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NEUTRON is a computer program for calculating the phonon extinction rules

for inelastic neutron scattering experiments. Given the space group and the

phonon symmetry speci®ed by the wavevector, the program examines the

inelastic neutron scattering activity of the corresponding phonons for all

possible types of scattering vectors. The systematic selection rules are also useful

in the interpretation of the results of thermal diffuse scattering. NEUTRON

forms part of the Bilbao Crystallographic server (http://www.cryst.ehu.es) and

can be used via the Internet from any computer with a Web browser.

1. Introduction

Both inelastic neutron scattering (INS) data and thermal diffuse

scattering (TDS) data are a rich source of lattice dynamical infor-

mation. However, a proper interpretation of the results requires

additional information on the symmetry of the phonon modes. An

additional obstacle in the case of TDS is the essentially integral

character of the phenomena: there are a large number of wavevectors

q distributed throughout the Brillouin zone which may contribute to

the TDS intensities. However, a quantitative account of the INS and

TDS data could be facilitated by the use of systematic mode

extinctions.

The existence of general phonon symmetry-extinction rules in

inelastic neutron scattering experiments has been recently demon-

strated: the resulting phonon absences depend only on the mode

symmetry and the scattering vector Q, and not on the speci®c atomic

positions of the crystal structures (Perez-Mato et al., 1998). Using the

distribution of the reciprocal-lattice vectors (Brillouin zones) into

types with respect to the symmetry group of the scattering vector, it is

possible to show that Brillouin zones belonging to the same type are

characterized by the same set of selection rules. The derived extinc-

tion rules prove to be very useful for the identi®cation of the

symmetries of the measured phonons, and their systematic use helps

the optimization of INS experiments (Aroyo et al., 2002a). These

selection rules also apply to phonon X-ray inelastic scattering, and

their use has been successfully extended to TDS studies (Aroyo et al.,

2002b).

The aim of the present contribution is to report on the develop-

ment of a systematic procedure for the calculation of phonon

extinction rules. An algorithm based on this procedure serves as the

basis of the computer program NEUTRON. Given the space group

and the symmetry of the phonon, speci®ed by the wavevector q, the

program examines the INS activity of the q phonons for all different

types of scattering vectors.

2. Mathematical background

The one-phonon scattered neutron intensity due to n degenerate

modes of wavevector q and measured at a particular scattering vector

Q (here Q = H ÿ q, with H 2 L*, a reciprocal-lattice vector) is

proportional to
Pn

j�1 jFj�Q�j2, where Fj(Q) is the one-phonon dyna-

mical structure factor for inelastic scattering (see e.g. Squires, 1978):

Fj�Q� �
Ps

��1

�b�=m1=2
� ��e��jq; �j� �Q� exp�iQ � r��

� exp�ÿW��Q��: �1�
Here, the index � labels the atoms in the unit cell, m� is the mass of

the atom �, b� its coherent scattering length and W�(Q) the corre-

sponding Debye±Waller factor. The polarization vectors e��jq; �j�, j =

1, . . . , n of the q-vector modes transform according to the n-dimen-

sional irreducible representation Dq;� of the little group G q of the

wavevector.

The INS selection rules are derived using the transformation

properties of the dynamical structure factors Fj(Q) under the

elements Wq = �W q;wq� of the little group G q (Perez-Mato et al.,

1998; Aroyo et al., 2002b). Taking into account the fact that the set of

polarization vectors fe��jq; �j�, j = 1, n} spans a carrier space of an

irreducible representation Dq;� of the little group G q, it is straight-

forward to show that the dynamical structure factors [equation (1)]

satisfy the equation

F �
j �QW q� �Pn

k�1 Dq;��W q;wq�kj exp�ÿiQ � wq�F �
k �Q�: �2�

Obviously, the transformation properties of the dynamical structure

factors are determined by the irreducible representation Dq;� of the

corresponding phonon. The additional upper index of the structure-

factor symbol, F �
j �Q� [used in equation (2) and henceforth], is to

emphasize this fact.

The basic result, equation (2), induces two types of relations.

(i) Relations between dynamical structure factors belonging to

scattering vectors equivalent under W q 2 Gq, where Gq is the point

group of G q (or the little co-group). Equation (2) implies the

expected result
Pn

j�1 jF �
j �Q�j2 =

Pn
j�1 jF�

j �QW q�j2, i.e. equal scat-

tering intensities for equivalent scattering vectors.

(ii) Systematic absences. The elements W q 2 Gq satisfying the

condition QW q = Q, form the so-called strict point group, GQ, of the

scattering vector Q. For the W q 2 GQ, equation (2) reduces to

F �
j �Q� �

Pn
k�1 T Q;��W q�kjF

�
k �Q�; �3�
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where the matrices

T Q;��W q� � Dq;��W q;wq� exp�ÿiQ � wq� �4�
form a representation, reducible in the general case, of the strict point

group GQ.

A set of non-zero values of F �
j �Q� can ful®l equation (3) if the

representation T Q;� contains the identity representation of GQ.

Hence, one can formulate the following theorem on INS activity

(Perez-Mato et al., 1998).

INS Theorem. All phonon modes of wavevector q and symmetry

given by the small irreducible representations Dq;� are INS inactive at

a scattering vector Q, if the representation T Q;� [equation (4)] of GQ

does not contain the identity representation.

The above result equally holds for inelastic X-ray scattering or X-

ray diffuse scattering and it can be used, for example, for the study of

thermal diffuse scattering activity of phonon modes at a scattering

vector Q (Aroyo et al., 2002a). It should be noted that the derived

extinction rules are not restricted to inelastic scattering only, but

apply also to elastic scattering in the cases where the disorder can be

described by certain phonon-like static displacements.

3. Procedure for the calculation of phonon selection rules

Given a phonon wavevector q and a scattering vector Q, the proce-

dure consists essentially of constructing the representation T Q;� of

GQ, and checking if the identity representation is among the irre-

ducible constituents of its decomposition. The main steps are as

follows.

3.1. Little-group irreducible representations of G q

Given the wavevector q, the little group G q and the corresponding

little-group irreducible representations Dq;j are determined. The little

group G q is a subgroup of the space group G = f�W ;w�g whose

elements Wq = �W q;wq� are de®ned by the conditions

G q � f�W ;w� 2 GjqW � q�H;H 2 L�g: �5�
The irreducible representations of the little group are well known and

treated in many books on representation theory (for example, see

Bradley & Cracknell, 1972, and the references therein).

3.2. Distribution of the set of Q vectors into types

For a given phonon wavevector q, the set of all possible scattering

vectors, Q = H ÿ q, form an in®nite set. However, it is possible to

partition the Q set ®rst into Q vector orbits and then into Q vector

types. This classi®cation allows an ef®cient procedure for the study of

the phonon selection rules as each Q vector type is characterized by

the same set of selection rules. It is then suf®cient to study the

extinctions for one representative of each of the Q vector types.

The symmetry operations of the little co-group Gq partition the set

of all Q vectors into classes of symmetrically equivalent scattering

vectors. The ®nite set of all images fQoW qg of Qo under the

symmetry operations W q is called the orbit of Qo under Gq. These

orbits are disjoint, as they either have no element in common or are

identical; thus each scattering vector belongs to exactly one orbit.

The set of all symmetry operations of the little co-group that leave

a Q vector invariant forms its strict point group GQ with respect to Gq:

GQ � fW q 2 GqjQW q � Qg: �6�
With respect to GQ two types of Q vectors are to be distinguished. A

Q vector is called general with respect to Gq if there is no symmetry

operation of Gq (apart from the identity) that leaves the Q vector

invariant, i.e. the order of GQ equals 1, jGQj = 1. A special Q-vector is

characterized by a strict point group whose order jGQj > 1.

Each Q vector of a Gq orbit has a strict point group GQ which is a

subgroup of Gq
. The strict point groups of Q vectors belonging to the

same orbit are conjugate (i.e. symmetrically equivalent) subgroups of

Gq. They are of the same order and the index of (any) GQ in Gq

determines the length of the orbit.

The classi®cation of the Gq orbits into types is done by comparing

the sets of strict point groups assigned to each orbit: two orbits belong

to the same type of scattering vectors if their complete sets of strict

point groups are identical.

3.3. INS selection rules of the Q vector types

Once the little-group irreducible representations Dq;� are deter-

mined, the matrices of the representation T Q;� of the strict point

group GQ are constructed directly from equation (4). A q phonon,

with a symmetry given by Dq;�, is INS inactive if the following

condition is satis®ed:P
Wq2GQ

�q;��W q;wq� exp�ÿiQ � wq� � 0: �7�

Here, �q;��W q;wq� are the characters of the representation Dq;� of

G q. Obviously, there are non-trivial symmetry restrictions on the INS

phonon activity for special Q vectors only. If GQ contains the identity

operation only, i.e. a general Q vector, then all symmetry types of q

phonons can be INS active.

4. Implementation

The algorithm of the computer program NEUTRON follows the main

steps of the procedure for the calculation of the extinction rules.

In the input block the user is expected to provide the data for the

space group G and the phonon wavevector q. The space group is

speci®ed by its consecutive number as given in International Tables

for Crystallography, Vol. A (2002, hereinafter referred to as ITA),

and the default space-group settings used by the program correspond

to the conventional ones used in ITA. In the cases with more than one

conventional setting, the following choice is made: unique-axis-b

settings for the monoclinic groups, hexagonal-axes settings for the

rhombohedral groups and origin-2 choice for the centrosymmetric

groups. It is also possible to carry out the calculations for a non-

conventional setting of G. In this case the user is expected to provide

the transformation matrix de®ning the relation to the default ITA

setting.

The q vector coef®cients could be referred to the primitive basis of

the reciprocal space as found, for example, in Cracknell et al. (1979).

Another possibility for the cases of centred lattices is to de®ne the

wavevector with respect to centred bases of reciprocal space, dual to

the conventional ITA settings. There is also an option for wavevector

coordinates with respect to a coordinate system which is dual to the

non-conventional setting de®ned by the user. An online wavevector

database (KVEC) with ®gures of representation domains, Brillouin

zones and classi®cation tables of the wavevectors for all 230 space

groups is also available on the Bilbao Crystallographic server (http://

www.cryst.ehu.es).

The output of the program consists of three main blocks: space-

group data block, q vector data block including the little-group

irreducible representations, and the data block with Q vector types

and extinction rules.

Space-group data. The listed data start with the ITA number of the

space group and its lattice type. Then follows the set of non-trans-



lation generators used by the program for the construction of the

matrix-column pairs of the coset representatives of the group G with

respect to its translation subgroup. Both the generators and the coset

representatives are listed in a (3 � 4) matrix form.

q vector data. The wavevector block starts with the information on

the q vector coordinates given by the user. For its calculations the

program uses wavevector coordinates referred to a coordinate system

of the reciprocal space which is dual to the default conventional

settings of G. The translational coset representatives of the little

group G q are listed as matrix-column pairs in a (3 � 4) matrix form.

The module REPRES calculates the little-group irreducible repre-

sentations by applying an induction procedure from the allowed

representations of P1. The matrices of Dq;� are listed for all trans-

lational coset representatives of the little group G q in a consecutive

order. The matrix coef®cients (in general complex) are given in the

polar form (modulus and phase angle). The labels of the irreducible

representations consist of the wavevector letter(s) and a consecutive

number determined by the order of the irreducible-representation

generation by REPRES.

Q vector types and extinction rules. The next step is the distribution

of the set of scattering vectors Q into types and the determination of

the corresponding strict point groups. The action of each little co-

group element W q on the set of scattering vectors Q = H ÿ q,

implying the strict point group condition [equation (6)], results in a

set of restrictions on the values of the h, k, l components of the lattice

vector H. Different sets of restrictions correspond to different types

of scattering vectors which are further characterized by their strict

point groups. Given a Q vector type, the INS phonon activity

condition [equation (7)] is checked and listed for all phonon

symmetries (i.e. irreducible representations Dq;� of the little group).

A symmetry type of phonon is considered as INS active (allowed) if

the sum over all little co-group elements in equation (7) gives a non-

zero integer.

5. Technical details

NEUTRON is a command-line based program written in C++ and

can be used under any operating system that has a standard C++

compiler, such as Microsoft Windows, Linux or UNIX-like (although

for now there are make®les only for GNU C++ and Borland Free

Compiler 5.5).

The program requires not more than several megabytes of RAM,

depending on the dimension of the little-group representations. The

software package that includes NEUTRON along with some addi-

tional crystallographic programs occupies not more than 10 Mbyte

disk space. However, the program can be used without local instal-

lation from any computer with a Web browser.

6. Examples

6.1. Example 1

As an example we will consider the extinctions for phonons of the

C point [q = (0, 0, 0)] for the space groups Pmmm and Pnma.

The input consists of the ITA numbers of both groups (No. 47 for

Pmmm and No. 62 for Pnma) and the q vector data. The space-group

data block of the output contains the list of the non-translational

generators as chosen in the ITA. For example, in the case of Pnma

this set is h�2z j 1
2; 0; 1

2�, �2y j 0; 1
2; 0�, ��1 j 0; 0; 0�i [shown in the form of

(3� 4) matrices]. The sets of eight translational coset representatives

for the two groups correspond to the `general position' lists of the

ITA. The wavevector data block starts with the q vector coordinates

followed by a list of the translational coset representatives of the little

group. As the wavevector we are considering is C, GC coincide with

the space groups Pmmm and Pnma and the eight little-group irre-

ducible representations for both cases are simply related to the

irreducible representations of the point group mmm (Table 1).

The results listed in the data block on the Q vector types and

extinctions rules are summarized in Table 2. The space groups Pmmm

and Pnma belong to the arithmetic crystal class mmmP, so the

distribution of the Q vectors ®rst into orbits and then into Q vector

types is the same.1 There are seven non-trivial Q vector types,

represented by the corresponding Brillouin zone vectors H. The strict

point groups GQ refer to the orbit representatives, which are listed.

In the case of Pmmm the origin of the selection rules for different

Q vectors is easily traced due to the simple one-dimensional irre-

ducible representations DC;� (Table 1) and the fact that all factors

exp�ÿiH � wq� [equation (4)] equal 1. To obtain the selection rules it is

just necessary to consider the subduction of the little-group irre-

ducible representations to the strict point group (in our case GQ =

GH). For example, the strict point group of H(0, 0, l) is 2mm =

f1; 2z;my;mxg. The reference to the irreducible representation

characters of Table 1 shows that only two irreducible representations
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Table 1
Little co-group irreducible representations of the space groups Pmmm and Pnma
for q = C, and for q = Y of the space group Cmmm.

The irreducible-representation matrices (which coincide with the characters, as all
irreducible representations are one-dimensional) are listed for the generators of the little
co-group GC (or GY).

Irreducible representations

Generators ÿ1 ÿ2 ÿ3 ÿ4 ÿ5 ÿ6 ÿ7 ÿ8
Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

2z 1 1 1 1 ÿ1 ÿ1 ÿ1 ÿ1
2y 1 1 ÿ1 ÿ1 1 1 ÿ1 ÿ1
�1 1 ÿ1 1 ÿ1 1 ÿ1 1 ÿ1

Table 2
Selection rules for C phonons for space groups Pmmm and Pnma.

The symmetry types (irreducible representations) of phonons which can be INS active
(allowed) are listed for a representative H(h, k, l) of a Brillouin zone class (n integer).
The groups GQ are given as oriented site-symmetry symbols. For the irreducible-
representation labels, see Table 1.

C phonons, GC = mmm, Q = H

INS-active types of phonons

Brillouin zone GQ Pmmm Pnma

H(0, 0, 0) mmm ÿ1 ÿ1

H(0, 0, l) mm2 ÿ1, ÿ4 l = 2n: ÿ1, ÿ4
h 6� 0 l = 2n + 1: ÿ5, ÿ8

H(0, k, 0) m2m ÿ1, ÿ6 k = 2n: ÿ1, ÿ6
k 6� 0 k = 2n + 1: ÿ3, ÿ8

H(h, 0, 0) 2mm ÿ1, ÿ8 h = 2n: ÿ1, ÿ8
h 6� 0 h = 2n + 1: ÿ4, ÿ5

H(h, k, 0) ..m ÿ1, ÿ3, ÿ6, ÿ8 h = 2n: ÿ1, ÿ3, ÿ6, ÿ8
h, k 6� 0 h = 2n + 1: ÿ1, ÿ4, ÿ5, ÿ7

H(h, 0, l) .m. ÿ1, ÿ4, ÿ5, ÿ8 ÿ1, ÿ4, ÿ5, ÿ8

H(0, k, l) m.. ÿ1, ÿ4, ÿ6, ÿ7 h + k = 2n: ÿ1, ÿ4, ÿ6, ÿ7
h, k 6� 0 h + k = 2n + 1: ÿ2, ÿ3, ÿ5, ÿ8

1 In fact, this distribution is valid for all 16 orthorhombic groups from the
arithmetic crystal class mmmP.
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DC;� subduced to 2mm, ful®l the condition equation (7), and these

irreducible representations are ÿ1 and ÿ4.

Due to the non-symmorphic character of Pnma, the factors

exp�ÿiH � wq� may take values �1 depending on the Brillouin zone

vector and the non-primitive translation wq = �wq
1;w

q
2;w

q
3�. For

example, in the case of H(0, 0, l) and a little-group element �Wq;wq�,
with w

q
3 = 1

2, this factor is equal to 1 for l = 2n, andÿ1 for l = 2n + 1. As

a result one gets a different set of selection rules depending on the

parity of l. For Brillouin zones centred at non-extinct Bragg re¯ec-

tions, the selection rules coincide with those of Pmmm. The speci®c

selection rules for Pnma are at Brillouin zones whose centres are

extinct Bragg re¯ections.

6.2. Example 2

As a second example, let us consider the case of a crystal of Cmmm

symmetry, and let us suppose we are specially interested to investi-

gate phonons with wavevector q = (1, 0, 0),2 i.e. phonons at the point

Y of the Brillouin zone (cf. Cracknell et al., 1979). The irreducible

representations for this wavevector are listed in Table 1. The list of

selection rules for these phonons, as obtained by the program

NEUTRON, are listed in Table 3. The wavevector q = (1, 0, 0) is

equivalent to the vector q = (0, 1, 0) by a reciprocal-lattice vector. It is

illustrative to see what is the output of NEUTRON if we choose as a

representative for the Y point, this alternative vector (Table 3). The

selections rules are expressed in a different form, as the reference

Brillouin zone centre for a given scattering vector Q is changed, but

they are fully equivalent. NEUTRON can deal with any representa-

tive of the phonon wavevectors, i.e. the q vector coef®cients are not

restricted to any representation domain and/or Brillouin zone.

An essential point when measuring phonon energies by inelastic

neutron scattering with a three-axis spectrometer is to decide the

scattering plane on which the measurements are going to be

performed. In an orthorhombic system, the choice is usually reduced

to either the (hk0), the (h0l) or the (0kl) planes. As an application of

Table 3, let us imagine that we are speci®cally interested to detect and

measure phonons transforming according to a particular irreducible

representation, say Y7, with Y = (1, 0, 0), the reason being for

instance that the softening of a mode of this symmetry is the signature

of a speci®c phase transition. According to Table 3, the only

favourable choice of scattering plane is the plane (0kl). The Y7

phonons are visible at scattering vectors Q = (0kl) with l not zero and

k odd, i.e. at C-centring extinct Bragg vectors [except those at the axis

(0k0)]. At these (0kl) points, irreducible representations Y6, Y4 and

Y1 are also active. On the other hand, at points (0k0) with k odd, both

Y7 and Y4 phonons become extinct. Therefore a comparison of the

measurements at these two types of points will allow one to identify

those phonons having either Y7 or Y4 symmetry. However, to

identify univocally the Y7 phonons, a third type of scattering vectors

on a different scattering plane would have to be investigated, namely

those of type (h0l) with h odd, where the Y4 phonons are active, while

the Y7 phonons are not.

A second important practical point is to know whether the phonon

branches associated with the Y7 phonons will also be visible along

speci®c symmetry lines. For instance, the line D of wavevectors q =

(0, �, 0), with 0 < � < 1, connects points C and Y, and has m2m as little

co-group. If active, phonons along this line would be measurable on

the plane (0kl). The selection rules obtained for this line are listed in

Table 5. By compatibility, the phonon branches along the D line, and

having symmetry Y7 at the Y point, have symmetry �4 (see Table 4).

One can see that the scattering plane (0kl), with scattering vectors Q

= (0, kÿ �, l), is again the only favourable choice for observing these

branches.

7. Conclusions

We have developed the computer program NEUTRON for the

determination of phonon selection rules in INS and TDS experi-

ments. The applied algorithm is based on a recently proven theorem

that demonstrates the existence of symmetry-based (structure-inde-

pendent) selection rules for the phonon activity in INS experiments.

The systematic absences depend on the phonon mode symmetry and

the Brillouin zone where the measurement takes place. The computer

program forms part of the Bilbao Crystallographic server (http://

Table 3
Selection rules for Y phonons, space group Cmmm.

The symmetry types (irreducible representations) of phonons which can be INS active
(allowed) are listed for a representative H(h, k, l) of a Brillouin zone class (n integer).
The groups GQ are given as oriented site-symmetry symbols. For the irreducible-
representation labels, see Table 1.

Brillouin zone Y phonons, GY = mmm, Q = H ÿ Y

Y(1, 0, 0) Y(0, 1, 0) GQ INS-active types of phonons

H(h, 0, 0) H(h, 1, 0) 2mm Y1, Y8
h = 2n h = 2n + 1

H(1, k, 0) H(0, k, 0) m2m Y1, Y6
k = 2n + 1 k = 2n

H(h, k, 0) H(h, k, 0) ..m Y1, Y3, Y6, Y8
h + k = 2n h + k = 2n

H(h, 0, l) H(h, 1, l) .m. Y1, Y4, Y5, Y8
h = 2n h = 2n + 1

H(1, k, l) H(0, k, l) m.. Y1, Y4, Y6, Y7
k = 2n + 1 k = 2n

Table 5
Selection rules for D phonons, space group Cmmm.

The symmetry types (irreducible representations) of phonons which can be INS active
(allowed) are listed for a representative H(h, k, l) of a Brillouin zone class (n integer).
The groups GQ are given as oriented site-symmetry symbols. For the irreducible-
representation labels, see Table 4.

D phonons, GY = mmm, Q = H ÿ D = (h, k ÿ �, l)

Brillouin zone GQ INS-active types of phonons

H(0, k, 0) m2m �1
k = 2n

H(h, k, 0) ..m �1, �3
h + k = 2n

H(0, k, l) m.. �1, �4
k = 2n

Table 4
Little co-group irreducible representations of the space group Cmmm for q = D.

The irreducible-representation matrices (which coincide with the characters, as all
irreducible representations are one-dimensional) are listed for the generators of the little
co-group GD.

Irreducible representations

Generators �1 �2 �3 �4
2y 1 1 ÿ1 ÿ1
mz 1 ÿ1 1 ÿ1

2 The coordinates are referred to the conventional (dual) basis of the
reciprocal space; �12; 1

2; 0� would be the coordinates with respect to a primitive
basis of the reciprocal space.
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