

ZTF-FCT Zientzia eta Teknologia Fakultatea Facultad de Ciencia y Tecnología

Structural Pseudosymmetry and its applications

PSEUDOSYMMETRY SEARCH:

We know a structure with space group H and we want to know if it is close to a configuration of higher symmetry

We search for a structure with space group G (supergroup of F) such that:

Structure G = Structure F + small (symmetry-breaking) distortion

Pseudosymmetry detection can be useful for :

- Prediction of symmetry and structure of other phases.
- Prediction of phase transitions.
- Identification of ferroic materials: ferroelectrics, ferroelastics.
- Determination of an optimized virtual parent structure.
- Detection of false symmetry assignments (overlooked symmetry).
- Identification of the symmetry of theoretical structures calculated without symmetry restrictions (ab-initio calculations).

Pseudosymmetry search in www.cryst.ehu.es:

	http://www.cryst.ehu.e	s/ ☆▼ • (G▼ Google Q)
visitados - Getting Started Late	est Headlines D Physical Rev	iew B ELPAÍS.com: el perió IUCr - International Apple Yahoo!
FCT/ZTF bilbc	O Crystallo	Description of the University of the Basque Country]
[S	pace Groups] [Layer Groups]	[Rod Groups] [Frieze Groups] [Wyckoff Sets]
First appouncement and	Space Groups Retrie	val Tools
pre-registration of a School in 2009 on this server CrystallographyOnline: InternationalSchoolon theUsendApplications oftheBilbao Crystallographic Server	GENPOS WYCKPOS HKLCOND MAXSUB SERIES WYCKSETS NORMALIZER KVEC	Generators and General Positions of Space Groups Wyckoff Positions of Space Groups Reflection conditions of Space Groups Maximal Subgroups of Space Groups Series of Maximal Isomorphic Subgroups of Space Groups Equivalent Sets of Wyckoff Positions Normalizers of Space Groups The k-vector types and Brillouin zones of Space Groups
Sections		
Retrieval Tools Group-Subgroup	Group - Subgroup Ro	elations of Space Groups
Representations	SUBGROUPGRAPH	Lattice of Maximal Subgroups
Solid State	HERMANN	Distribution of subgroups in conjugated classes
Structure Utilities	COSETS	Coset decomposition for a group-subgroup pair
Supperiodic	WYCKSPLIT	The splitting of the Wyckoff Positions
IC3DB	MINSUP	Minimal Supergroups of Space Groups
Contact us	SUPERGROUPS	Supergroups of Space Groups
About us	CELLSUB	List of subgroups for a given k-index.
l inke	CELLSUPER	List of supergroups for a given K-index.
	COMMONSUBS	Common Subgroups of Space Groups
Publications		

	http://www.cryst.ehu.es	5/ Google Q	
lás visitados 🔻 Getting Started Lates	t Headlines 🔊 🛛 Physical Revi	iew B ELPAÍS.com: el perió IUCr - International Apple Yahoo!	>
New programs and updates:	Representation Theo	ry Applications	1
TRANSTRU 5-2008: Transform structures to lower symmetry Space Group basis.	REPRES DIRPRO CORREL POINT	Space Groups Representations Direct Products of Space Group Irreducible Representations Correlations Between Representations Point Group Tables	
AMPLIMODES 2-2008: Symmetry Mode Analysis of Structural Phase Transitions.	SITESYM	Site-symmetry induced representations of Space Groups	
• CELLSUPER	Solid State Theory A	pplications	
10-2007: New version of program CELLSUPER.	SAM	Spectral Active Modes (IR and RAMAN Selection Rules)	
TRANPATH 7-2007: Minor update and	NEUTRON SYMMODES	Neutron Scattering Selection Rules Primary and Secondary Modes for a Group - Subgroup pair	
fixes.	AMPLIMODES	Symmetry Mode Analysis	
 SUPERGROUPS 6-2007: Added link to Wyckoff Positions splitting. 	PSEUDO DOPE	Pseudosymmetry Search in a Structure Degree of Pseudosymmetry Estimation	
SERIES 1-2007: New version of series of maximal isomorphic subgroups for a given maximum index.	BPLOT TRE IPATH	Pseudosymmetry Search with KPLOT Transition Paths (Group not subgroup relations)	
SIMPLE RETRIEV	Structure Utilities		
TOOLS 1-2007: Minor upgride for GENPOS, WYCH OS, MAXSUB and CRIES programs.	CELLTRAN STRAIN WPASSIGN	Transform Unit Cells Strain Tensor Calculation Assignment of Wyckoff Positions	
HERMANN 1-202 : New version of	TRANSTRU	Transform structures to lower symmetry Space Group basis.	
pro ram HERMANN.	EQUIVSTRU	Equivalent Descriptions for a given Crystal Structure	
1-2007: CIF input data, JMOL visualization and minor bugs fixed			
WPASSIGN & EQUIVSTRU	GENPOS	Layer, Rod and Frieze Groups Retrieval Tools Generators and General Positions of Subperiodic Groups	1 - 1
1-2007: GIE input data			11

three programs for pseudosymmetry search

PROGRAMS FOR PSEUDOSYMMETRY SEARCH:

PSEUDO - Atomic displacement methodDOPE - Electron density methodBPLOT - KPLOT method (R. Hundt)

PSEUDO. ATOMIC DISPLACEMENTS METHOD

Maximal distance between all compatible atom pairings

Asumption: The high symmetry phase is described by a supergroup of the initial space group.

 $G=H+g_2H+...+g_kH$

Supergroups of the same type

$$\mathcal{H} = P222$$

 $\mathcal{G} = P422$
 $P422 = P222 + (4|\omega)P222$

DOPE ELECTRON DENSITY METHOD

ELECTRON DENSITY

$$ho({
m r})=
ho^{{\cal G}}_{\circ}({
m r})+\Delta
ho({
m r})$$

DEGREE OF DISSYMMETRY

$$\gamma = rac{\int_V |\Delta
ho(\mathbf{r})|^2 dV}{\int_V |
ho(\mathbf{r})|^2 dV}$$

DEGREE of PSEUDOSYMMETRY

$$\eta_{(W_k,\omega_k)} = \frac{\sum\limits_{\mathbf{S}} F^*(\mathbf{S})F(\mathbf{S}W_k)e^{2\pi i\mathbf{S}\omega_k}}{\sum\limits_{\mathbf{S}} |F(\mathbf{S})|^2}$$

$$\gamma_k = \gamma = 1 - rac{1}{N} \sum_k^N \, \eta_{g_k}$$

THE FERROELECTRIC CASE: POLAR GROUPS

The origin in the polar axis is chosen for the minimum distance....

Search of ferroelectrics as pseudosymmetric polar structures

two necessary conditions to be a ferroelectric:

- Polar symmetry group (it should allow non-zero polarization)
- Pseudosymmetry with respect to a non-polar symmetry group (the polar distortion should be small and "multistable")

Pseudosymmetric structures among the compounds with symmetry Pmc21.

 d_{max}^{y} is the absolute value of the maximal displacement along [010]. For a description of the remaining columns see Table 2.

Compound	G	ε	d_{\max}^y	d_{\max}^z	$d_{\rm max}^{\rm MC}$	$d_{\rm max}^{\rm rel}$
(*)(NH ₂) ₂ CS	Pnma	0.028	0.348	0.218	0.146	0.290
(*)CuAgS	Cmcm	0.038	0.394	0.227	0.178	0.301
(*)CsEuNaNb ₅ O ₁₅	Pmmm	0.449	0.178	0.310	0.314	0.620
Ca ₁ Mn _{1.2} Fe _{1.8} O ₈ †	Pmma	0.478	0.223	0.343	-	0.686
BaHgS ₂	Pbam	0.284	0.423	0.361	0.457	0.675
Ca ₃ TiFe ₂ O ₈ †	Pmma	0.460	0.347	0.421	-	0.761
Nd ₄ GeO ₈	Cmcm	0.963	0.469	0.439	0.509	0.834
$Sr(OH)_2(H_2O)$	Pmma	0.119	0.388	0.447	-	0.895
(Fe0.3Mn0.7)Ta(O2)O2 [†]	Pmma	0.149	0	0.448	-	0.896
β -Ba(OH) ₂ (H ₂ O)	Pmma	0.088	0.404	0.468	-	0.937
NaBa ₆ Nd(SiO ₄) ₄	Pmma	-0.489	0.280	0.536	0.554	1.073
Na(AlSi ₂ O ₆) (H ₂ O) _{1.1}	Pmma	0.467	0.666	0.551	-	0.981
La ₂ Fe _{1.76} S ₅	Pmma	-0.008	0.099	0.677	-	1.355
CaPtP	$Pmc2_1$		0.179	0.398		0.796
KCu(CO ₃)F	Amm2		0.467	0.501		1.002

(Kroumova et al. 2002)

Figure 3

Schematic projection in the plane *bc* of the polar structure with symmetry $Pmc2_1$ (*a*) and the calculated non-polar structure with symmetry *Pbam* (*b*) for BaHgS₂. The non-polar structure is represented with respect to the basis of the subgroup; the transformation is given in Table 3.

† Not considered as possible ferroelectrics (see text).

Known Ferroelectrics	with	space	group	Pna2 ₁
----------------------	------	-------	-------	-------------------

Compound	${\cal G}$	[i]	Δ_{\max} (Å)
Nb_6I_{11}	$\mathbf{P}ccn$	2	0.547
$D_{0.45}Nb_6I_{11}$	$\mathbf{P}ccn$	2	0.745
NaTaO3	$\mathbf{P}nma$	2	0.232
LaYbO3	$\mathbf{P}nma$	2	0.347
RbGeBr ₃	$\mathbf{P}nma$	2	0.536
K_2 SeO ₄	$\mathbf{P}nma$	2	0.539
Cs_2BeF_4	$\mathbf{P}nma$	2	0.174
Rb_2BeF_4	$\mathbf{P}nma$	2	0.171
$K_2 \overline{BeF_4}$	$\mathbf{P}nma$	2	0.338
Rb_2ZnBr_4	$\mathbf{P}nma$	2	0.131
$Rb_2^{-}ZnCl_4^{-}$	$\mathbf{P}nma$	2	0.463
$K_2 \overline{ZnCl_4}$	$\mathbf{P}nma$	2	0.177
SpSI	$\mathbf{P}nma$	2	0.103
SbSBr	$\mathbf{P}nma$	2	0.109
SbNbO ₄	$\mathbf{P}nna$	2	0.421
(BiO) ₄ (NbO ₄)Cl	Pbcn	2	0.623
$CsTiO(AsO_4)$	$\mathbf{P}nna$	2	0.447
$KTiO(AsO_4)$	$\mathbf{P}nna$	2	0.610
TITIO(PO ₄)	$\mathbf{P}nna$	2	0.408

Possible Ferroelectrics with space group Pna2₁

Compound	${\cal G}$	[i]	Δ_{\max} (Å)
Sb ₂ O ₄	Pnna	2	0.581
PbNCN	$\mathbf{P}nma$	2	0.193
NalO ₃	$\mathbf{P}nma$	2	0.194
YScS ₃	$\mathbf{P}nma$	2	0.179
CeSiP ₃	$\mathbf{P}nma$	2	0.648
SmBeF ₄	$\mathbf{P}nma$	2	0.325
K_3AsS_4	$\mathbf{P}nma$	2	0.227
WPO ₅	$\mathbf{P}nma$	2	0.457
$Sr_3Sb_4S_9$	$\mathbf{P}nma$	2	0.230
$Be_4Pr_9O_{20}$	$\mathbf{P}nma$	2	0.246
$Ca_{0.84}$ Sr $_{1.16}$ SiO $_4$	$\mathbf{P}nma$	2	0.580
$TI_{1.1}AISiO_4$	$\mathbf{P}nma$	2	0.590
$Na_2UO_2P_2O_7$	$\mathbf{P}nma$	2	0.559
TISnPS ₄	$\mathbf{P}nma$	2	0.488

Example: Sb_2O_4 (Pna2₁ $\xrightarrow{(2)}$ Pnna)

Search of maximal pseudosymmetry through a chain of minimal supergroups:

(stepwise detection of pseudosymmetry for successive minimal supergroups)

If a structure of symmetry H is pseudosymmetric for a supergroup G, it will be pseudosymmetric for all intermediate subgroups Hi: G > ... > Hi > ... > H

