to notation]

```
Number of facets: 6
```

Number of facets: 6
x>=0
x>=0
x<=1/4 [y<=1/4]
x<=1/4 [y<=1/4]
y>=0
y>=0
y<=1/2
y<=1/2
z>=0
z>=0
z<1

```
    z<1
```

(output cctbx: Ralf Grosse-Kustelve)

NOT To avoid the overlap between the boundaries of the asymmetric units covering the unit cell (and the whole space), obtained by the application of the space-group symmetry operations, part of the boundaries have to be excluded from the asymmetric unit.

Example: Asymmetric units for the space group PI2I

non-uniqueness

a

Number of vertices: 8
$0,1,1 / 2$
1, 1, 0
$1,0,0$
$0,0,1 / 2$
$1,0,1 / 2$
$0,0,0$
$0,1,0$
$1,1,1 / 2$

```
Number of facets: 6 \(x>=0\)
\(\mathrm{x}<1\)
\(y>=0\)
\(\mathrm{y}<1\)
\(z>=0 \quad[\mathrm{x}<=1 / 2]\)
\(z<=1 / 2 \quad[x<=1 / 2]\)
```

[Guide to notation]

(output cctbx: Ralf Grosse-Kustelve)

CO-ORDINATE TRANSFORMATIONS IN
 CRYSTALLOGRAPHY

Co-ordinate transformation

3-dimensional space

($\mathbf{a}, \mathbf{b}, \mathbf{c}$), origin O : point $\mathrm{X}(x, y, z)$
$(P, p) \downarrow$
$\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}\right)$, origin $\mathrm{O}^{\prime}:$ point $\mathrm{X}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$

Transformation matrix-column pair (P, p)

(i) linear part: change of orientation or length:
$\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}\right)=(\mathbf{a}, \mathbf{b}, \mathbf{c}) \boldsymbol{P}$

$$
=(\mathbf{a}, \mathbf{b}, \mathbf{c})\left(\begin{array}{lll}
P_{11} & P_{12} & P_{13} \\
P_{21} & P_{22} & P_{23} \\
P_{31} & P_{32} & P_{33}
\end{array}\right)=\left(\begin{array}{l}
P_{11} \mathbf{a}+P_{21} \mathbf{b}+P_{31} \mathbf{c} \\
P_{12} \mathbf{a}+P_{22} \mathbf{b}+P_{32} \mathbf{c} \\
\left.P_{13} \mathbf{a}+P_{23} \mathbf{b}+P_{33} \mathbf{c}\right)
\end{array}\right.
$$

(it) origin shift by a shift vector $p\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}\right)$:

$$
O^{\prime}=O+p
$$

the origin \boldsymbol{O}^{\prime} has coordinates ($\mathrm{p}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$) in the old coordinate system

EXAMPLE

$(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})=\left(\boldsymbol{a}^{\prime}, \boldsymbol{b}^{\prime}, \boldsymbol{c}^{\prime}\right)\left(\begin{array}{l}? \\ \end{array}\right)$
$\boldsymbol{X}=(3 / 4,1 / 4,0)$

$$
X^{\prime}=(?)
$$

Write "new in terms of old" as column vectors.

EXAMPLE

$X=(3 / 4,1 / 4,0)$
$X^{\prime}=\left(\begin{array}{l}\text { ? }\end{array}\right)$
Linear parts as before.

Transformation matrix-column pair (P, p)

$$
\begin{aligned}
& \mathbf{a}^{\prime}=\mathbf{I} / \mathbf{2 a}-\mathbf{I} / \mathbf{2 b} \\
& \mathbf{b}^{\prime}=\mathbf{I} / \mathbf{2 a}+\mathbf{I} / \mathbf{2 b} \\
& \mathbf{c}=\mathbf{c} \\
& \mathbf{O}^{\prime}=\mathbf{O}+\frac{112}{114} \\
& 0
\end{aligned}
$$

Co-ordinate transformations in crystallography

Transformation of space-group operations (W, w) by (\mathbf{P}, \mathbf{p}):

$$
\left(W^{\prime}, w^{\prime}\right)=(P, p)^{-1}(W, w)(P, p)
$$

Structure-description transformation by (\mathbf{P}, \mathbf{p})
unit cell parameters: $\underset{\text { tensor }}{\text { metric }} \mathbf{G}: \mathbf{G}^{\prime}=\mathbf{P t} \boldsymbol{G} \mathbf{P}$
atomic coordinates $\mathrm{X}(\mathrm{x}, \mathrm{y}, \mathrm{z})$:

$$
\begin{aligned}
\left(X^{\prime}\right) & =(P, p)^{-1}(X) \\
& =\left(P-P^{-1},-P^{-1} P\right)(X)
\end{aligned}
$$

Covariant and contravariant crystallographic quantities

direct or crystal basis

$$
\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}\right)=(\mathbf{a}, \mathbf{b}, \mathbf{c}) P=(\mathbf{a}, \mathbf{b}, \mathbf{c})
$$

$\left(\begin{array}{|l|l|l|}\hline P_{11} & P_{12} & P_{13} \\ \hline P_{21} & P_{22} & P_{23} \\ \hline P_{31} & P_{32} & P_{33} \\ \hline\end{array}\right.$
reciprocal or dual basis

covariant to crystal basis: Miller indices

$$
\left(h^{\prime}, k^{\prime}, l^{\prime}\right)=(h, k, l) P
$$

contravariant to crystal basis: indices of a direction [u]

$$
\begin{array}{|c|}
\hline \mathbf{u}^{-} \\
\hline \mathbf{v}^{\prime} \\
\hline \mathbf{w}^{-} \\
\hline
\end{array}=\left(\begin{array}{|l|l|l|}
\hline P_{11} & P_{12} & P_{13} \\
\hline P_{21} & P_{22} & P_{23} \\
\hline P_{31} & P_{32} & P_{33} \\
\hline \mathbf{w} \\
\hline
\end{array} \mathbf{x}^{-\mathrm{v}} . \begin{array}{|c|}
\hline \mathbf{u} \\
\hline
\end{array}\right.
$$

Short-hand notation for the description of transformation matrices

Transformation matrix:

($\mathbf{a}, \mathbf{b}, \mathbf{c}$), origin O

($\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$), origin O^{\prime}
-written by columns
notation rules: -coefficients $0,+1,-I$
-different columns in one line
-origin shift
example:

EXERCISES

Problem I.6.2.6

The following matrix-column pairs (W, w) are referred with respect to a basis ($\mathbf{a}, \mathbf{b}, \mathbf{c}$):
(I) x, y, z
(2) $-x, y+1 / 2,-z+1 / 2$
(3) $-x,--y,-z$
(4) $x,-y+I / 2, z+I / 2$
(i) Determine the corresponding matrix-column pairs (W^{\prime}, w^{\prime}) with respect to the basis $\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}\right)=(\mathbf{a}, \mathbf{b}, \mathbf{c}) \mathbf{P}$, with $\mathbf{P}=\mathbf{c}, \mathbf{a}, \mathbf{b}$.
(ii) Determine the coordinates X^{\prime} of a point $X=$ with respect to the new basis ($\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\mathbf{\prime}}$).

0,70
0,31
0,95

Hints

$$
\left(W^{\prime}, w^{\prime}\right)=(P, p)^{-1}(W, w)(P, p)
$$

$\left(X^{\prime}\right)=(P, p)^{-1}(X)$

Problem: Co-ordinate transformations in crystallography

Generators General positions
 GENPOS

Bilbao Crystallographic Server

Generators and General Positions

How to select the group

The space groups are specified by their number as given in the intemational Tables for Crystallography, Vol. A. You can give this number, if you know it, or you can choose it from the table with the space group numbers and symbols if you click on the button [choose it].

To see the data in a non conventional setting click on [Non conventional Setting]. Otherwise, click on [Conventional Setting].

Please, enter the sequential number of group as given in the Intemational Tables for Crystallography, Vol. A or
space group

Generators only
All General Positions -

ITA-Settings for the Space Group 15

Note:The transformation matrices must be read by columns. \mathbf{P} is the transformation from standard to the ITA-setting

Example GENPOS:

default setting $\mathrm{Cl} 2 / \mathrm{cl}$

$(\mathrm{W}, \mathrm{w})_{\mathrm{A} \mid 12 / \mathrm{a}}=$
$(\mathrm{P}, \mathrm{P})^{-1}(\mathrm{~W}, \mathrm{w})_{\mathrm{c} 12 / \mathrm{cl}}(\mathrm{P}, \mathrm{P})$

$$
(a, b, c)_{n}=(a, b, c)_{s} P
$$

ITA number	Setting	P	P^{-1}
15	C $12 / c 1$	a,b,c	a,b,c
15	A $12 / n 1$	-a-c,b,a	c,b,-a-c
15	\|12/a 1	c,b,-a-c	-a-c, b, a
15	A 1 2/a 1	c,-b,a	c,-b,a
15	C12/n 1	a,-b,-a-c	a,-b,a-c
15	112/c1	-a-c,-b,c	-a-c,-b,c
15	A 11 2/a	c,a,b	b, c,a
15	B112/n	a,-a-c,b	a,c,-a-b
15	$1112 / b$	-a-c,c,b	-a-b,c, b
15	B 11 2/b	a,c,-b	$\mathrm{a},-\mathrm{c}, \mathrm{b}$
15	A 11 2/n	-a-c,a,-b	b,-c,-a-b
15	$1112 / a$	c,-a-c,-b	-a-b,-c, ${ }^{\text {a }}$
15	B2/b 11	b,c,a	c,a,b
15	C $2 / n 11$	b,a,-a-c	b,a,-b-c
15	I2/c 11	b,-a-c,c	-b-c,a,c
15	C2/c 11	-b,a,c	b,-a,c
15	B2/n 11	-b,-a-c,a	c,-a,-b-c
15	I2/b 11	-b,c,-a-c	-b-c,-a,b

Example GENPOS: ITA settings of C2/c(15)

The general positions of the group 15 (A 11 2/a)

N	Standard/Default Setting C2/c			ITA-Setting A 11 2/a		
	($\mathbf{x}, \mathbf{y}, \mathbf{z}$) form	matrix form	symmetry operation	($\mathrm{x}, \mathrm{y}, \mathrm{z}$) form	matrix form	symmetry operation
1	$\mathrm{x}, \mathrm{y}, \mathrm{z}$	$\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$	1	$\mathrm{x}, \mathrm{y}, \mathrm{z}$	$\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$	1
2	-x, y, -z+1/2	$\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 / 2\end{array}\right)$	$20, y, 1 / 4$	$-x+1 / 2,-y, z$	$\left(\begin{array}{cccc}-1 & 0 & 0 & 1 / 2 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$	2 1/4,0,z
3	-x, -y, -z	$\left(\begin{array}{rrrr}-1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0\end{array}\right)$	-1 0,0,0	-x, -y, -z	$\left(\begin{array}{rrrr}-1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0\end{array}\right)$	-1 0,0,0
4	$x,-y, z+1 / 2$	$\left(\begin{array}{crcc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 / 2\end{array}\right)$	c x, 0, z	$x+1 / 2, y,-z$	$\left(\begin{array}{cccc}1 & 0 & 0 & 1 / 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0\end{array}\right)$	a $x, y, 0$
5	$x+1 / 2, y+1 / 2, z$	$\left(\begin{array}{cccc}1 & 0 & 0 & 1 / 2 \\ 0 & 1 & 0 & 1 / 2 \\ 0 & 0 & 1 & 0\end{array}\right)$	t (1/2,1/2,0)	$x, y+1 / 2, z+1 / 2$	$\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 / 2 \\ 0 & 0 & 1 & 1 / 2\end{array}\right)$	$\mathrm{t}(0,1 / 2,1 / 2)$
6	-x+1/2, y+1/2, -z+1/2	$\left(\begin{array}{rrrr}-1 & 0 & 0 & 1 / 2 \\ 0 & 1 & 0 & 1 / 2 \\ 0 & 0 & -1 & 1 / 2\end{array}\right)$	$2(0,1 / 2,0) 1 / 4, y, 1 / 4$	-x+1/2, -y+1/2, z+1/2	$\left(\begin{array}{rrrr}-1 & 0 & 0 & 1 / 2 \\ 0 & -1 & 0 & 1 / 2 \\ 0 & 0 & 1 & 1 / 2\end{array}\right)$	$2(0,0,1 / 2)$ 1/4,1/4,z
7	$-x+1 / 2,-y+1 / 2,-z$	$\left(\begin{array}{rrrr}-1 & 0 & 0 & 1 / 2 \\ 0 & -1 & 0 & 1 / 2 \\ 0 & 0 & -1 & 0\end{array}\right)$	-1 1/4, 1/4,0	-x, -y+1/2, -z+1/2	$\left(\begin{array}{rrrr}-1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 / 2 \\ 0 & 0 & -1 & 1 / 2\end{array}\right)$	-1 0,1/4,1/4
8	$x+1 / 2,-y+1 / 2, z+1 / 2$	$\left(\begin{array}{rrrr}1 & 0 & 0 & 1 / 2 \\ 0 & -1 & 0 & 1 / 2 \\ 0 & 0 & 1 & 1 / 2\end{array}\right)$	$n(1 / 2,0,1 / 2) x, 1 / 4, z$	$x+1 / 2, y+1 / 2,-z+1 / 2$	$\left(\begin{array}{rrrr}1 & 0 & 0 & 1 / 2 \\ 0 & 1 & 0 & 1 / 2 \\ 0 & 0 & -1 & 1 / 2\end{array}\right)$	$n(1 / 2,1 / 2,0) x, y, 1 / 4$

Bilbao Crystallographic Server

Problem: Coordinate transformations Wyckoff positions
 WYCKPOS

Wyckoff Positions

space group

How to select the group
The space groups are specified by their number as given in the International Tables for Crystallography, Vol. A. You can give this number, if you know it, or you can choose it from the table with the space group numbers and symbols if you click on the link choose it.

If you are using this program in the preparation of a paper, please cite it in the following form:

Aroyo, et. al. Zeitschrift fuer Kristallographie (2006), 221, 1, 15-27.

Please, enter the sequential number of group as given in International Tables for

 Crystallography, Vol. A or choose it:

Standard/Default Setting Non Conventional Setting

ITA-Settings for the Space Group 68 zes must be read by columns. \mathbf{P} is the transformation f
$(a, b, c)_{n}=(a, b, c)_{s} P$

ITA number	Setting	P	P^{-1}
68	Ccce [origin 1]	a,b,c	a,b,c
68	Aeaa [origin 1]	c,a,b	b,c,a
68	$B b$ e b [origin 1]	b,c,a	c, a, b
68	Ccce [origin 2]	a,b,c	a,b,c
68	A e a a [origin 2]	c,a,b	b,c,a
68	$B b$ e b [origin 2]	b,c,a	c, a, b

EXERCISES

Problem I.6.2.7

Consider the space group P2//c (No. I4). Show that the relation between the General and Special position data of PII2//a (setting unique axis c) can be obtained from the data PI 2 I/cl (setting unique axis b) applying the transformation $\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}\right)_{\mathbf{c}}=(\mathbf{a}, \mathbf{b}, \mathbf{c})_{\mathbf{b}} \mathbf{P}$, with $\mathbf{P}=\mathrm{c}, \mathrm{a}, \mathrm{b}$.

Use the retrieval tools GENPOS (generators and general positions) and WYCKPOS (Wyckoff positions) for accessing the space-group data. Get the data on general and special positions in different settings either by specifying transformation matrices to new bases, or by selecting one of the 530 settings of the monoclinic and orthorhombic groups listed in ITA.

EXERCISES

Problem I.2.6.8

Apart from the translation generators, the space group Im-3m (No. 229) can be generated by the following five generators $(-x,-y, z),(-x, y,-z)$, $(z, x, y),(y, x,-z)$ and ($-x,-y,-z$), where the matrix-column presentations of the generators are given with respect to the conventional l-centred basis.
I. Define a transformation matrix from the conventional to a primitive basis
2.What are the matrix-column pairs of the generators with respect to the primitive basis?
3. Consider the lattice points inside and at the border of the conventional unit cell: what are the coordinates of these points with respect to the chosen primitive basis?

[^0]: naO017- Imoduchile ronrosontatione of

