Use of the Bilbao Crystallographic Server: twinned crystals and crystalchemical relationships

Karen Friese

Department of Condensed Matter Physics, University of the Basque Country, Spain

Example Pyrochlore: Twinned $\mathrm{CsMgInF}_{6}$

Friese, Gesland, Grzechnik; Z. Krist. 220 (2005), 614

Pyrochlore: ABB'F ${ }_{6}$

Symmetry of the archetype structure
Space group No. 227: Fd-3m
(origin choice 2, $1 / 8,1 / 8,1 / 8$)

Wyckoff Positions of Group 227 (Fd-3m) [origin choice 2]

Multiplicity	Wyckoff letter	Site symmetry	Coordinates
			$(0,0,0)+(0,1 / 2,1 / 2)+(1 / 2,0,1 / 2)+(1 / 2,1 / 2,0)+$
192	i	1	
96	h	.. 2	$\begin{array}{\|lll} (0, y,-y) & (3 / 4,-y+1 / 4,-y+1 / 2) & (1 / 4, y+1 / 2, y+3 / 4) \end{array}(1 / 2,-y+3 / 4, y+1 / 4)$
96	g	..m	(x, x, z) $(-x+3 / 4,-x+1 / 4, z+1 / 2)$ $(-x+1 / 4, x+1 / 2,-z+3 / 4)$ $(x+1 / 2,-x+3 / 4,-z+1 / 4)$ (z, x, x) $(z+1 / 2,-x+3 / 4,-x+1 / 4)$ $(-z+3 / 4,-x+1 / 4, x+1 / 2)$ $(-z+1 / 4, x+1 / 2,-x+3 / 4)$ (x, z, x) $(-x+1 / 4, z+1 / 2,-x+3 / 4)$ $(x+1 / 2,-z+3 / 4,-x+1 / 4)$ $(-x+3 / 4,-z+1 / 4, x+1 / 2)$ $(x+3 / 4, x+1 / 4,-z+1 / 2)$ $(-x,-x,-z)$ $(x+1 / 4,-x+1 / 2, z+3 / 4)$ $(-x+1 / 2, x+3 / 4, z+1 / 4)$ $(x+3 / 4, z+1 / 4,-x+1 / 2)$ $(-x+1 / 2, z+3 / 4, x+1 / 4)$ $(-x,-z,-x)$ $(x+1 / 4,-z+1 / 2, x+3 / 4)$ $(z+3 / 4, x+1 / 4,-x+1 / 2)$ $(z+1 / 4,-x+1 / 2, x+3 / 4)$ $(-z+1 / 2, x+3 / 4, x+1 / 4)$ $(-z,-x,-x)$
48	f	2 mm	$\begin{array}{\|lll} \hline(x, 1 / 8,1 / 8) & (-x+3 / 4,1 / 8,5 / 8)(1 / 8, x, 1 / 8) & (5 / 8,-x+3 / 4,1 / 8) \\ (1 / 8,1 / 8, x) & (1 / 8,5 / 8,-x+3 / 4) & (7 / 8, x+1 / 4,3 / 8) \\ (7 / 8,-x, 7 / 8) \\ (x+3 / 4,3 / 8,3 / 8) & (-x+1 / 2,7 / 8,3 / 8) & (7 / 8,3 / 8,-x+1 / 2) \\ (3 / 8,3 / 8, x+3 / 4) \\ \hline \end{array}$
32	e	. 3 m	$\left(\begin{array}{lll} (x, x, x) & (-x+3 / 4,-x+1 / 4, x+1 / 2) & (-x+1 / 4, x+1 / 2,-x+3 / 4) \\ (x+3 / 4, x+1 / 4,-x+1 / 2) & (-x,-x,-x) & (x+1 / 4,-x+1 / 2, x+3 / 4) \\ (-x+1 / 2, x+3 / 4, x+1 / 4) \end{array}\right.$
16	d	.-3m	(1/2,1/2,1/2) (1/4,3/4,0) (3/4,0,1/4) (0,1/4,3/4)
16	c	-3m	(0,0,0) (3/4, 1/4,1/2) (1/4,1/2,3/4) (1/2,3/4,1/4)
8	b	-43m	(3/8,3/8,3/8) (1/8,5/8,1/8)
8	a	-43m	(1/8,1/8,1/8) (7/8,3/8,3/8)

Raman and Infrared Investigations

(Ayala et. al, Phys. Rev. B66, 2002, 214105)

TABLE III. Wave numbers of the Raman bands observed in $\mathrm{CsInMgF}_{6}$ single crystals, at room temperature in different scattering geometries.

	Wave number $\left(\mathrm{cm}^{-1}\right)$	
$z(x x) \bar{z}$	$z(x y) \bar{z}$	$z\left(x^{\prime} y^{\prime}\right) \bar{z}$
27	27	27
42	43	40
80	80	
134	135	136
162	165	165
189	190	189
220	223	221
257	253	253
275	273	275
322	323	320
379	382	
435	432	
564	565	

IR and Raman Modes for F d -3 m (227)
WP: 8b, 16c, 48f

IR Active Modes										
WP	A1g	A1u	A 2 g	A $2 u$	E_{u}	E_{g}	T_{2}	$\mathrm{T}_{2 \mathrm{~g}}$	T1u	T1g
48 f									3	
16c									2	
8b									1	

Raman Active Modes

WP	A1g	A1u	A2g	$\mathrm{A}_{2 \mathrm{u}}$	E_{u}	E_{g}	$\mathrm{T}_{2 \mathrm{u}}$	$\mathrm{T}_{2 \mathrm{~g}}$	T1u	$\mathrm{T}_{1 \mathrm{~g}}$
489	1					1		3		
16c										
8b								1		

Reflection Conditions Fd-3m:

hkl: $\quad \mathrm{h}+\mathrm{k}=2 \mathrm{n}, \mathrm{h}+\mathrm{l}=2 \mathrm{n}, \mathrm{k}+\mathrm{l}=2 \mathrm{n}$

F

0kl: $\quad \mathrm{k}+\mathrm{l}=4 \mathrm{n}, \mathrm{k}, \mathrm{l}=2 \mathrm{n}$
hhl: $\quad \mathrm{h}+\mathrm{l}=2 \mathrm{n}$
h00: $\mathrm{h}=4 \mathrm{n}$

WP 8b
WP 16c WP 48f
hkl: $\mathrm{h}=2 \mathrm{n}+1$ or $\mathrm{h}+\mathrm{k}+\mathrm{l}=4 \mathrm{n}$
$h k l: h=2 n+1$ or $h, k, l=4 n+2$ or $h, k, l=4 n$
hkl: $\mathrm{h}=2 \mathrm{n}+1$ or $\mathrm{h}+\mathrm{k}+\mathrm{l}=4 \mathrm{n}$

$\mathrm{CsMgInF}_{6}$: very weak reflections violating

 the reflection condition for the F-centered lattice: the correct space group is probably a subgroup of $\mathrm{Fd}-3 \mathrm{~m}$
Maximal Subgroups of Space Groups

```
Please, enter the sequential number of group as given in
international Tables for Crystallography, Vol. A or
Show WP Splittings?
NOTE: the program uses the default choice for the group setting.
```

Show maximal subgroups

Maximal subgroups of group 227 ($\mathrm{Fd}-3 \mathrm{~m}$) [origin choice 2]

Note: The program uses the default choice for the group settings.
In the following table the list of maximal subgroups is given. Click over "setting..." to see the possible setting(s) for the given subgroup.

N	IT number	HM symbol	Index	Transformations
1	141	$141 /$ amd	3	show..
2	166	$R-3 m$	4	show..
3	203	Fd-3	2	show..
4	210	F4 132	2	show..
5	216	F-43m	2	show..

[^0]Maximal subgroup(s) of type 141 ($14_{1} /$ amd) [origin choice 2] of index 3

for Space Group 227 ($\mathrm{Fd}-3 \mathrm{~m}$) [origin choice 2]

Click over [ChBasis] to view the general positions of the subgroup in the basis of the supergroup.

[Click here for the Maximal Subgroups of group 141]

Fd-3m
Reflections u,u,u Reflections e,e,e Reflections u,u,e
$\mathrm{I}_{1} /$ amd
$\mathrm{u}, \mathrm{e}, \mathrm{u}$ or $\mathrm{e}, \mathrm{u}, \mathrm{u} \quad \mathrm{h}+\mathrm{k}+\mathrm{l}=2 \mathrm{n}$
u,u,e
$\mathrm{h}+\mathrm{k}+\mathrm{l}=2 \mathrm{n}$
u,e,e or e,u,e
$\mathrm{h}+\mathrm{k}+\mathrm{l}=2 \mathrm{n}+1$

Reflection condition for I-centered lattice: $\mathrm{h}+\mathrm{k}+\mathrm{l}=2 \mathrm{n}$

The maximal subgroups are no options, as the reflections violating the F centered lattice are forbidden also in all the maximal subgroups!

Subgroup indices

$\mathrm{t}=\frac{\text { number of the symmetry operation of the point group of } \mathrm{H}}{\text { number of the symmetry operation of the point group of } G}$
$\mathrm{k}=\frac{\text { volume of } \mathrm{H} \times \text { number of centering operation of } \mathrm{G}}{\text { volume of } \mathrm{G} \times \text { number of centering operations of } \mathrm{H}}$

Observation: very weak reflections violating the reflection condition for the F-centered lattice

The k-subgroups are the important ones!
46 k-subgroups with index $\mathrm{k}=2$ and variable t-index,
Choosing the ones with low t-index ($\mathrm{t}=2$ or $\mathrm{t}=3$)

CELLSUB

List of subgroups of space group $\operatorname{Fd}-3 m(227)$ for a given k-index $=2$

NOTE: The program uses the default choice for the group settings.
In the following table a list of t-subgroups, k-subgroups and general subgroups is given for a given k-ir Click over "show..." to obtain the classification in conjugate classes of subgroups.

k-index $\mathrm{i}_{\mathrm{k}}=2$

N. of subgroups (for k-index 2) found: 46
General type subgroups of space group Fd-3m (227)

N	HM Symbol	ITA	index	t-index	k-index	More info
1		167	8	4	2	show...
2	号-9n!	166	8	4	2	show...
3	R3c	161	16	8	2	show...
4	R3m	160	16	8	2	show...
5	R32	155	16	8	2	show...
6	R-3	148	16	8	2	show...
7	R3	146	32	16	2	show...
8	$P-4 n 2$	118	12	6	2	show...
9	P-4m2	115	12	6	2	show...
10	$P 43212$	096	12	6	2	show...
11	$P 4_{3} 22$	095	12	6	2	show...
12	$P 41212$	092	12	6	2	show.
13	P4122	091	12	6	2	show.
14	P-4	081	24	12	2	show..
15	P_{3}	078	24	12	2	show..
16	$P 4_{1}$	076	24	12	2	show...

17	Pnma	062	12	6	2	show.
18	Pmna	053	12	6	2	show.
19	Pnna	052	12	6	2	show.
20	Pmma	051	12	6	2	show...
21	Pnn2	034	24	12	2	show...
22	Pna21	033	24	12	2	show...
23	Pmn 2_{1}	031	24	12	2	show...
24	Pnc2	030	24	12	2	show...
25	Pma2	028	24	12	2	show...
26	Pmc21	026	24	12	2	show...
27	Pmm2	025	24	12	2	show...
28	C222	021	24	12	2	show...
29	C2221	020	24	12	2	show...
30	$P 212121$	019	24	12	2	show...
31	P2221	017	24	12	2	show...
32	C2/C	015	24	12	2	show...
33	$P 21 / C$	014	24	12	2	show...
34	$P 2 / C$	013	24	12	2	show...
35	$\mathrm{C} 2 / \mathrm{m}$	012	24	12	2	show...
36	$P 21 / m$	011	24	12	2	show...
37	$P 2 / m$	010	24	12	2	show...
38	Cc	009	48	24	2	show...
39	Cm	008	48	24	2	show...
40	PC	007	48	24	2	show...
41	Pm	006	48	24	2	show...
42	C2	005	48	24	2	show...
43	$P 21$	004	48	24	2	show...
44	P2	003	48	24	2	show...
45	P-1	002	48	24	2	show...
	P1	001	96	48	2	show.

Group-Subgroup Lattice and Chains of Maximal Subgroups

$\|l\|$ Please, enter the sequential numbers of the group and the subgroup as given in the international Tables for Cnystallography, Vol. A:	
Enter the supergroup number (G) or choose it:	227
Enter the subgroup number (H) or choose it:	118
Enter the index [G:H]	12

Construct the lattice

Chains of maximal subgroups from $227(F d-3 m)$ [origin choice 2] to 118 ($P-4 n 2$) with index 12

N	Chain [indices]	Chain with HM symbols	Number of subgroup chains	More info ...
1	$\begin{array}{\|c\|} \hline 227141119118 \\ {[322} \end{array}$	$F d-3 m>141 / a m d>1-4 m 2>P-4 n 2$	6	transformation.
2	$\left.\begin{array}{\|c} 227216119118 \\ {[23} \end{array}\right]$	$F d-3 m>F-43 m>1-4 m 2>P-4 n 2$	6	transformation.

Print this table
Draw the lattice

SUBGROUPGRAPH
Classification of the subgroups of type P-4n2(118) of group Fd-3m(227) with index 12

Class 1

N	Chain [indices]	Chain with HM symbols	Transformation	Transform with	Identical
1	227141119118 [3 22]	$F d-3 m>141 / a m d>1-4 m 2>P-4 n 2$	$\left(\begin{array}{cccc}1 / 2 & 1 / 2 & 0 & 5 / 8 \\ -1 / 2 & 1 / 2 & 0 & 5 / 8 \\ 0 & 0 & 1 & 5 / 8\end{array}\right)$	matrix 1	to group 1
2	227141119118 [3 22]	$F d-3 m>141 / a m d>1-4 m 2>P-4 n 2$	$\left(\begin{array}{cccc}0 & 0 & 1 & 5 / 8 \\ 1 / 2 & 1 / 2 & 0 & 5 / 8 \\ -1 / 2 & 1 / 2 & 0 & 5 / 8\end{array}\right)$	matrix 2	to group 2
3	227141119118 [3 22]	$F d-3 m>141 / a m d>1-4 m 2>P-4 n 2$	$\left(\begin{array}{ccccc}-1 / 2 & 1 / 2 & & 0 & 5 / 8 \\ 0 & 0 & 1 & 5 / 8 \\ 1 / 2 & 1 / 2 & & 0 & 5 / 8\end{array}\right)$	matrix 3	to group 3
4	227216119118 [23 2]	$F d-3 m>F-43 m>1-4 m 2>P-4 n 2$	$\left(\begin{array}{cccc}0 & 0 & 1 & 3 / 8 \\ 1 / 2 & 1 / 2 & 0 & 3 / 8 \\ -1 / 2 & 1 / 2 & 0 & 3 / 8\end{array}\right)$	matrix 4	to group 4
5	227216119118 [23 2]	$F d-3 m>F-43 m>1-4 m 2>P-4 n 2$	$\left(\begin{array}{ccccc}-1 / 2 & 1 / 2 & 0 & 3 / 8 \\ 0 & 0 & 1 & 3 / 8 \\ 1 / 2 & 1 / 2 & 0 & 3 / 8\end{array}\right)$	matrix 5	to group 5
6	227141119118 [3 22]	$F d-3 m>141 / a m d>1-4 m 2>P-4 n 2$	$\left(\begin{array}{cccc}1 / 2 & 1 / 2 & 0 & 3 / 8 \\ -1 / 2 & 1 / 2 & 0 & 3 / 8 \\ 0 & 0 & 1 & 3 / 8\end{array}\right)$	matrix 6	to group 6

To see the graph containing all classes, click on [Draw the lattice]

Group-Subgroup Lattice

Group-Subgroup Lattice

Group-Subgroup Lattice and Chains of Maximal Subgroups

Please, enter the sequential numbers of group and subgroup as given in International Tables for Crystallography, Vol. A:	
Enter supergroup number (G) or choose it:	227
Enter subgroup number (H) or choose it:	62
Enter the index $[\mathrm{G} \cdot \mathrm{H}]$ (optional):	12

Construct the lattice

Chains of maximal subgroups from 227 ($F d-3 m$) [origin choice 2] to 62 (Pnma) with index 12

N	Chain [indices]	Chain with HM symbols	Number of subgroup chains	More info ...
227141074062 $[322]$	Fd-3m > $141 / a m d>$ imma $>$ Pnma	6	transformation....	

Print this table

Classification of the subgroups of type Pnma(62) of group Fd-3m(227) with index 12

Class 1

N	Chain [indices]	Chain with HM symbols	Transformation	Transform with	Identical
1	227141074062 [32 2]	Fd-3m>141/amd $>1 m m a>$ Pnma	$\left(\begin{array}{cccc}1 / 2 & 1 / 2 & 0 & 1 / 4 \\ -1 / 2 & 1 / 2 & 0 & 1 / 4 \\ 0 & 0 & 1 & 0\end{array}\right)$	matrix 1	--
2	227141074062 [322]	$F d-3 m>141 / a m d=i m m a>P n m a$	$\left(\begin{array}{cccc}-1 / 2 & 1 / 2 & 0 & 1 / 2 \\ -1 / 2 & -1 / 2 & 0 & 1 / 4 \\ 0 & 0 & 1 & 1 / 4\end{array}\right)$	matrix2	--
3	227141074062 [322]	$F d-3 m>141 / a m d=i m m a>P n m a$	$\left(\begin{array}{clll}0 & 0 & 1 & 0 \\ 1 / 2 & 1 / 2 & 0 & 1 / 4 \\ -1 / 2 & 1 / 2 & 0 & 1 / 4\end{array}\right)$	matrix 3	--
4	227141074062 [32 2]	$F d-3 m>141 / a m d>i m m a>P n m a$	$\left(\begin{array}{cccc}0 & 0 & 1 & 1 / 4 \\ -1 / 2 & 1 / 2 & 0 & 1 / 2 \\ -1 / 2 & -1 / 2 & 0 & 1 / 4\end{array}\right)$	matrix 4	--
5	227141074062 [322]	$F d-3 m>141 / a m d=i m m a>P n m a$	$\left(\begin{array}{clll}-1 / 2 & 1 / 2 & & 0 \\ 0 & 0 & 1 & 1 / 4 \\ 1 / 2 & 1 / 2 & & 0 \\ 1 / 4\end{array}\right)$	matrix 5	--
6	227141074062 [322]	$F d-3 m>141 / a m d=i m m a>P n m a$	$\left(\begin{array}{cccc}-1 / 2 & -1 / 2 & & 0 \\ 0 & 0 & 1 & 1 / 4 \\ -1 / 2 & 1 / 2 & & 0 \\ 1 / 2\end{array}\right)$	matrix 6	--

To see the graph containing all classes, click on [Draw the lattice]

Group-Subgroup Lattice

Subgroups of $\mathrm{Fd}-3 \mathrm{~m}$ with $\mathrm{t}=6$ and $\mathrm{k}=2$ Six tetragonal subgroups:

$$
\mathrm{P}-4 \mathrm{n} 2 \quad \mathrm{P}-4 \mathrm{~m} 2 \quad \mathrm{P} 4_{3} 212 \quad \mathrm{P} 4_{3} 22 \quad \mathrm{P} 4_{1} 212 \quad \mathrm{P} 4_{1} 22
$$

Four orthorhombic subgroups:

Pmna Pnma Pnna Pmma

$$
\begin{aligned}
& \text { Lattice parameter: } \\
& \mathrm{a}=7.5285(1), \mathrm{b}=7.5285(1), \mathrm{c}=10.6459(1) \AA \\
& \alpha=\beta=\gamma=90^{\circ}
\end{aligned}
$$

For both tetragonal and orthorhombic system one has to take into account 6 twin domains

Classification of the subgroups of type Pnma(62) of group Fd-3m(227) with index 12

Class 1

N	Chain [indices]	Chain with HM symbols	Transformation	Transform with	Identical
1	227141074062 [32 2]	Fd-3m>141/amd $>1 m m a>$ Pnma	$\left(\begin{array}{cccc}1 / 2 & 1 / 2 & 0 & 1 / 4 \\ -1 / 2 & 1 / 2 & 0 & 1 / 4 \\ 0 & 0 & 1 & 0\end{array}\right)$	matrix 1	--
2	227141074062 [322]	$F d-3 m>141 / a m d=i m m a>P n m a$	$\left(\begin{array}{cccc}-1 / 2 & 1 / 2 & 0 & 1 / 2 \\ -1 / 2 & -1 / 2 & 0 & 1 / 4 \\ 0 & 0 & 1 & 1 / 4\end{array}\right)$	matrix2	--
3	227141074062 [322]	$F d-3 m>141 / a m d=i m m a>P n m a$	$\left(\begin{array}{clll}0 & 0 & 1 & 0 \\ 1 / 2 & 1 / 2 & 0 & 1 / 4 \\ -1 / 2 & 1 / 2 & 0 & 1 / 4\end{array}\right)$	matrix 3	--
4	227141074062 [32 2]	$F d-3 m>141 / a m d>i m m a>P n m a$	$\left(\begin{array}{cccc}0 & 0 & 1 & 1 / 4 \\ -1 / 2 & 1 / 2 & 0 & 1 / 2 \\ -1 / 2 & -1 / 2 & 0 & 1 / 4\end{array}\right)$	matrix 4	--
5	227141074062 [322]	$F d-3 m>141 / a m d=i m m a>P n m a$	$\left(\begin{array}{clll}-1 / 2 & 1 / 2 & & 0 \\ 0 & 0 & 1 & 1 / 4 \\ 1 / 2 & 1 / 2 & & 0 \\ 1 / 4\end{array}\right)$	matrix 5	--
6	227141074062 [322]	$F d-3 m>141 / a m d=i m m a>P n m a$	$\left(\begin{array}{cccc}-1 / 2 & -1 / 2 & & 0 \\ 0 & 0 & 1 & 1 / 4 \\ -1 / 2 & 1 / 2 & & 0 \\ 1 / 2\end{array}\right)$	matrix 6	--

To see the graph containing all classes, click on [Draw the lattice]

Transformation Matrices: Fd-3m ----Pnma

Table 3. Details of the refinement of $\mathrm{CsMgInF}_{6}$ in different space groups

Space group	rejected	Number of reflections: obs/all refinement	$h+k+l=2 n+1$
Fd $\overline{3} m$	$806 / 5976$	$67 / 67$	-
Imma	$1466 / 1791$	$843 / 1003$	-
$P \overline{4} n 2$	$129 / 967$	$816 / 1267$	$344 / 720$
$P \overline{4} m 2$	$0 / 0$	$879 / 1549$	$407 / 1002$
$P 4_{3} 21_{1} 2$	$0 / 83$	$858 / 1388$	$390 / 846$
$P 4_{3} 22$	$0 / 30$	$858 / 1403$	$390 / 861$
$P 4_{1} 2_{1} 2$	$0 / 83$	$858 / 1388$	$390 / 846$
$P 4_{1} 22$	$0 / 30$	$858 / 1403$	$390 / 861$
Pnma	$0 / 83$	$1251 / 2013$	$408 / 1010$
$P m m a$	$0 / 0$	$1251 / 2056$	$408 / 1053$
$P m n a$	$0 / 30$	$1251 / 2041$	$408 / 1038$
Pnna	$129 / 967$	$1183 / 1762$	$340 / 759$

Can be excluded due to violations of extinction rules

> Reflections violating the I-centering (F-centering in the cubic setting)

Table 3. Details of the refinement of $\mathrm{CsMgInF}_{6}$ in different space groups. Agreement factors are given in [\%].

Space group	Number of reflections: obs/all			$\begin{aligned} & R_{\text {int }} \\ & \text { obs } / \text { all } \end{aligned}$	Number of parameters	$R_{\text {w }}$ (obs)	R (all)	$\begin{aligned} & \hline \hline R_{w} \text { (obs) } \quad R(\text { all }) \\ & (h+k+l=2 n+1) \end{aligned}$	
$F d \overline{3} m$	806/5976	67/67	-	4.60/4.60	9	1.40	2.08	-	-
Imma	1466/1791	843/1003	-	3.69/3.71	36	1.72	2.85	-	-
$P \overline{4} n 2$	129/967	816/1267	344/720	4.40/4.60	49	1.74	7.75	36.02	49.17
$P \overline{4} m 2$	0/0	879/1549	407/1002	4.42/4.67	62	1.55	9.43	25.83	56.60
$P 4_{3} 2{ }_{1} 2$	0/83	858/1388	390/846	4.44/4.68	46	1.65	5.83	21.80	30.30
$P_{4} 22$	0/30	858/1403	390/861	4.44/4.69	49	1.74	8.87	44.53	58.11
$P 4_{1} 2,2$	0/83	858/1388	390/846	4.44/4.68	49	1.63	7.00	28.93	42.88
$P 4,22$	0/30	858/1403	390/861	4.44/4.69	50	1.68	9.08	34.35	60.56
Pnma	0/83	1251/2013	408/1010	3.93/4.22	55	1.72	3.96	10.81	18.04
Pmma	0/0	1251/2056	408/1053	3.93/4.22	63	1.74	5.58	17.76	39.32
Pmna	0/30	1251/2041	408/1038	3.93/4.22	56	1.81	6.45	28.10	50.18
Pnna	129/967	1183/1762	340/759	3.90/4.15	51	1.82	5.54	34.76	47.81

Wyckoff Positions Splitting

Conventional Settings
Non conventional Settings

Wyckoff Positions Splitting

227 (Fd-3m) [origin choice 2] > 62 (Pnma)

Wyckoff positions:

Result from splitting

No	Wyckoff position(s)		
	Group	Subgroup	More...
1	48 f	$8 \mathrm{~d} 8 \mathrm{~d} \mathrm{4c} \mathrm{4c}$	Relations
2	16 c	4 a 4 c	Relations
3	8 b	4 c	Relations

Wyckoff Positions Splitting

227 (Fd-3m) [origin choice 2] >62 (Pnma)

Splitting of Wyckoff position 48f

Representative			Subgroup Wyckoff position	
No	group basis	subgroup basis	name[n]	representative
1	$(x+1,1 / 8,1 / 8)$	$(x+7 / 8, x+5 / 8,1 / 8)$	$8 \mathrm{~d}_{1}$	(x_{1}, y_{1}, z_{1})
2	$(-x+3 / 4,1 / 8,5 / 8)$	(-x+5/8,-x+3/8,5/8)		$\left(-x_{1}+1 / 2,-y_{1}, z_{1}+1 / 2\right)$
3	$(3 / 8, x+1 / 4,7 / 8)$	$(-x+1 / 8, x+1 / 8,7 / 8)$		$\left(-x_{1}, y_{1}+1 / 2,-z_{1}\right)$
4	$(7 / 8,-x+1 / 2,3 / 8)$	$(x+3 / 8,-x+7 / 8,3 / 8)$		$\left(x_{1}+1 / 2,-y_{1}+1 / 2,-z_{1}+1 / 2\right)$
5	$(-x+1 / 2,3 / 8,7 / 8)$	$(-x+1 / 8,-x+3 / 8,7 / 8)$		(--x1, - $\left.\mathrm{y}_{1},-\mathrm{z}_{1}\right)$
6	$(x+3 / 4,3 / 8,3 / 8)$	$(x+3 / 8, x+5 / 8,3 / 8)$		$\left(x_{1}+1 / 2, y_{1},-z_{1}+1 / 2\right)$
7	$(9 / 8,-x+1 / 4,1 / 8)$	$(x+7 / 8,-x+7 / 8,1 / 8)$		$\left(\mathrm{x}_{1},-\mathrm{y} 1+1 / 2, z_{1}\right)$
8	(5/8, $x, 5 / 8)$	$(-x+5 / 8, x+1 / 8,5 / 8)$		(-x $\left.x_{1}+1 / 2, y_{1}+1 / 2, z_{1}+1 / 2\right)$
9	$(5 / 8, x+1 / 2,1 / 8)$	$(-x+1 / 8, x+5 / 8,1 / 8)$	$8 \mathrm{~d}_{2}$	(x_{2}, y_{2}, z_{2})
10	$(5 / 8,-x+1 / 4,5 / 8)$	$(x+3 / 8,-x+3 / 8,5 / 8)$		($(-\times 2+1 / 2,-y / 2, z 2+1 / 2)$
11	$(\mathrm{x}+3 / 4,-1 / 8,7 / 8)$	$(x+7 / 8, x+1 / 8,7 / 8)$		$\left(-x_{2}, y_{2}+1 / 2,-z_{2}\right)$
12	$(-x+1,3 / 8,3 / 8)$	$(-x+5 / 8,-x+7 / 8,3 / 8)$		($\left.\times 2+1 / 2,-\mathrm{y} 2+1 / 2,-z_{2}+1 / 2\right)$
13	(7/8, -x, 7/8)	$(x+7 / 8,-x+3 / 8,7 / 8)$		(- $\left.\mathrm{K}_{2},-\mathrm{y} 2,-\mathrm{z}_{2}\right)$
14	$(7 / 8, x+1 / 4,3 / 8)$	$(-x+5 / 8, x+5 / 8,3 / 8)$		($\left.\times_{2}+1 / 2, y_{2},-z_{2}+1 / 2\right)$
15	$(1-x+3 / 4,5 / 8,1 / 8)$	$(-x+1 / 8,-x+7 / 8,1 / 8)$		($\times 2,-\mathrm{y} / 2+1 / 2, z 2$)
16	$(\mathrm{x}+1 / 2,1 / 8,5 / 8)$	$(\mathrm{x}+3 / 8, x+1 / 8,5 / 8)$		$\left(-x_{2}+1 / 2, y_{2}+1 / 2, z_{2}+1 / 2\right)$
17	$(5 / 8,5 / 8, x)$	$(0,3 / 4, x)$	$4 c_{1}$	$\left(-\times 3_{3}+1 / 2,3 / 4, z_{3}+1 / 2\right)$
18	$(5 / 8,1 / 8, x+1 / 2)$	(1/2, 1/4, x+1/2)		($\times 3,1 / 4, z_{3}$)
19	$(3 / 8,3 / 8,-x)$	(0,1/4, -x		($\left.\times_{3}+1 / 2,1 / 4,-z_{3}+1 / 2\right)$
20	(7/8,3/8,-x+1/2)	$(1 / 2,3 / 4,-x+1 / 2)$		(->3, 3/4, -z3)
21	$(5 / 8,1 / 8,-x+3 / 4)$	$(1 / 2,1 / 4,-x+3 / 4)$	$4 c_{2}$	($x_{4}, 1 / 4, z_{4}$)
22	$(5 / 8,5 / 8,-x+1 / 4)$	(0,3/4, -x+1/4)		$\left(-x_{4}+1 / 2,3 / 4, z_{4}+1 / 2\right)$
23	$(7 / 8,3 / 8, x+1 / 4)$	(1/2, 3/4, x+1/4)		(-x/4, 3/4, -z/4)
24	$(3 / 8,3 / 8, x+3 / 4)$	$(0,1 / 4, x+3 / 4)$		$\left(x_{4}+1 / 2,1 / 4,-z_{4}+1 / 2\right)$

Wyckoff Positions Splitting

227 (Fd-3m) [origin choice 2] > 62 (Pnma)

Splitting of Wyckoff position 16c

Representative			Subgroup Wyckoff position	
No	group basis	subgroup basis	name[n]	representative
1	(1/2, 1/2, 0)	(0, 1/2, 0)	$4 a_{1}$	(0, 1/2, 0)
2	(3/4, 1/4, 1/2)	(1/2, 1/2, 1/2)		(1/2, 1/2, 1/2)
3	(1/4, 1/4, 0)	(0,0,0)		(0,0,0)
4	(1/2, 0, 1/2)	(1/2, 0, 1/2)		(1/2, 0, 1/2)
5	(3/4, 0, 3/4)	(3/4, 1/4, 3/4)	$4 c_{1}$	($\mathrm{X}_{2}, 1 / 4, z_{2}$)
6	(1, 1/4, 1/4)	(3/4, 3/4, 1/4)		(-x/2+1/2,3/4, z2+1/2)
7	(3/4, 1/2, 1/4)	(1/4, 3/4, 1/4)		($-\mathrm{K}_{2}, 3 / 4,-z_{2}$)
8	(1/2, 1/4, 3/4)	(1/4, 1/4, 3/4)		($\left.\chi_{2}+1 / 2,1 / 4,-z_{2}+1 / 2\right)$

Wyckoff Positions Splitting

227 ($\mathrm{Fd}-3 \mathrm{~m}$) [origin choice 2] > 62 (Pnma)

Splitting of Wyckoff position 8b

Representative			Subgroup Wyckoff position	
No	group basis	subgroup basis	name[n]	representative
1	(3/8, 3/8,3/8)	(0, 1/4, 3/8)	$4 c_{1}$	($\mathrm{X}_{1}, 1 / 4, z_{1}$)
2	(7/8, 3/8, 7/8)	(1/2,3/4, 7/8)		$\left(-x_{1}+1 / 2,3 / 4, z_{1}+1 / 2\right)$
3	(5/8, 5/8, 5/8)	(0,3/4,5/8)		($\left(-x_{1}, 3 / 4,-z_{1}\right)$
4	(5/8, 1/8, 1/8)	(1/2, 1/4, 1/8)		$\left(\mathrm{X}_{1}+1 / 2,1 / 4,-z_{1}+1 / 2\right)$

Archtype structure Fd-3m

Transformed Pnma

Refined
Pnma

F1 (48f)
$0.31,1 / 8,1 / 8$
B/B'(16c)
0,0,0
A(8b)
3/8, 3/8, 3/8
$\rightarrow 0.815,0.065,0.875 \rightarrow 0.313,0.055,0.868=\mathrm{F} 1$
$\rightarrow 0.685,0.435,0.625 \rightarrow 0.199,0.440,0.622=\mathrm{F} 2$
$\rightarrow 0.0, \quad 0.25, \quad 0.006 \rightarrow 0.493 .0 .250,0.071=\mathrm{F} 3$
$\rightarrow 0.5, \quad 0.25, \quad 0.81 \quad \rightarrow 0.008,0.250,0.813=\mathrm{F} 4$
$\rightarrow 0.5, \quad 0.0, \quad 0.5 \quad \rightarrow 0.0, \quad 0.0, \quad 0.5 \quad=\mathrm{In} 1 / \mathrm{Mg} 1$
$\rightarrow 0.75,0.25,0.75 \rightarrow 0.255,0.25,0.75=\operatorname{In} 2 / \mathrm{Mg} 2$
$\rightarrow 0.0, \quad 0.25,3 / 8 \quad \rightarrow 0.498,0.25,0.378=$ Cs

Pnma (transformed) \rightarrow Pnma (refined)
Origin shift $1 / 2,0,0$

Equivalent Descriptions of Crystal Structures

Equivalent Descriptions of Crystal Structures

Space Group: 62 (Pnma)
Euclidean Normalizer for General Metrics: (Pmmm) 1/2a, 1/2b,1/2c
Additional coset representatives:

```
x,y,z
```

$x+1 / 2, y, z$
$\mathrm{x}, \mathrm{y}+1 / 2, \mathrm{z}$
$\mathrm{x}, \mathrm{y}, \mathrm{z}+1 / 2$
$\mathrm{x}+1 / 2, \mathrm{y}+1 / 2, \mathrm{z}$
$\mathrm{x}+1 / 2, \mathrm{y}, \mathrm{z}+1 / 2$
$\mathrm{x}, \mathrm{y}+1 / 2, \mathrm{z}+1 / 2$
$x+1 / 2, y+1 / 2, z+1 / 2$

Number of crystallographic equivalent descriptions: 8
Permitted origins:
$0.0,0$
$1 / 2,0,0$
$0,1 / 2,0$
$0,0,1 / 2$
$1 / 2,1 / 2,0$
$1 / 2,0,1 / 2$
$0,1 / 2,1 / 2$
$1 / 2,1 / 2,1 / 2$

Normalizer coset representative: $\mathbf{x + 1 / 2 , y , z}$

Transformed unit cell:

7.52857 .528510 .645990 .00090 .00090 .000

Transformed structure:

AT.	WP	SS	Representative	Atomic orbit					
In1	$4 \mathrm{a}(0,0,0)$	-1	(0.500000,0.000000.0.500000)	$(0.500000,0.000000,0.500000)$ $(0.000000,0.000000,0.000000)$ $(0.500000,0.500000,0.500000)$ $(0.000000 .0 .500000,0.000000)$					
In2	4c ($x, 1 / 4, z$)	.m.	(0.755200,0.250000.0.747580)	$(0.755200,0.250000,0.747580)$ $(0.744800,0.750000,0.247580)$ $(0.244800,0.750000,0.252420)$ $(0.255200,0.250000,0.752420)$					
Cs1	4c ($x, 1 / 4, z$)	m.	(0.997900,0.250000, 0.378110)	$(0.997900,0.250000,0.378110)$ $(0.502100,0.750000,0.878110)$ $(0.002100,0.750000,0.621890)$ $(0.497900,0.250000,0.121890)$					
F1	$8 \mathrm{~d}(x, y, z)$	1	(0.812600,0.054900, 0.867600)	$(0.812600,0.054900,0.867600)$ $(0.687400,0.945100,0.367600)$ $(0.187400,0.554900,0.132400)$ $(0.312600,0.445100,0.632400)$ $(0.187400,0.945100,0.132400)$ $(0.312600,0.054900,0.632400)$ $(0.812600 .0 .445100,0.867600)$ $(0.687400,0.554900,0.367600)$	F2	$8 \mathrm{~d}(x, y, z)$	1	(0.699100, 0.439900, 0.622000)	$(0.699100,0.439900,0.622000)$ $(0.800900,0.560100,0.122000)$ $(0.300900,0.939900,0.378000)$ $(0.199100,0.060100,0.878000)$ $(0.300900,0.560100,0.378000)$ $(0.199100,0.439900,0.878000)$ $(0.699100,0.060100,0.622000)$ $(0.800900,0.939900,0.122000)$
					F3	4c ($\mathrm{x}, 1 / 4, z$)	.m.	(0.993100, 0.250000,0.071000)	$\begin{aligned} & (0.993100,0.250000,0.071000) \\ & (0.506900,0.750000,0.571000) \\ & (0.006900,0.750000,0.929000) \\ & (0.493100,0.250000,0.429000) \end{aligned}$
					F4	4c ($x, 1 / 4, z)$.m.	(0.508100, 0.250000,0.813400)	$\begin{aligned} & (0.508100,0.250000,0.813400) \\ & (0.991900,0.750000,0.313400) \\ & (0.491900,0.750000,0.186600) \\ & (0.008100,0.250000 .0 .686600) \end{aligned}$

Diffraction pattern
subgroup relations
\rightarrow possible space groups and corresponding twin domain structures

Trial refinements in different space groups

Final model

Pseudosymmetry analysis

Enter the tolerance (maximum allowed distance) for pseudosymmetry search.

Select minimal supergroups of space group Pnma (62)

The next step is to select the supergroups which the pseudosymmetry should be searched for. Each supergroup in the table can be selected I marking the corresponding checkbox.

No.\#	Select	HM Symb.	IT Numb.	Index	Index i_{k}	Transformation (P,p)	Transformed Cell
1	v	Pbam	055	2	2	a,-2c, b ; 0,0,0	7.528510 .64593 .764390 .0090 .0090 .00
2	v	Pbom	057	2	2	b,c,2a; 0,0,0	5.32297 .52857 .528590 .0090 .0090 .00
3	V	Pmmn	059	2	2	2c,b,-a : 0,0,0	10.64597 .52853 .764390 .0090 .0090 .00
4	V	Pnma	062	3	3	3a,b,c ; 0,0,0	$2.5095 \quad 7.528510 .645990 .0090 .0090 .00$
5	v	Pnma	062	3	3	a,3b,c; 0,0,0	$7.5285 \quad 2.5095 \quad 10.645990 .0090 .0090 .00$
6	v	Pnma	062	3	3	a,b,3c ; 0,0,0	$7.52857 .5285 \quad 3.548690 .0090 .0090 .00$
7	v	Pnma	062	5	5	5a,b,c ; 0,0,0	1.50577 .528510 .645990 .0090 .0090 .00
8	v	Pnma	062	5	5	a,5b, c : 0,0,0	7.52851 .505710 .645990 .0090 .0090 .00
9	V	Pnma	062	5	5	a,b,5c ; 0,0,0	$7.52857 .5285 \quad 2.129290 .0090 .0090 .00$
10	v	Pnma	062	7	7	7a,b,c: 0,0,0	1.07557 .528510 .645990 .0090 .0090 .00
11	v	Pnma	062	7	7	a,7b, c : 0,0,0	$7.52851 .0755 \quad 10.645990 .0090 .0090 .00$
12	V	Pnma	062	7	7	a,b,7c : 0,0,0	7.52857 .52851 .520890 .0090 .0090 .00
13	V	Cmom	063	2	2	b,c,a $0,0,0$	10.64597 .52857 .528590 .0090 .0090 .00
14	v	Cmcm	063	2	2	c,a,b ; 1/4, 1/4,0	7.528510 .64597 .528590 .0090 .0090 .00
15	v	Cmoa	064	2	2	-b,a,c ; 1/4, 1/4,0	7.52857 .528510 .645990 .0090 .0090 .00
16	v	imma	074	2	2	a,b,c : 0,0,0	7.52857 .528510 .645990 .0090 .0090 .00

Summary search results

Pseudosymmetry search among minimal supergroups.

Idealized structures

16\# Supergroup Imma (074): a,b,c ; 0,0,0 and index 2
Displacements:

Atom	Idealized Coordinates	$\mathbf{u}_{\mathbf{x}}$	$\mathbf{u}_{\mathbf{y}}$	$\mathbf{u}_{\mathbf{z}}$	$\boldsymbol{\|} \mid \boldsymbol{u l}$
In1	$(0.0000,0.0000,0.5000)$	0.000000	0.000000	0.000000	0.0000
In2	$(0.2500,0.2500,0.7500)$	0.005200	0.000000	-0.002420	0.0469
Cs1	$(0.5000,0.2500,0.3781)$	-0.002100	0.000000	0.000000	0.0158
F1	$(0.3067,0.0575,0.8728)$	0.005850	-0.002600	-0.005200	0.0734
F2	$(0.1933,0.4425,0.6272)$	0.005850	-0.002600	-0.005200	0.0734
F3	$(0.5000,0.2500,0.0710)$	-0.006900	0.000000	0.000000	0.0519
F4	$(0.0000,0.2500,0.8134)$	0.008100	0.000000	0.000000	0.0610

NOTE: u_{x}, u_{y} and u_{z} are given in relative units. |u| is the absolute displacement given in A

Idealized structure (subgroup setting):

62
$7.52857 .528510 .645990 .00 \quad 90.00 \quad 90.00$
7
In $1-0.0000 \quad 0.0000 \quad 0.5000$
In $2-0.2500 \quad 0.2500 \quad 0.7500$
$\mathrm{Cs} 1-0.5000 \quad 0.2500 \quad 0.3781$
$\begin{array}{llllll}\mathrm{F} & 1 & - & 0.3067 & 0.0575 & 0.8728 \\ \mathrm{~F} & 2 & - & 0.1933 & 0.4425 & 0.6272 \\ \mathrm{~F} & 3 & -0.5000 & 0.2500 & 0.0710 \\ \mathrm{~F} & 4 & -0.0000 & 0.2500 & 0.8134\end{array}$

Idealized structure (supergroup setting):

```
074
7.5285 7.5285 10.6459 90.00 90.00 90.00
6
In 1 - 0.0000 0.0000 0.5000
In 2 - 0.2500 0.2500 0.7500
Cs 1 - 0.5000 0.2500 0.3781
F 1 - 0.3068 0.0575 0.8728
#F 2 - 0.1933 0.4425 0.6272
F 3 - 0.5000 0.2500 0.0710
F 4 - 0.0000 0.2500 0.8134
```

- Idealized structure with space group 074 related with the given by the transformation a,b,c;0,0,0 and index 2
- Cell parameters have not been symmetrized. They may include in general some symmetry breaking strain, to be removed by hand.
- A commented atom means a redundant atom, due to the merging of the Wyckoff orbit with another one in the supergroup

Pseudosymmetry search full report

16\# Supergroup Imma (074): a,b,c;0,0,0 and index 2
Transformation matrix: a,b,c ; 0,0,0 (index $=2)$

[1	0	0		$0]$
[0	1	0		$0]$
[0	0	1		$0]$

Coset representative: $-x,-y+1 / 2, z$
Maximum distance: 0.1468
Pairings and distances:

Atom in S	Coordinates in H	Atom in gS

F1[1]	$(0.312600,0.054900,0.867600)$	F2[6]	$(-0.312600,0.445100,0.867600)$
F1[2]	$(0.187400,0.945100,0.367600)$	F2[5]	$(-0.187400,-0.445100,0.367600)$
F1[3]	$(0.687400,0.554900,0.132400)$	F2[8]	$(-0.687400,-0.054900,0.132400)$
F1[4]	$(0.812600,0.445100,0.632400)$	F2[7]	$(-0.812600,0.054900,0.632400)$
F1[5]	$(0.687400,0.945100,0.132400)$	F2[2]	$(-0.687400,-0.445100,0.132400)$
F1[6]	$(0.812600,0.054900,0.632400)$	F2[1]	$(-0.812600,0.445100,0.632400)$
F1[7]	$(0.312600,0.445100,0.867600)$	F2[4]	$(-0.312600,0.054900,0.867600)$
F1[8]	$(0.187400,0.554900,0.367600)$	F2[3]	$(-0.187400,-0.054900,0.367600)$

Initial
Structure (LS)

74					
7.5285	7.5285	10.6459	90	9090	
6					
In 1	-	0.0	0.0	0.5	
In 2	-	0.25	0.25	0.75	
Cs 1	-	0.50	0.25	0.3781	
F1	-	0.3068	0.0575	0.8728	
F 3	-	0.50	0.25	0.0710	
F 4	-	0.00	0.25	0.8134	

Summary search results

Pseudosymmetry search among minimal supergroups.

Case \#	Supergroup G	Index i	Index $\mathrm{i}_{\mathbf{k}}$	(P,p)		Tr. Matrix				$\Delta_{\text {max }}$	$u_{\text {max }}$
14	/41/amd (141)	2	1	a,b,c ; 1/2,0,0	${ }_{[}^{[}$	1 0 0	0 1	$\left.\begin{array}{ll}0 \\ 0 \\ 0\end{array}\right][$	$1 / 2]$ 01 01	0.0809	0.0405

Case \#	Supergroup G	Index i	Index $\mathrm{i}_{\mathbf{k}}$	(P,p)	Tr. Matrix				$\Delta_{\text {max }}$	$U_{\text {max }}$
7	$F d-3 m(227)$	3	1	1/2a-1/2b,1/2a+1/2b,c ; 1/4, 1/4,0	$\left[\begin{array}{lr}{[} & 1 / 2 \\ {[} & -1 / 2 \\ {[} & 0\end{array}\right.$	$1 / 2$ $1 / 2$ 0	$\left.\begin{array}{ll}0 \\ 0 \\ 0 &] \\ 1\end{array}\right]$	$1 / 4]$ $1 / 4]$ $0]$	0.0069	0.0046

Idealized structure (subgroup setting):

```
141
7.5285 7.5285 10.6459 90.00 90.00 90.00
4
In 1 - 0.5000 0.0000 0.5000
Cs 1 - 0.0000 0.2500 0.3750
F 1 - 0.8074 0.0573 0.8750
F 3 - 0.0000 0.2500 0.0676
```

Idealized structure (supergroup setting):

```
227
10.6469 10.6469 10.6459 90.00 90.00 90.00
3
In 1 - 0.5000 0.0000 0.5000
Cs 1 - 0.3750 0.3750 0.3750
F 1 - 0.6824 0.8750 0.8750
#F 3-0.3750 0.3750 0.0676
```


Crystal-chemical relationships

Table 1. Selected information on ternary and quartemary fluorides with pyrochlore related structures; ratio of ionic radius (r) calculated on the values given by [18].

$\mathrm{NH}_{4} \mathrm{CoAlF}_{6}$	10.0487(3)			$F d \overline{3} m$	1.17	[22]
$\mathrm{RbMgNiF}_{6}$	9.978			$F d \overline{3} m$	1.23	[2]
$\mathrm{RbNiCoF}_{6}$	10.183			$F d \overline{3} m$	1.21	[2]
$\mathrm{RbCoCrF}_{6}$	10.277(5)			$F d \overline{3} m$	1.05	[23]
$\mathrm{RbNiCrF}_{6}$	10.21			$F d \overline{3} m$	1.10	[24]
$\mathrm{CsNiAlF}_{6}$	10.06			$F d \overline{3} m$	1.23	[25]
$\mathrm{CsNiFeF}_{6}$	10.35			$F d \overline{3} m$	1.20	[25]
$\mathrm{CsNiNiF}_{6}$	7.122	7.350	10.025	Imma	1.19	[2]
$\mathrm{RbNiNiF}_{6}$	6.946	7.333	9.768	Imma	1.19	[2]
$\mathrm{CsCuCuF}_{6}$	7.067(1)	7.277(1)	10.322(1)	Imma	1.28	[3]
$\mathrm{CsAgFeF}_{6}$	7.338	7.564	10.554	Pnma	1.57	[19]
$\mathrm{CsAgAlF}_{6}$	7.38	7.241	10.352	Pnma	1.60	[19]
KCuAlF_{6}	6.731 (1)	7.040 (1)	$9.793(1)$	Pnma	1.29	[3]
$\mathrm{RbPdAIF}_{6}$	$7.2901(1)$	7.111 (1)	10.065(2)	Pnma	1.48	[20]
$\mathrm{CsPdAlF}_{6}$	7.523 (1)	7.161(1)	10.258(1)	Pnma	1.48	[21]
$\mathrm{NH}_{4} \mathrm{CoAlF}_{6}$	7.134(1)	7.052(2)	$9.930(2)$	Pnma	1.17	[22]

Representatives

$\mathrm{RbMgNiF}_{6}, \mathrm{RbNiCoF}_{6}, \mathrm{RbCoCrF}_{6}$, $\mathrm{RbNiCrF}_{6}, \mathrm{CsNiAlF}_{6}, \mathrm{CsNiFeF}_{6}$, $\mathrm{NH}_{4} \mathrm{CoAlF}_{6}$
$\mathrm{RbNiNiF}_{6}, \mathrm{CsNiNiF}_{6}, \mathrm{CsCuCuF}_{6}$
$\mathrm{KCuAlF}_{6}, \mathrm{RbPdAlF}_{6}, \mathrm{CsAgFeF}_{6}$,
$\mathrm{CsAgAlF}_{6}, \mathrm{CsPdAlF}_{6}, \mathrm{NH}_{4} \mathrm{CoAlF}_{6}$

Exercise 1: KCuCrF_{6}

Space group $\mathrm{P} 2 / \mathrm{l}$

Lattice parameter:

$$
a=7.256 \AA, b=9.933 \AA, c=6.750 \AA, \beta=92.61^{\circ}
$$

		x	y	z
Cu 1	4 e	0.2534	0.2660	0.8172
Cr 1	2 b	0.5	0	0
Cr 2	2 a	0	0	0
K 1	4 e	0.2429	0.8844	0.4956
F 1	4e	0.9811	0.1663	0.8726
F 2	4e	0.5068	0.8239	0.1041
F 3	4 e	0.2475	0.3290	0.0783
F 4	4e	0.7531	0.0183	0.0799
F 5	4 e	0.0732	0.0851	0.2412
F 6	4 e	0.5560	0.5649	0.2499

Exercise 1:

Is the structure of KCuCrF_{6} related to the pyrochlore structures?

If yes, what is the relationship?

How many twin domains would you expect to form in this compound?

Exercise 2:

Compare the pseudosymmetry of $\mathrm{CsMgInF}_{6}$, $\mathrm{CsPdAlF}_{6}$ and $\mathrm{CsNiNiF}_{6}$ with respect to space group Fd-3m.

If you disregard the disorder on the B / B '-site, which of the three structures
has the highest pseudosymmetry?

Exercise 3: Group-subgroup relations in the Pyrochlore family

Looking at the group subgroup relationships in the fluoride pyrochlore family, it is striking that there are no compounds crystallizing in space group $\mathrm{I}_{1} /$ amd.

Can you find an explanation?

Exercise 4: Twinning in $\mathrm{Ag}_{4} \mathrm{Mn}_{3} \mathrm{O}_{8}$

$\mathrm{Ag}_{4} \mathrm{Mn}_{3} \mathrm{O}_{8}$ is a Ag ionic conductor. It crystallizes in space group P3121 with lattice parameter $\mathrm{a}=12.5919$ (1) and $\mathrm{c}=15.4978(1) \AA$.

The investigated crystal is a fourfold twin.

Can you find a relationship between the crystal structure and the formation of twins?

[^0]: [Click here to see the Series of Maximal Subgroups]

