
PSEUDOSYMMETRY SEARCH 
 
If a structure, with space group H, is such that all its atomic positions ri can be described 
as ri

o+ ui, with ui being small displacements, while the virtual atomic positions ri
o  have 

a higher symmetry described by a supergroup G > H, we say that the structure has 
pseudosymmetry G, or is pseudosymmetric for the space group G. 
 
The detection of pseudosymmetry can be very useful for several purposes: 
 

- Prediction of symmetry and structure of some other phase of the material 
- Prediction of phase transitions.  
- Identification of ferroic materials: ferroelectrics, ferroelastics,… 
- Determination of an optimized virtual parent structure 
- Detection of false symmetry assignments (overlooked symmetry) 
- Identification of the space group symmetry of a theoretical structure calculated 

without symmetry restrictions (ab-initio calculations).  
 
The Bilbao Crystallographic server provides three tools for pseudosymmetry search in a 
given structure: PSEUDO, DOPE and BPLOT.  
 
PSEUDO is a new version of a previous program (J. Appl. Cryst. (2001). 34, 783), 
which examines the possible pseudosymmetry for a given supergroup G of H by 
applying on the structure the coset representatives of the left coset decomposition of G 
with respect to the observed symmetry H. The program then checks the approximate 
coincidence of the transformed structures with the original one through an identification 
of the atomic displacements relating the two configurations. If these displacements are 
smaller than a tolerance, the structure is flagged as pseudosymmetric.  
 
DOPE works similarly as PSEUDO, but it does the quantitative comparison of the 
original and transformed structures by checking the degree of superposition of their 
virtual electronic densities, obtained from the standard atomic diffusion factors assigned 
to each atom. Results can be more difficult to interpret than those of PSEUDO, since 
superposition of atoms of different type may contribute to the calculated degree of 
pseudosymmetry. 
 
BPLOT is a modified version (adapted for the Bilbao server with the collaboration of its 
author) of the program KPLOT (Hundt, R. (1979). KPLOT. A Program for Plotting and 
Investigating Crystal Structures). BPLOT is intended for searching and identifying 
symmetry rather than pseudosymmetry. It transforms the input structure to a structure 
with space group P1 and does not assume a priori any rotational symmetry. In contrast 
with PSEUDO, generally BPLOT only works properly if the pseudosymmetry is very 
high, with displacements of the order of 0.1A or smaller. 
 
 
The program PSEUDO 
 
PSEUDO is designed to detect pseudosymmetry in a given structure, and derive a 
virtual parent high-symmetry structure. The program is intended for the detection, 
analysis and characterization of displacively distorted structures. It can be used as a 
preliminary step before the use of AMPLIMODES for a full symmetry mode analysis 



(if we lack a structural model for the parent high-symmetry structure, required as part of 
the input in AMPLIMODES).  
 
The program is expected to work successfully and detect pseudosymmetry if the 
maximal atomic displacements relating the input structure with a high symmetry 
configuration are not larger than about 1 Ǻ. For much larger displacements, the program 
will not be capable in many cases to detect the pseudosymmetry although it may exist if 
large distortions are considered. 
 
The program is not in principle applicable to structures with order-disorder features in 
their distortion. However, in many cases some tricks can be done to analyse the 
displacive component of these distortions, as using average positions of the disordered 
positions, or treating as distinct atom types the atomic sites with different occupation 
probabilities. 
 
PSEUDO only requires as input the structure to be investigated in the conventional 
setting of the International Tables for Crystallography (for space groups with two 
conventional settings the default normally used in this server should be used). A CIF 
file can be used to introduce the structure. 
 
If G is a supergroup of the space group H of the structure to be checked as possible 
pseudosymmetry, the program first uses the program COSETS (also available in this 
server as an independent program) to do the left coset decomposition of G with respect 
to H, choosing a set of coset representatives {1,g2, …,gn}:  
 
                  G = H + g2H + ….. + gnH 
 
The operations {1,g2, …,gn} are representatives  of the operations of G not belonging to 
H. All operations belonging to a given coset giH, i.e. all operations of type gih, with h 
belonging to H, transform the H-symmetric structure in the same form. 
 
If we call S the input structure, the structures giS obtained by transforming the structure 
S by the action of the left coset representatives gi are calculated by the program and 
compared with the original structure S. If the structures giS differ from S below a given 
tolerance for the atomic distances, the space group G is then flagged as 
pseudosymmetry. This tolerance Δmax is the maximum value allowed for the distances Δ  
between any atomic site of the structure S and the atomic sites that would supposedly 
coincide with it in the transformed structures giS if the operation gi were actually a 
symmetry operation. For supergroups of index 2, this distance Δ for each atom is twice 
the atomic displacement between the hypothetical high symmetry position and the 
observed one. The tolerance value Δmax is by default 1 Ǻ, and generally it should not 
exceed 2 Ǻ. For larger values, the atomic displacements allowed are so large, in many 
cases comparable to the unit cell parameters, that the comparison of the transformed 
structures, if successful, may include nonsensical associations between the atoms in 
both structures. 
 
 The pseudosymmetry search is done by default checking the minimal 
supergroups of the actual space group of the structure. Monoclinic and triclinic 
structures, due to their freedom in the choice of unit cell, require some special 



additional processing, and this is not yet fully available in the present version of the 
program. 
 
Several options are available when using PSEUDO: 
 
Option 1: search of maximal pseudosymmetry stepwise, climbing up through 
minimal supergroups. 
 
Let us consider the following rather simple example of the orthorhombic Pnma structure 
of Pb2MgWO6 [Acta Cryst. (1995). B51, 668-673]: 
 
62 
11.4059 7.9440 5.6866 90.00 90.00 90.00 
8 
Pb    1   8d    0.1422 0.0032 0.7804                     
Mg    1   4c    0.3772 0.25 0.7519                       
W     1   4c    0.1161 0.25 0.2577                       
O     1   8d    0.1314 0.4907 0.2365                     
O     2   4c    0.0027 0.25 0.0133                       
O     3   4c    0.0103 0.25 0.4991                       
O     4   4c    0.237 0.25 -0.0153                       
O     5   4c    0.2491 0.25 0.4745     
 

 
 
                   
The structure is introduced in a quite obvious format. In consecutive rows the following 
information is listed: space group number, unit cell parameters, number of atoms in the 
asymmetric unit, and one row for each atom with atom type, label number, Wyckoff 
label (can be  left unfilled, but substituted by any character) and relative coordinates. 
This is also the format for the description of a structure in other programs of the Bilbao 
Crystallographic Server. Also, a CIF structure file can be used as input. 
 
We choose first the default option, i.e. option1: Minimal supergroups. 
 
We leave the tolerance in the default value of 1Ǻ, and run the program: 
 
 
List of distinct minimal supergroups: 
A list of minimal supergroups of Pnma will appear on the screen (by definition, a 
minimal supergroup of a group H has no subgroup that is also supergroup of H). This 
list contains all distinct minimal supergroups of Pnma of a type different than Pnma, 



and a subset of the infinite series of minimal isomorphic supergroups  (i.e. minimal 
supergroups of type Pnma). This subset of minimal isomorphic supergroups includes 
those with the smallest indices (for most space groups those with index up to 7 are 
listed).  
 

 
 
If a structure of space group H is pseudosymmetric for a supergroup G >H, then the 
structure will also be pseudosymmetric for any intermediate space group H’ between G 
and H, and therefore it will be pseudosymmetric for at least one of the minimal 
supergroups of H, which will necessarily be in a chain of minimal supergroups G> … > 
H’>…>H, connecting G and H. We can therefore assess the pseudosymmetry of a 
structure by checking the pseudosymmetry for the minimal supergroups, and if 
successful for one of them, repeat the process anew for its minimal supergroups, and so 
on, until the maximal pseudosymmetry is reached.  
 
Note that the program procedure may fail to detect the pseudosymmetry if all possible 
chains of minimal supergroups connecting  the two space groups include an isomorphic 
supergroup of an index larger than 7, which will not appear in the list of minimal 
supergroups proposed by the program for checking. In these cases, a more elaborated 
process using the option 3 of the program can be used (see below).  
 
From the list of minimal supergroups provided by the program, many of them can be 
discarded beforehand, avoiding the subsequent lengthy check, which is bound to be 
unsuccessful or give non-sensical results. The data provided in the list of minimal 



supergroups helps the user for choosing the actual minimal supergroups that can make 
sense. The list gives the index between the two groups and the k-index which indicates 
the multiplication of the primitive unit cell of the group with respect to the one of the 
supergroup, the transformation relating both conventional cells, and the actual cell 
parameters of the hypothetical supergroups.  
 
 In many cases, the cell parameters of the supergroup will be absurd or 
unrealistic, or very far from fulfilling the symmetry conditions imposed by the 
crystalline class of the supergroup. Furthermore, the number of molecules in the 
primitive unit cell of the structure should be divisible by the k-index, so that the number 
of molecules in the supergroup primitive unit cell is an integer.  In the present example, 
using these considerations, you can discard many of the listed supergroups. In many 
cases, the isomorphic supergroups can be discarded because they imply unrealistic 
divisions of the input unit cell. 
 
The program then lists the supergroups that have been checked and the ones for which 
pseudosymmetry has been detected under the required tolerance. In our example, only 
the minimal supergroup Pmmn (2c,b,a;0,0,0) gives a positive result: 

 
 
 
You can inspect in detail the rest of the output for this detected pseudosymmetry.  The 
program derives a Pmmn structure as close as possible to the input structure, and lists 
the atomic displacements of the asymmetric unit of the Pnma structure with respect to 
this idealized Pmmn configuration. The maximum atomic displacement between the 
two structures is of the order of 0.17A: 
 



 
 
 
This symmetrized structure is given first in the subgroup Pnma setting, as above, but 
also in the Pmmn supergroup  setting: 
 
059 
5.6866 7.9440 5.7030 90.00 90.00 90.00 
6 
Pb    1   -  0.2500  0.0032  0.2844 
Mg    1   -  0.2500  0.2500  0.7544 
W     1   -  0.7500  0.2500  0.2322 
O     1   -  0.7500  0.4907  0.2628 
O     2   -  0.9929  0.2500  0.0130 
O     4   -  0.9949  0.2500  0.4861 
 
The number of atoms in the asymmetric unit has been reduced, due to the higher 
symmetry. Due to the reduction of the unit cell, the Wyckoff orbits has smaller 
multiplicities for those atoms with no orbit-merging, We can check this point using the 
program WPASSIGN of the Bilbao server: 
 
59 
5.6866 7.9440 5.7030 90.00 90.00 90.00 
6 
Pb    1   4e    0.2500 0.0032 0.2844                     
Mg    1   2a    0.2500 0.2500 0.7544                     
W     1   2b    0.7500 0.2500 0.2322                     
O     1   4e    0.7500 0.4907 0.2628                     
O     2   4f    0.9929 0.2500 0.0130                     
O     4   4f    0.9949 0.2500 0.4861                     
 

A more detailed report of the pseudosymmetry assessment is also available with a click 
at the end of the summary provided by the program. This report contains a full 
comparison of the original structure with the transformed ones obtained by the 
application of the coset representatives of the supergroup with respect to the subgroup.  



Doing copy-paste, we can now use the symmetrized Pmmn structure as a new input for 
PSEUDO, so that we can continue the search for pseudosymmetry among the minimal 
supergroups of this symmetry. 

We can discard again beforehand many of the minimal supergroups provided by the 
program. From the rest, only the space group Immm (a,b,c ; 1/4,1/4,1/4) will be flagged 
as acceptable with maximal displacements of the order of 0.2A. 

Continue the process introducing the symmetrized Immm structure as input in 
PSEUDO, following the same steps.  Now, I4/mmm (b,c,a; 0,1/2,0) will be flagged a 
pseudosymmetry space group with a maximal atomic displacement smaller than 0.03A, 
and a symmetrized structure given by: 

139 
5.7030 5.6866 7.9440 90.00 90.00 90.00 
5 
Pb    1   -  0.5000  0.0000  0.2500 
Mg    1   -  0.0000  0.0000  0.5000 
W     1   -  0.5000  0.5000  0.5000 
O     1   -  0.5000  0.5000  0.7407 
O     2   -  0.2598  0.7402  0.5000 
 
It is important to take into account that the cell parameters given by the program for the 
supergroup are in general not symmetrized, and correspond exactly to the result of the 
transformation relating the supergroup-group unit cells, taking as data the cell 
parameters of the subgroup. In the case that the supergroup belongs to a different 
crystalline class, the resulting unit cell for the supergroup will include in general some 
symmetry breaking strain, which should be small, if the pseudosymmetry attribution 
makes sense.  In the present case, for instance, the parameters a and b are not exactly 
equal, as demanded by the tetragonal symmetry. 
 
If this idealized structure is to be used in other contexts, obviously the cell parameters 
provided by PSEUDO will require a hand-made symmetrization. For instance, in this 
example, the tetragonal a parameter would be (a+b)/2, with a and b being the ones 
provided by PSEUDO. However, if we are going to use the structure for a new step 
further up in the search of maximal pseudosymmetry, it is much better to keep the 
unsymmetrized unit cell provided by PSEUDO, so that the real lattice of the 
experimental structure is maintained up to the last step of the process, and the 
symmetry breaking strain in the final maximal pseudosymmetry space group can be 
assessed. PSEUDO can work consistently even if a non-tetragonal unit cell is provided, 
for the tetragonal lattice, because the action of the symmetry operation is calculated on 
the atomic relative coordinates. The unit cell parameters are only used for producing the 
transformed unit cells.  
 
We use then again this symmetrized I4/mmmm structure as input, and check reasonable 
minimal supergroups, with the result: 
 

 
 
 
 
 
 
 

Case # Supergroup G Index i Index ik (P,p) Δmax umax 

1 P4/mmm (123) 2 2 a-b,a+b,2c ; 0,0,0 >tol - 

2 Fm-3m (225) 3 1 1/2a-1/2b,1/2a+1/2b,c ; 0,0,0 0.0040 0.0026 



 
We arrive then to a cubic pseudosymmetry. Note that in this case the maximal atomic 
displacement is not half the maximal Δ parameter, because the index of the 
supergroup/group relation is 3. The resulting symmetrized Fm-3m configuration 
provided by PSEUDO will be (Wyckoff labels added using WPASSIGN): 
 
 
225 
8.0537 8.0537 7.9440 90.00 90.00 90.17 
4 
Pb    1   8c    0.2500 0.7500 0.2500                     
Mg    1   4b    0.0000 0.0000 0.5000                     
W     1   4a    0.5000 0.0000 0.5000                     
O     1   24e   0.5000 0.0000 0.7404 
 

 
Note the slight deformation of the unit cell with respect to the required conditions 
within the cubic crystalline class. The actual symmetrized cell parameter will be the 
mean value of three a,b,c values, while the angle γ has to be corrected to 90º. 
 
The symmetrized Fm-3m structure can be further checked for pseudosymmetry with 
respect to its only minimal cubic supergroup Pm-3m proposed by PSEUDO, with 
negative results. In fact this supergroup could be discarded directly, since from the 
multiplicity of the atomic positions, one can see that the primitive unit cell of the Fm-
3m configuration already contains a single formula unit, and therefore, no higher 
symmetry through smaller primitive cells is possible, while the point-group symmetry is 
already maximal.  
                                      ----------------------------------------------- 
Additional Note: This example compound is in fact a double-perovskite where the composition ABO3 is 
changed to A2BB’O3. The Fm-3m configuration corresponds to a perovskite cell duplicated along the 
three directions due to the ordering of the B and B’ cations within the O6 octahedra. This is a simple 
quite trivial example of a Bärninghausen relation between the space groups Pm-3m --- Fm-3m (2a,2b,2c 
; 0,0,0) through the ordering of the Mg and W atoms in the B site of the Pm-3m perovskite. This can be 
checked with PSEUDO if we introduce as input the above Fm-3m structure with the atoms Mg and W 
artificially substituted by the same atom type: 
 
225 
8.0537 8.0537 7.9440 90.00 90.00 90.17 
4 
Pb    1   8c    0.2500 0.7500 0.2500                     
A     1   4b    0.0000 0.0000 0.5000                     
A     2   4a    0.5000 0.0000 0.5000                     
O     1   24e   0.5000 0.0000 0.7404 



 
Now the search for pseudosymmetry with respect to the Pm-3m space group will be successful: 
 

Case # Supergroup G Index i Index ik (P,p) Δmax umax 

1 Pm-3m (221) 2 2 2a,2b,2c ; 0,0,0 0.1546 0.0773 

 
 

Atom Idealized Coordinates ux uy uz |u| 

Pb1 (0.2500, 0.7500, 0.2500) 0.000000 0.000000 0.000000 0.0000 

A1 (0.0000, 0.0000, 0.5000) 0.000000 0.000000 0.000000 0.0000 

A2 (0.5000, 0.0000, 0.5000) 0.000000 0.000000 0.000000 0.0000 

O1 (0.5000, 0.0000, 0.7500) 0.000000 0.000000 -0.009600 0.0763 

 
 
with the obtained symmetrized structure being of course the cubic perovskite: 
 
221 
4.0269 4.0269 3.9720 90.00 90.00 90.17 
3 
Pb    1   1b    0.5000 0.5000 0.5000                     
A     1   1a    0.0000 0.0000 0.0000                     
O     1   3d    0.0000 0.0000 0.5000                     
 
where again a small strain in the unit cell is to be corrected by hand. Disregarding the ordering of the 
atoms Mg and W in the B-site, the distortion of the Fm-3m configuration with respect to a Pm-3m 
perovskite structure is minimal, with the oxygens displacements below 0.1Ǻ. 
 
                         ----------------- 
Coming back to the main result: for the actual observed structure with ordering of the 
Mg and W atoms within the B-sites of the perovskite, the maximal pseudosymmetry is 
Fm-3m, with the parent structure given above. The process has been a bit long, but we 
have arrived to an end in a repetitive process of pseudosymmetry check along the 
following chain of minimal supergroups: 
  

                                                                                     
    
                               
 
Expressing each of the transformations (P,p) in the chain as a 4-dim matrix (see 
International Tables for Crystallography), we can obtain the global transformation 
relating the space groups Fm-3m and Pnma, by multiplying the four matrices: 

2c, b, -a; 0 0 0 

a, b, c; ¼  ¼ ¼  

b, c, a; 0  ½  0 

1/2a-1/2b,1/2a+1/2b,c ; 0,0,0  



 
      
 
  
 
1/2 1/2 0 0 
-1/2 1/2 0 0 
 0 0 1 0 
 0 0 0 1 
 
with the following result: 
 
 1 0     -1/2 1/2 
-1 0     -1/2 1/4 
 0 1 0 1/4 
 0 0 0 1 
 
This means the global transformation relating the two groups is: 
 
                a-b,c,-1/2a-1/2b ; 1/2,1/4,1/4 
 
Using SUBGROUPGRAPH, we could also obtain this transformation or an equivalent 
one. We only need to introduce the two end space groups Fm-3m and Pnma and their 
index, which is 24. SUBGROUPGRAPH will provide all equivalent classes of 
subgroups of Fm-3m, of type Pnma. One of these classes corresponds to our specific 
case. The class contains all equivalent subgroups corresponding to equivalent domain-
related structures. The transformations obtained above does not necessarily appears in 
the list, but an equivalent one will be listed. The figure above describing the lattice of 
minimal supergroups connecting the two symmetries has been produced with this 
program. 
 
    Note that in this example there is a single chain of minimal supergroups 
connecting the two space groups. In general, the graph of minimal supergroups 
connecting the pseudosymmetry space group and observed symmetry can be more 
complex with several different chains of minimal supergroups connecting both 
symmetries. In these cases, pseudosymmetry will be detected for several minimal 
supergroups, and one can choose in principle any of them, for continuing the process 
and proceed to the next step up to the maximal pseudosymmetry. Generally it is 
convenient to choose the minimal supergroup with minimal displacements. 
 
    Let us consider a second example where this happens. Let us take a hypothetical 
structure of symmetry  C2221 (N. 20): 
  
20 
5.4435 9.4122 9.0630 90 90 90 
7 
A    1   4a    0.0790 0 0                               
A    2   4b    0 0.385 0.25                          
B    1   8c    -0.0323 0.3562 0.6231                 
C     1   4a    0.5412 0 0                               
C     2   8c    0.7812 0.222 0.0385                       
C     3   4b    0 -0.1998 0.25                           
C     4   8c    0.2596 0.0999 0.2312 
 

0 0 1 0 
0 1 0 0 
2 0 0 0 
0 0 0 1 

1 0 0 1/4 
0 1 0 1/4 
0 0 1 1/4 
0 0 0 1 

0 0 1 0 
1 0 0 1/2 
0 1 0 0 
0 0 0 1 



     
 
We apply then PSEUDO with option 1 and tolerance 2 Ǻ, discarding from the list of 
minimal supergroups those with inconsistent cells or impossible k-indices: 
 
No. # Select HM Symb.  IT Numb.  Index Index ik Transformation (P,p) Transformed Cell 

1  
 

P2221  017  2  2  2a,2b,c ; 0,0,0 2.7218 4.7061 9.0630 90.00 90.00 90.00 

2  
 

C2221  020  3  3  3a,b,c ; 0,0,0 1.8145 9.4122 9.0630 90.00 90.00 90.00 

3  
 

C2221  020  3  3  -b,-3a,-c ; 0,0,3/4 3.1374 5.4435 9.0630 90.00 90.00 90.00 

4  
 

C2221  020  3  3  a,b,3c ; 0,0,0 5.4435 9.4122 3.0210 90.00 90.00 90.00 

5  
 

C2221  020  5  5  5a,b,c ; 0,0,0 1.0887 9.4122 9.0630 90.00 90.00 90.00 

6  
 

C2221  020  5  5  -b,-5a,-c ; 0,0,3/4 1.8824 5.4435 9.0630 90.00 90.00 90.00 

7  
 

C2221  020  5  5  a,b,5c ; 0,0,0 5.4435 9.4122 1.8126 90.00 90.00 90.00 

8  
 

C2221  020  7  7  7a,b,c ; 0,0,0 0.7776 9.4122 9.0630 90.00 90.00 90.00 

9  
 

C2221  020  7  7  -b,-7a,-c ; 0,0,3/4 1.3446 5.4435 9.0630 90.00 90.00 90.00 

10  
 

C2221  020  7  7  a,b,7c ; 0,0,0 5.4435 9.4122 1.2947 90.00 90.00 90.00 

11  
 

C222  021  2  2  a,b,2c ; 0,0,1/2 5.4435 9.4122 4.5315 90.00 90.00 90.00 

12  
 

F222  022  2  2  b,c,a ; ¼,0,1/4 9.0630 5.4435 9.4122 90.00 90.00 90.00 

13  
 

Cmcm  063  2  1  a,b,c ; 0,0,0 5.4435 9.4122 9.0630 90.00 90.00 90.00 

14  
 

Cmcm  063  2  1  -b,-a,-c ; 0,0,3/4 9.4122 5.4435 9.0630 90.00 90.00 90.00 

15  
 

Cmca  064  2  1  a,b,c ; ¼,0,0 5.4435 9.4122 9.0630 90.00 90.00 90.00 

16  
 

Cmca  064  2  1  -b,-a,-c ; ¼,0,3/4 9.4122 5.4435 9.0630 90.00 90.00 90.00 

17  
 

P4122  091  2  1  a-b,a+b,c ; 0,0,1/8 5.4365 5.4365 9.0630 90.00 90.00 60.09 

18  
 

P4122  091  2  1  -a+b,-a-b,-c ; 0,0,1/8 5.4365 5.4365 9.0630 90.00 90.00 60.09 



19  
 

P41212  092  2  1  a-b,a+b,c ; 0,0,1/4 5.4365 5.4365 9.0630 90.00 90.00 60.09 

20  
 

P41212  092  2  1  -a+b,-a-b,-c ; 0,0,1/4 5.4365 5.4365 9.0630 90.00 90.00 60.09 

21  
 

P4322  095  2  1  a-b,a+b,c ; 0,0,3/8 5.4365 5.4365 9.0630 90.00 90.00 60.09 

22  
 

P4322  095  2  1  -a+b,-a-b,-c ; 0,0,3/8 5.4365 5.4365 9.0630 90.00 90.00 60.09 

23  
 

P43212  096  2  1  a-b,a+b,c ; 0,0,1/4 5.4365 5.4365 9.0630 90.00 90.00 60.09 

24  
 

P43212  096  2  1  -a+b,-a-b,-c ; 0,0,1/4 5.4365 5.4365 9.0630 90.00 90.00 60.09 

25  
 

P6122  178  3  1  -a+b,-a-b,c ; 0,0,5/12 5.4365 5.4365 9.0630 90.00 90.00 60.09 

26  
 

P6122  178  3  1  -a+b,-a-b,c ; -1/2,1/2,5/12 5.4365 5.4365 9.0630 90.00 90.00 60.09 

27  
 

P6122  178  3  1  a-b,a+b,-c ; 0,0,5/12 5.4365 5.4365 9.0630 90.00 90.00 60.09 

28  
 

P6122  178  3  1  a-b,a+b,-c ; -1/2,1/2,5/12 5.4365 5.4365 9.0630 90.00 90.00 60.09 

29  
 

P6122  178  3  1  -a-b,-a+b,c ; 0,0,2/3 5.4365 5.4365 9.0630 90.00 90.00 119.91 

30  
 

P6122  178  3  1  -a-b,-a+b,c ; -1/2,-1/2,2/3 5.4365 5.4365 9.0630 90.00 90.00 119.91 

31  
 

P6122  178  3  1  a+b,a-b,-c ; 0,0,2/3 5.4365 5.4365 9.0630 90.00 90.00 119.91 

32  
 

P6122  178  3  1  a+b,a-b,-c ; -1/2,-1/2,2/3 5.4365 5.4365 9.0630 90.00 90.00 119.91 

33  
 

P6522  179  3  1  -a+b,-a-b,c ; 0,0,1/12 5.4365 5.4365 9.0630 90.00 90.00 60.09 

34  
 

P6522  179  3  1  -a+b,-a-b,c ; -1/2,1/2,1/12 5.4365 5.4365 9.0630 90.00 90.00 60.09 

35  
 

P6522  179  3  1  a-b,a+b,-c ; 0,0,1/12 5.4365 5.4365 9.0630 90.00 90.00 60.09 

36  
 

P6522  179  3  1  a-b,a+b,-c ; -1/2,1/2,1/12 5.4365 5.4365 9.0630 90.00 90.00 60.09 

37  
 

P6522  179  3  1  -a-b,-a+b,c ; 0,0,1/3 5.4365 5.4365 9.0630 90.00 90.00 119.91 

38  
 

P6522  179  3  1  -a-b,-a+b,c ; -1/2,-1/2,1/3 5.4365 5.4365 9.0630 90.00 90.00 119.91 

39  
 

P6522  179  3  1  a+b,a-b,-c ; 0,0,1/3 5.4365 5.4365 9.0630 90.00 90.00 119.91 

40  
 

P6522  179  3  1  a+b,a-b,-c ; -1/2,-1/2,1/3 5.4365 5.4365 9.0630 90.00 90.00 119.91 

41  
 

P6322  182  3  1  -a+b,-a-b,c ; 0,0,1/4 5.4365 5.4365 9.0630 90.00 90.00 60.09 

42  
 

P6322  182  3  1  -a+b,-a-b,c ; -1/2,1/2,1/4 5.4365 5.4365 9.0630 90.00 90.00 60.09 



43  
 

P6322  182  3  1  a+b,a-b,-c ; 0,0,1 5.4365 5.4365 9.0630 90.00 90.00 119.91 

44  
 

P6322  182  3  1  a+b,a-b,-c ; -1/2,-1/2,1 5.4365 5.4365 9.0630 90.00 90.00 119.91 

 
with the following results: 
 
Case # Supergroup G Index i Index ik (P,p)  Δmax umax 

1 P2221 (017) 2 2 2a,2b,c ; 0,0,0  >tol - 

2 C222 (021) 2 2 a,b,2c ; 0,0,1/2  >tol - 

3 F222 (022) 2 2 b,c,a ; 1/4,0,1/4  >tol - 

4 Cmcm (063) 2 1 a,b,c ; 0,0,0  0.9382 0.4691 

5 Cmcm (063) 2 1 -b,-a,-c ; 0,0,3/4  >tol - 

6 Cmca (064) 2 1 a,b,c ; 1/4,0,0  >tol - 

7 Cmca (064) 2 1 -b,-a,-c ; 1/4,0,3/4  >tol - 

8 P6122 (178) 3 1 -a-b,-a+b,c ; 0,0,2/3  >tol - 

9 P6122 (178) 3 1 -a-b,-a+b,c ; -1/2,-1/2,2/3  >tol - 

10 P6122 (178) 3 1 a+b,a-b,-c ; 0,0,2/3  >tol - 

11 P6122 (178) 3 1 a+b,a-b,-c ; -1/2,-1/2,2/3  >tol - 

12 P6522 (179) 3 1 -a-b,-a+b,c ; 0,0,1/3  >tol - 

13 P6522 (179) 3 1 -a-b,-a+b,c ; -1/2,-1/2,1/3  >tol - 

14 P6522 (179) 3 1 a+b,a-b,-c ; 0,0,1/3  >tol - 

15 P6522 (179) 3 1 a+b,a-b,-c ; -1/2,-1/2,1/3  >tol - 

16 P6322 (182) 3 1 a+b,a-b,-c ; 0,0,1  0.8427 0.4863 

17 P6322 (182) 3 1 a+b,a-b,-c ; -1/2,-1/2,1  >tol - 

 
Two minimal supergroups have been flagged. We take for the next step upwards the 
symmetrized structure with smallest atomic displacements, i.e. the structure Cmcm 
(a,b,c ; 0,0,0): 
 
063 
5.4435 9.4122 9.0630 90.00 90.00 90.00 
7 
A     1   -  0.0000  0.0000  0.0000 
A     2   -  0.0000  0.3850  0.2500 
B     1   -  0.0000  0.3562  0.6231 
C     1   -  0.5000  0.0000  0.0000 
C     2   -  0.7500  0.2500  0.0000 
C     3   -  0.0000  0.8002  0.2500 
C     4   -  0.2596  0.0999  0.2500 
 



 
with the following result: 
 
Case # Supergroup G Index i Index ik (P,p) Δmax umax 

1 Pmma (051) 2 2 2b,2c,a ; 0,0,0 >tol - 

2 Cmmm (065) 2 2 -b,a,2c ; 0,0,0 >tol - 

3 Fmmm (069) 2 2 c,b,-a ; 1/4,1/4,0 >tol - 

4 P63/mmc (194) 3 1 -a-b,a-b,c ; 0,0,0 0.8427 0.4863 

5 P63/mmc (194) 3 1 -a-b,a-b,c ; -1/2,-1/2,0 >tol - 

 
Taking again the symmetrized structure P63/mmc with the smallest distortion for further 
pseudosymmetry check (Wyckoff labels added with WPASSIGN): 
 
194 
5.4365 5.4365 9.0630 90.00 90.00 119.91 
5 
A     1   2a    0.0000 0.0000 0.0000                     
A     2   2c    0.333333 0.666667 0.2500                 
B     1   4f    0.333333 0.666667 0.6231                 
C     1   6g    0.5000 0.5000 0.0000                     
C     3   6h    0.8136 0.1864 0.2500   
 
 
 

           
 
Important: Note that we have modified the output of PSEUDO including 6 decimal 
digits for the special coordinates 1/3 and 2/3. To use PSEUDO and other programs of 



this server, it is important that special coordinates 1/3, 2/3, etc… are expressed 
including a maximum number of digits in its numerical expression, so that the programs 
recognise them as exact simple fractions. 
 
Applying PSEUDO again to this structure, the result is negative for all consistent 
minimal supergroups and tolerance 2 Ǻ. P63/mmc is therefore the pseudosymmetry of 
the structure, with the structural model listed above as P63/mmc reference structure 
(The cell has some strain to be corrected by hand). 
 
The graph of maximal subgrousp connecting this space group with the actual observed 
symmetry C2221 is the following (obtained with SUBGROUPGRAPH): 
   

                                                    
 
One can see now why both supergroups of type Cmcm and P6322 were flagged by 
PSEUDO, as they are both intermediate symmetries with respect to P63/mmc. If we had 
taken the symmetrized P6322 structure in the second step, the result would have been 
the same. 
 
 
 
Option 3: Search of pseudosymmetry for a specific supergroup defined by the 
transformation (P,p) 
 
Retaking the first example of the Pnma structure of Pb2MgWO6, we can use the option 
3 of the program, in which a given supergroup specified by its transformation matrix 
can be checked, to confirm that this Pnma structure is indeed pseudosymmetric with 
respect to the symmetry Fm-3m, as obtained step by step checking a chain of minimal 
supergroups. 
 

Case # Supergroup G Index i Index ik (P,p) Δmax umax 

1 Fm-3m (225) 24 4 a-b,c,-1/2a-1/2b ; 1/2,1/4,1/4 0.5243 0.2627 

 

Atom Idealized Coordinates ux uy uz |u| 

Pb1 (0.1250, 0.0000, 0.7500) 0.017200 0.003200 0.030400 0.2627 

Mg1 (0.3750, 0.2500, 0.7500) 0.002200 0.000000 0.001900 0.0273 

W1 (0.1250, 0.2500, 0.2500) -0.008900 -0.000000 0.007700 0.1106 

O1 (0.1250, 0.4904, 0.2500) 0.006400 0.000317 -0.013500 0.1060 



O2 (0.0048, 0.2500, 0.0096) -0.002108 0.000000 0.003683 0.0319 

O3 (0.0048, 0.2500, 0.4904) 0.005492 0.000000 0.008717 0.0799 

O4 (0.2452, 0.2500, 0.0096) -0.008192 0.000000 -0.024917 0.1697 

O5 (0.2452, 0.2500, 0.4904) 0.003908 0.000000 -0.015883 0.1007 
 
 
We can see now directly the atomic displacements relating the actual Pnma structure 
with the proposed ideal Fm-3m configuration. These displacements are smaller than 
0.27A. 
 
Option 3 is in principle intended for obtaining a symmetrized structural model of a 
structure for which we know its pseudosymmetry, and the transformation matrix 
relating both space groups. But it can also be used to start the determination of some 
unknown pseudosymmetry in structures which due to their large unit cell may have in 
their chains of minimal pseudosymmetric supergroups isomorphic space groups with 
indices larger than those considered in option 1. 
 
Example of combined application of option 3 and 1: 
 
The apparently complex phase of the phase Ga-II of Ga under pressure: 
 
Let us consider for instance the phase of Ga under pressure called Ga-II (Phys. Rev. Lett. 
93, 205502 (2004)): 
 
20 
5.976 8.576 35.758 90 90 90 
14 
Ga    1   4b    0.5000 0.1802 0.2500                     
Ga    2   8c    0.6956 0.4684 0.2716                     
Ga    3   8c    0.5804 0.7858 0.2861                     
Ga    4   8c    0.2772 0.5622 0.3081                     
Ga    5   8c    -0.0341 0.7809 0.3292                    
Ga    6   8c    0.8482 0.4567 0.3430                     
Ga    7   8c    0.5632 0.6919 0.3666                     
Ga    8   8c    0.2324 0.4838 0.3851                     
Ga    9   8c    0.6129 0.2914 0.4003                     
Ga    10  8c    0.8276 0.5660 0.4250                     
Ga    11  8c    -0.0030 0.2613 0.4435                    
Ga    12  4a    0.2460 0.0 0.5000                        
Ga    13  8c    0.1052 0.3090 0.5170                     
Ga    14  8c    0.3574 0.5518 0.5409     
 



 
 
 
This orthorhombic structure, with space group C2221, has 104 Ga atoms in the 
conventional centred unit cell. Its unit cell is much elongated along the c axis. One can 
suspect that the system may be a superstructure of a more proportioned cell, with a 
division of the cell parameter along the c axis. The observed cell would be then a 
multiple of a smaller cell, the multiplication factor being necessarily a divisor of 104. 
Divisors giving reasonable values for the c parameter may be 13, 8, 4, 2. If the structure 
is a superstructure with the unit cell multiplied along c by a factor 13, the option 1 
would not detect it, since this cell multiplication would correspond to an isomorphic 
supergroup with index 13, above the limit considered in this option. But we can try this 
possibility by introducing the specific isomorphic supergroup with option 3. Using the 
program SERIES we can look to the whole series of isomorphic supergroups of C2221, 
check the existence of one with a division of the cell by 13, and get the corresponding 
origin shift, if any. In this case the transformation matrix is rather trivial, with no origin 
shift needed, and introducing a tolerance of 2 Ǻ, PSEUDO reports a positive result, with 
maximal atomic displacements smaller than 0.8 A: 
 
 
 
Case # Supergroup G Index i Index ik (P,p) Tr. Matrix Δmax umax 

1 C2221 (20) 13 13 a,b,13c ; 0,0,0 
[     1     0     0 ] [      0] 
[     0     1     0 ] [      0] 
[     0     0    13 ] [      0] 

1.6288 0.7794 

 
 
The resulting symmetrized structure is : 
 
20 
5.9760 8.5760 2.7506 90.00 90.00 90.00 
2 
Ga    1   -  0.5000  0.2484  0.2500 
Ga    10   -  0.7504  0.5000  0.5000 

 



 
 
Hence, to obtain this very regular structure with a much smaller cell (with c = 2.751 Å) 
the atomic displacements that have been required are smaller than 0.8 Å. This 
symmetrized structure can be now checked further for pseudosymmetry using option 1, 
checking the minimal supergroups.  
 
Decreasing now the tolerance to 1Ǻ, and dropping the tetragonal and hexagonal 
minimal supergroups because they have unit cells very far from the symmetry 
requirements, and some of the orthorhombic ones because of their inconsistent unit cell, 
we obtain that the structure is only pseudosymmetric for the minimal supergroup F222 
(-b,-c,a ; 3/4,0,1/4) with the following symmetrized reference structure, that requires 
atomic displacements smaller than 0.01 Å:  
 
Atom Idealized Coordinates ux uy uz |u| 

Ga1 (0.5000, 0.2500, 0.2500) 0.000000 -0.001600 0.000000 0.0137 

Ga10 (0.7500, 0.5000, 0.5000) 0.000400 0.000000 0.000000 0.0024 

 
022 
2.7506 5.9760 8.5760 90.00 90.00 90.00 
2 
Ga    1   -  0.0000  0.5000  0.0000 
Ga    10   -  0.2500  0.2500  0.7500 
 
This structure can be further checked for pseudosymmetry with option 1, considering 
consistent minimal supergroups, and in fact, the structure is detected as having Fddd 
symmetry, with no additional displacement required: 
 

Case # Supergroup G Index i Index ik (P,p) Δmax umax 

1 P222 (016) 2 2 -2a,-2b,2c ; 0,0,0 >tol - 

2 F222 (022) 3 3 b,c,3a ; 0,0,0 >tol - 

3 F222 (022) 3 3 c,3a,b ; 0,0,0 >tol - 



4 Fmmm (069) 2 1 -a,-b,c ; 0,0,0 >tol - 

5 Fmmm (069) 2 1 a,b,c ; 1/4,1/4,1/4 >tol - 

6 Fddd (070) 2 1 -a,-b,c ; 1/8,1/8,1/8 >tol - 

7 Fddd (070) 2 1 a,b,c ; 3/8,3/8,3/8 0 0.0000 

 
070 
2.7506 5.9760 8.5760 90.00 90.00 90.00 
1 
Ga    1   -  0.3750  0.8750  0.3750 
 

 
 
So, in fact, phase GaII is a distorted Fddd structure with a single atom in the asymmetric 
unit, with its position fully fixed by symmetry. 
 
We can obtain the actual distortion relating both structures, using again PSEUDO with 
option 3, introducing the supergroup Fddd with the adequate transformation, 
multiplying, as in the previous case, the three 4x4 matrices corresponding to the three 
steps done along the chain minimal supergroups: (-b,-c,13a; 1/8, 3/8, 5/8). A summary 
of the result is: 
 
Case # Supergroup G Index i Index ik (P,p) Δmax umax 

1 Fddd (70) 52 26 -b,-c,13a ; 1/8,3/8,5/8 1.6288 0.7729 

 
Atom Idealized Coordinates ux uy uz |u| 

Ga1 (0.5000, 0.2500, 0.2500) -0.000000 -0.069800 0.000000 0.5986 

Ga2 (0.7500, 0.5000, 0.2692) -0.054400 -0.031600 0.002369 0.4316 

Ga3 (0.5000, 0.7500, 0.2885) 0.080400 0.035800 -0.002361 0.5764 

Ga4 (0.2500, 0.5000, 0.3077) 0.027200 0.062200 0.000408 0.5578 

Ga5 (0.0000, 0.7500, 0.3269) -0.034100 0.030900 0.002277 0.3441 

Ga6 (0.7500, 0.5000, 0.3462) 0.098200 -0.043300 -0.003154 0.7036 

Ga7 (0.5000, 0.7500, 0.3654) 0.063200 -0.058100 0.001216 0.6267 

Ga8 (0.2500, 0.5000, 0.3846) -0.017600 -0.016200 0.000485 0.1751 

Ga9 (0.5000, 0.2500, 0.4038) 0.112900 0.041400 -0.003546 0.7729 

Ga10 (0.7500, 0.5000, 0.4231) 0.077600 0.066000 0.001923 0.7350 

Ga11 (0.0000, 0.2500, 0.4423) -0.003000 0.011300 0.001192 0.1074 



Ga12 (0.2500, 0.0000, 0.5000) -0.004000 -0.000000 0.000000 0.0239 

Ga13 (0.0206, 0.2685, 0.5211) 0.084617 0.040527 -0.004079 0.6307 

Ga14 (0.2679, 0.5200, 0.5366) 0.089521 0.031812 0.004287 0.6198 

 
 
Therefore, phase GaII is in fact a modulated structure of a simple Fddd structure, with 
maximal atomic displacements below 0.78A (Phys. Rev. Lett. 97, 115501 (2006)). 
 
 
Option 2: Search among supergroups with a fixed k-index 
 
Sometimes, we may be sure that the system is pseudosymmetric with respect to a 
supergroup from which we know the multiplication factor of its primitive unit cell (k-
index). We may be interested for instance to search the pseudosymmetry among 
supergroups with the no change of lattice, except for some strain (k-index=1), or with a 
primitive unit cell containing half the number of formula unit than the actual observed 
one (k-index=2). In this case, option 2 can be more direct. It provides the supergroups 
for a given k-index (up to 4), and one can choose one by one the desired supergroups. If 
we want to check a specific supergroup this option spares the user to have to know 
beforehand (as it happens in option 3) the transformation matrix relating the checked 
supergroup with the actual space group (only the k-index must be known). 
 
Exercises 1: Using PSEUDO, find the pseudosymmetry of the following structure and 
the symmetrized reference structure. 
 
1 
7.0000 4.0000 4.5000 95.00 100.00 82.00 
1 
A     1   -  0.2800  0.0500  0.09500 
A     2   -  0.7500  0.9800  0.9700 
 
This is a case that can be easily deduced from inspection of the structure (you can use 
WPASSIGN to visualize the structure with Jmol).  
 
Exercise 2: GeF2, having the P212121 (N. 19) structure given below, is reported to have 
at higher temperature an unknown tetragonal phase, with the primitive unit cell volume 
being essentially maintained. Using PSEUDO, with the option 2, which allows to check 
supergroups with a fixed k-index (multiplication of the primitive unit cell) postulate a 
probable space group or groups and a starting structural model for this high-temperature 
phase. 
 
19 
4.682 5.158 8.312 90 90 90 
3 
Ge 1 4a 0.2340 0.0083 0.1311 
F  1 4a 0.029 0.083 -0.018 
F  2 4a 0.067 0.246 0.279  
 
 
 



Polar structures: 
 
If the structure to be checked for pseudosymmetry is polar, its origin along the polar 
direction(s) has in general been chosen arbitrarily. A proper search of non-polar 
pseudosymmetry requires then to optimize somehow the origin of the non-polar (or less 
polar) supergroup with respect to the input polar structure (formally, the number of 
distinct non-polar supergroups is infinite due to the possible distinct choices of origin).  
This optimization is done in PSEUDO by making the pseudosymmetry check for a grid 
of origin choices for the polar structure whose density is controlled by the user, while 
the transformation matrix (P,p) defining the origin of the non-polar supergroup is not 
varied. 
 
Let us consider as an example the case of the P63 room-temperature structure of 
NaSb3F10 (J. Appl. Cryst. (2009). 42, 58–62): 
 
173 
8.285 8.285 7.600 90 90 120 
6 
Sb    1   6c    -0.1163 0.2243 0.55                      
Na    1   2b    0.333333 0.666667 0.467                  
F     1   6c    0.204 0.393 0.294                        
F     2   6c    0.111 0.229 0.640                        
F     3   6c    0.035 0.491 0.581                        
F     4   2b    0.666667 0.333333 0.545   
 
 

 
 
(we have introduced an arbitrary shift of the origin to the structure reported in the reference 
above, to simulate a more general case, with unknown pseudosymmetry) 
 
This compound has been predicted to be ferroelectric due to its small deviation from a 
non-polar configuration. The symmetries P6322 and P63/mmc have been proposed for 
two successive non-polar phases at higher temperatures.  
 
The first output of PSEUDO with the list of minimal supergroups includes now a note 
indicating the polarity of the structure, and allowing the user to introduce the desired 
maximal distance among the points of the grid to be tried for the origin choice, the 
default being 0.5 Ǻ (the maximum number of points is however internally limited to 40 
along any polar direction). One should take into account that very dense grids can 



increase computer times to unacceptable values. It is therefore advisable to keep this 
grid parameter as large as possible.  
 
 

No. # Select HM Symb.  IT Numb.  Index Index ik Transformation (P,p) Transformed Cell 

1   P6  168  2  2  a,b,2c ; 0,0,2t 8.2850 8.2850 3.8000 90.00 90.00 120.00 

2   P63  173  3  3  a,b,3c ; 0,0,3t 8.2850 8.2850 2.5333 90.00 90.00 120.00 

3   P63  173  3  3  a-b,a+2b,c ; 0,0,t 4.7833 4.7833 7.6000 90.00 90.00 120.00 

4   P63  173  4  4  2a,2b,c ; 0,0,t 4.1425 4.1425 7.6000 90.00 90.00 120.00 

5   P63  173  5  5  a,b,5c ; 0,0,5t 8.2850 8.2850 1.5200 90.00 90.00 120.00 

6   P63  173  7  7  a,b,7c ; 0,0,7t 8.2850 8.2850 1.0857 90.00 90.00 120.00 

7   P63  173  7  7  a-2b,2a+3b,c ; 0,0,t 3.1314 3.1314 7.6000 90.00 90.00 120.00 

8   P63  173  7  7  -2a-3b,-a+2b,-c ; 0,0,-t 3.1314 3.1314 7.6000 90.00 90.00 120.00 

9   P63/m  176  2  1  a,b,c ; 0,0,t 8.2850 8.2850 7.6000 90.00 90.00 120.00 

10   P6322  182  2  1  a,b,c ; 0,0,t 8.2850 8.2850 7.6000 90.00 90.00 120.00 

11   P63cm  185  2  1  a,b,c ; 0,0,t 8.2850 8.2850 7.6000 90.00 90.00 120.00 

12   P63mc  186  2  1  a,b,c ; 0,0,t 8.2850 8.2850 7.6000 90.00 90.00 120.00 

HINT: The initial structure is polar, which means that, in general, an origin shift will be necessary to 
minimize the displacements between the initial polar structure and the hypothetical idealized parent one. 
Please, insert a minimum grid for the optimization (in Angstroms) 
 
Note the continuous parameter t appearing in the transformation matrix of the listed 
minimal supergroups, indicating the possible arbitrary choice of its origin along the z-
axis. Instead of varying this parameter, the program sets it to zero, while the origin of 
the input structure is varied according to the defined grid.  
 
All isomorphic supergroups can be discarded beforehand because the structure contains 
only 2 formula unit per primitive cell, and therefore the cell divisions implied by these 
supergroups (inverse of their k-index) are incompatible. For the rest, with a tolerance of 
2 A, the summary of the pseudosymmetry check is the following: 
 
 
Case # Supergroup G Index i Index ik (P,p) Δmax umax 

1 P6 (168) 2 2 a,b,2c ; 0,0,0 >tol - 

2 P63/m (176) 2 1 a,b,c ; 0,0,0 1.4010 0.7005 

3 P6322 (182) 2 1 a,b,c ; 0,0,0 1.3984 0.6992 

4 P63cm (185) 2 1 a,b,c ; 0,0,0 >tol - 



5 P63mc (186) 2 1 a,b,c ; 0,0,0 0.8948 0.4474 

 
 
 
Three minimal supergroups are therefore detected. The first two are non-polar, while 
the third one is also polar along z. For the non-polar ones the program indicates an 
optimal origin shift within the resolution given by the grid used and lists besides the 
symmetrized structure, the original one with the optimized origin. For instance for the 
first flagged supergroup: 
 
2# Supergroup P63/m (176): a,b,c ; 0,0,0 and index 2  
Displacements: 

Atom Idealized Coordinates ux uy uz |u| 

Sb1 (0.8837, 0.2243, 0.2500) 0.000000 0.000000 0.033333 0.2533 

Na1 (0.3333, 0.6667, 0.2500) 0.000000 0.000000 -0.049667 0.3775 

F1 (0.1575, 0.3110, 0.0770) 0.046500 0.082000 -0.049667 0.7005 

F2 (0.1575, 0.3110, 0.4230) -0.046500 -0.082000 -0.049667 0.7005 

F3 (0.0350, 0.4910, 0.2500) 0.000000 0.000000 0.064333 0.4889 

F4 (0.6667, 0.3333, 0.2500) 0.000000 0.000000 0.028333 0.2153 

NOTE: ux, uy and uz are given in relative units. |u| is the absolute displacement  
given in Å. 
 
 
Optimized polar structure: 
 
# Origin shifted with t = (0.000000, 0.000000, 0.733333) 
173 
8.2850 8.2850 7.6000 90.00 90.00 120.00 
6 
Sb 1 -  0.883700 0.224300 0.283333 
Na 1 -  0.333333 0.666667 0.200333 
F 1 -  0.204000 0.393000 0.027333 
F 2 -  0.111000 0.229000 0.373333 
F 3 -  0.035000 0.491000 0.314333 
F 4 -  0.666667 0.333333 0.278333 
 
 
Idealized structure (subgroup setting): 
 
173 
8.2850 8.2850 7.6000 90.00 90.00 120.00 
6 
Sb    1   -  0.8837  0.2243  0.2500 
Na    1   -  0.3333  0.6667  0.2500 
F     1   -  0.1575  0.3110  0.0770 
F     2   -  0.1575  0.3110  0.4230 
F     3   -  0.0350  0.4910  0.2500 
F     4   -  0.6667  0.3333  0.2500 
 
 
Idealized structure (supergroup setting): 
 
176 
8.2850 8.2850 7.6000 90.00 90.00 120.00 
5 
Sb    1   -  0.8837  0.2243  0.2500 
Na    1   -  0.3333  0.6667  0.2500 
F     1   -  0.1575  0.3110  0.0770 
#F     2   -  0.1575  0.3110  0.4230 
F     3   -  0.0350  0.4910  0.2500 
F     4   -  0.6667  0.3333  0.2500 



 
Notes: 
    * Idealized structure with space group 176 related with the given by the transformation a,b,c ; 0,0,0 and index 2 
    * Cell parameters have not been symmetrized. They may include in general some symmetry breaking strain, to be removed by 
hand. 
    * A commented atom means a redundant atom, due to the merging of the Wyckoff orbit with another one in the supergroup 
 

 
The origin shift done by the program is therefore (0,0,0.733), and it is the same for the 
other non-polar supergroup P6322. If we increase the density of grid points, the origin 
choice can be further optimized decreasing the maximum atomic displacements 
between the symmetrized and the input structure. For instance, if we put for the grid 
parameter 0.1 A, the pseudosymmetry check gives the following results: 
 
Case # Supergroup G Index i Index ik (P,p) Δmax umax 

1 P6 (168) 2 2 a,b,2c ; 0,0,0 >tol - 

2 P63/m (176) 2 1 a,b,c ; 0,0,0 1.2824 0.6412 

3 P6322 (182) 2 1 a,b,c ; 0,0,0 1.3072 0.6536 

4 P63cm (185) 2 1 a,b,c ; 0,0,0 >tol - 

5 P63mc (186) 2 1 a,b,c ; 0,0,0 0.8948 0.4474 

 
The corresponding results for the supergroup P63/m are now: 
 
Optimized polar structure: 
 
# Origin shifted with t = (0.000000, 0.000000, 0.250000) 
173 
8.2850 8.2850 7.6000 90.00 90.00 120.00 
6 
Sb 1 -  0.883700 0.224300 0.800000 
Na 1 -  0.333333 0.666667 0.717000 
F 1 -  0.204000 0.393000 0.544000 
F 2 -  0.111000 0.229000 0.890000 
F 3 -  0.035000 0.491000 0.831000 
F 4 -  0.666667 0.333333 0.795000 
 
Idealized structure (subgroup setting): 
 
173 
8.2850 8.2850 7.6000 90.00 90.00 120.00 
6 
Sb    1   -  0.8837  0.2243  0.7500 
Na    1   -  0.3333  0.6667  0.7500 
F     1   -  0.1575  0.3110  0.5770 
F     2   -  0.1575  0.3110  0.9230 
F     3   -  0.0350  0.4910  0.7500 
F     4   -  0.6667  0.3333  0.7500 
 
Idealized structure (supergroup setting): 
 
176 
8.2850 8.2850 7.6000 90.00 90.00 120.00 
5 
Sb    1   -  0.8837  0.2243  0.7500 
Na    1   -  0.3333  0.6667  0.7500 
F     1   -  0.1575  0.3110  0.5770 
#F     2   -  0.1575  0.3110  0.9230 
F     3   -  0.0350  0.4910  0.7500 
F     4   -  0.6667  0.3333  0.7500 
 
Note that the origin shift is quite different from the one proposed for the 0.5 Å grid. 
However, the proposed symmetrized P63/m reference structure is the same. In fact, it is 



an equivalent description of the same structure (the origin is shifted (0 0 ½), which is an 
operation of the normalizer of P63/m- see program NORMALIZER in the server-). The 
same happens for the other flagged non-polar supergroup 
 
Important: once the program has detected pseudosymmetry for a given non-polar 
symmetry, it is in principle not necessary to try to optimize further the origin choice 
with PSEUDO by minimizing the maximum atomic displacements. In most cases, the 
best or more sensible origin choice does not correspond to this minimization. For 
instance, it can be more convenient to take the origin that cancels any global translation 
when the two structures are compared, so that its geometric centre remains unmoved by 
the distortion. Once the reference symmetrized structure is known and independently of 
the magnitude of the atomic displacements, the calculation of this optimal origin choice 
is straightforward, as done by AMPLIMODES in this server. 
 
Continuing with the example, we take now the (polar) symmetrized P63mc structure: 
 
186 
8.2850 8.2850 7.6000 90.00 90.00 120.00 
6 
Sb    1   -  0.8297  0.1703  0.5500 
Na    1   -  0.3333  0.6667  0.4670 
F     1   -  0.1965  0.3930  0.2940 
F     2   -  0.1145  0.2290  0.6400 
F     3   -  0.0350  0.5175  0.5810 
F     4   -  0.6667  0.3333  0.5450 

 
 
 
which is the one with the smallest distortion. We use it for a further step up, checking 
with PSEUDO its pseudosymmetry. 
 
To be noticed is the fact that for this symmetry no origin shift has been done by the 
program, as this supergroups is also polar along z, and the magnitude of the atomic 
displacements between the distorted and the symmetrized structures do not depend on 
the origin choice along z.  
 
Keeping the grid parameter in 0.1 Å, pseudosymmetry for P63/mmc is detected, with 
the following values: 
 
Case # Supergroup G Index i Index ik (P,p) Δmax umax 

1 P6mm (183) 2 2 a,b,2c ; 0,0,0 >tol - 

2 P63/mmc (194) 2 1 a,b,c ; 0,0,0 1.2792 0.6396 

 
Optimized polar structure: 
 
# Origin shifted with t = (0.000000, 0.000000, 0.250000) 
186 
8.2850 8.2850 7.6000 90.00 90.00 120.00 
6 
Sb 1 -  0.829700 0.170300 0.800000 
Na 1 -  0.333300 0.666700 0.717000 
F 1 -  0.196500 0.393000 0.544000 
F 2 -  0.114500 0.229000 0.890000 
F 3 -  0.035000 0.517500 0.831000 
F 4 -  0.666700 0.333300 0.795000 
 
 



Idealized structure (subgroup setting): 
 
186 
8.2850 8.2850 7.6000 90.00 90.00 120.00 
6 
Sb    1   -  0.8297  0.1703  0.7500 
Na    1   -  0.3333  0.6667  0.7500 
F     1   -  0.1555  0.3110  0.5770 
F     2   -  0.1555  0.3110  0.9230 
F     3   -  0.0350  0.5175  0.7500 
F     4   -  0.6667  0.3333  0.7500 
 
Idealized structure (supergroup setting): 
 
194 
8.2850 8.2850 7.6000 90.00 90.00 120.00 
5 
Sb    1   -  0.8297  0.1703  0.7500 
Na    1   -  0.3333  0.6667  0.7500 
F     1   -  0.1555  0.3110  0.5770 
#F     2   -  0.1555  0.3110  0.9230 
F     3   -  0.0350  0.5175  0.7500 
F     4   -  0.6667  0.3333  0.7500 
 
The optimized origin shift is the same as obtained in the previous step for the non-polar 
supergroups. The reference symmetrized P63/mmc structure with Wyckoff labels is: 
 
194 
8.2850 8.2850 7.6000 90.00 90.00 120.00 
5 
Sb    1   6h    0.8297 0.1703 0.7500                     
Na    1   2d    0.333333 0.666667 0.7500                 
F     1   12k   0.1555 0.3110 0.5770                     
F     3   6h    0.0350 0.5175 0.7500                     
F     4   2c    0.666667 0.333333 0.7500 

 
 
Although the rotational symmetry is already maximal, as there are still two formula 
units per primitive unit cell, we can still check the pseudosymmetry of this structure for 
supergroups with k-index=2. There is only a supergroup of this type, but the 
pseudosymmetry check is negative: 
 

Case # Supergroup G Index i Index ik (P,p) Δmax umax 

1 P6/mmm (191) 2 2 a,b,2c ; 0,0,0 >tol - 

 
 



In fact if we increase sufficiently the tolerance, this supergroup P6/mmm is flagged by 
the program with Δmax=3.8 Ǻ (umax= 1.9 Ǻ), but this is due to the fact that c/4 =1.9 A, 
and therefore with this enormous tolerance atomic sites can change their z-coordinate 
from 0.75 to 0.0, and similar jumps, changing completely the structure. 
 
Summarizing, and considering the two steps done with PSEUDO, the NaSb3F10 
structure has P63/mmc pseudosymmetry with a transformation matrix (a, b, c; 0, 0, 0) 
relating its setting with the observed P63 space group. We can then use the option 3 of 
PSEUDO, which also allows a origin optimization for polar cases, for a direct check of 
this pseudosymmetry and a direct comparison of the two structures:  
 
Case # Supergroup G Index i Index ik (P,p) Δmax umax 

1 P63/mmc (194) 4 1 a,b,c ; 0,0,0 1.3072 0.6536 

Idealized structures 

1# Supergroup P63/mmc (194): a,b,c ; 0,0,0 and index 4  

Displacements: 

Atom Idealized Coordinates ux uy uz |u| 

Sb1 (0.8297, 0.1703, 0.7500) 0.054000 0.054000 0.050000 0.5870 

Na1 (0.3333, 0.6667, 0.7500) 0.000000 0.000000 -0.033000 0.2508 

F1 (0.1555, 0.3110, 0.5770) 0.048500 0.082000 -0.033000 0.6426 

F2 (0.1555, 0.3110, 0.9230) -0.044500 -0.082000 -0.033000 0.6402 

F3 (0.0350, 0.5175, 0.7500) 0.000000 -0.026500 0.081000 0.6536 

F4 (0.6667, 0.3333, 0.7500) 0.000000 0.000000 0.045000 0.3420 

NOTE: ux, uy and uz are given in relative units. |u| is the absolute displacement given in Å 
 
Idealized structure (supergroup setting): 
 
194 
8.2850 8.2850 7.6000 90.00 90.00 120.00 
5 
Sb    1   -  0.8297  0.1703  0.7500 
Na    1   -  0.3333  0.6667  0.7500 
F     1   -  0.1555  0.3110  0.5770 
#F     2   -  0.1555  0.3110  0.9230 
F     3   -  0.0350  0.5175  0.7500 
F     4   -  0.6667  0.3333  0.7500 
 

The symmetrized structure is the same as the one obtained stepwise through a chain of 
minimal supergroups. 
 
If we search with SUBGROUPGRAPH (also in the server) the possible subgroups P63 
of P63/mmc of index 4 (the index of the one here), we can observe that there is a single 
class and a single subgroup P63, with the following lattice of minimal subgroups 
relating both space groups:  
 



 
 
It is then clear that the pseudosymmetry for P63/mmc makes the system 
pseudosymmetric for the three intermediate space groups, and this is the reason why the 
three supergroups were detected by PSEUDO in the first step up the chain of minimal 
supergroups. Obviously, for the second step we could have used any of the three 
symmetrized structures to reach the ultimate global supergroup.  
 
In (J. Appl. Cryst. (2009). 42, 58–62) only pseudosymmetry for the space groups P6322 and P63/mmc was 
detected. The other two intermediate subgroups seem to have been overlooked, and the symmetry P6322 
was proposed for a possible intermediate phase inferred from experimental results. However, the other 
two intermediate may be more appropiate candidates for an intermediate phase, since the distortion in 
the structure with P6322 symmetry, quantified with AMPLIMODES, is marginal compared with those 
associated with the symmetries P63/m and P63mc. 
 
Exercise 3: The compound Nd4GeO8 is reported to have the following structure with 
Pmc21 symmetry (Doklady Akademii Nauk SSSR (1978) 241, 353-356): 
 
26 
7.475 5.727 17.927 90 90 90 
20 
Nd 1 2a 0.000000 0.265100 0.000000 
Nd 2 2b 0.500000 0.231400 0.973700 
Nd 3 2a 0.000000 0.292500 0.205700 
Nd 4 2b 0.500000 0.787400 0.270500 
Nd 5 4c 0.241600 0.768900 0.090200 
Nd 6 4c 0.261000 0.274100 0.383800 
Ge 1 2b 0.500000 0.258100 0.180900 
Ge 2 2a 0.000000 0.755800 0.298600 
O 1 2a 0.000000 0.531400 0.104500 
O 2 2b 0.500000 0.063000 0.100800 
O 3 2a 0.000000 0.040900 0.114200 
O 4 2b 0.500000 0.545400 0.143500 
O 5 4c 0.186400 0.668100 0.248000 
O 6 4c 0.312100 0.192400 0.236700 
O 7 2a 0.000000 0.055500 0.319800 
O 8 2a 0.000000 0.539900 0.366300 
O 9 2b 0.500000 0.004300 0.370900 
O 10 2b 0.500000 0.512400 0.362800 
O 11 4c 0.215300 0.009700 0.486700 
O 12 4c 0.258000 0.492400 0.497300 
 
Show using PSEUDO (option  1) that this structure can be considered a small distortion 
of a Cmcm structure. Using SUBGROUPGRAPH show the lattice of maximal 
subgroups connecting the two symmetries. Using again PSEUDO (option 3) obtain the 
atomic displacements relating the two structures. Calculate the theoretical value for the 
spontaneous polarization of the compound using nominal charges for the ions. 
 
Exercise 4: The ICSD database contains the following structural model for Ca2Ge7O16 



(Doklady Akademii Nauk SSSR (1979) 245, 110-113): 
 
32 
11.340 11.340 4.6400 90 90 90 
13 
Ge    1   2a    0 0 0                                    
Ge    2   4c    0.1335 0.1336 0.4996                     
Ge    3   4c    0.0666 0.3122 -.0107                     
Ge    4   4c    0.3123 0.0667 0.0095                     
Ca    1   4c    0.3350 0.3348 0.4970                     
O     1   4c    0.0012 0.1167 0.7467                     
O     2   4c    0.0288 0.2197 0.2695                     
O     3   4c    0.1686 0.2658 0.7246                     
O     4   4c    0.2657 0.1697 0.2645                     
O     5   4c    0.1171 0.0006 0.2411                     
O     6   4c    0.2198 0.0282 0.7180                     
O     7   4c    0.1398 0.4316 0.1548                     
O     8   4c    0.4327 0.1403 0.8306     
 
Despite the 4/mmm Laue symmetry of the diffraction diagram the authors of this 
publication were unable to find an appropiate tetragonal structural model, and refined 
this Pba2 structure 
 
 Using PSEUDO, demonstrate that this structure differs from a tetragonal one with 
space group P-4b2, by atomic displacements which are practically negligible or within 
experimental accuracy, so that in fact this structure file should be considered incorrect, 
being a case of  “overlooked symmetry”.  
The extreme pseudosymmetry of this structure was reported in (Acta Cryst. B (2002) 
58, 921) and the compound has been recently confirmed to have P-4b2 symmetry by a 
new study of the structure (Acta Cryst. C (2007) 63, i47) 
 
 
Option 4: Monoclinic and triclinic structures 
 
         Monoclinic and triclinic structures have a great deal of freedom in the choice of their 
conventional unit cell, and therefore the checking of their pseudosymmetry with respect to 
space groups of a higher symmetry class requires in general a specific analysis of the 
pseudosymmetry of its Bravais lattice. This is provided by option 4 of PSEUDO, which uses a 
tool of the CCTBX library (http://cci.lbl.gov/cctbx/). 
 
This option is still under construction. 


