Use of the Bilbao Crystallographic Server: twinned crystals and crystalchemical relationships

Karen Friese

Department of Condensed Matter Physics, University of the Basque Country, Spain

Example Pyrochlore: Twinned CsMgInF₆

Friese, Gesland, Grzechnik; Z. Krist. 220 (2005), 614

Pyrochlore: ABB'F₆

Symmetry of the archetype structure

Space group No. 227: Fd-3m (origin choice 2, 1/8,1/8,1/8)

WYCKPOS

Wyckoff Positions of Group 227 (*Fd-3m*) [origin choice 2]

Multiplicity	Wyckoff	Site	Coordinates	
wultiplicity	letter	symmetry	(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +	
192	i	1 1	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
96	h	2	$\begin{array}{l} (0,y,-y) \left(3/4,-y+1/4,-y+1/2\right) \left(1/4,y+1/2,y+3/4\right) & (1/2,-y+3/4,y+1/4) \\ (-y,0,y) \left(-y+1/2,3/4,-y+1/2\right) \left(y+3/4,1/4,y+1/2\right) & (y+1/4,1/2,-y+3/4) \\ (y,-y,0) \left(-y+1/4,-y+1/2,3/4\right) & (y+1/2,y+3/4,1/4) & (-y+3/4,y+1/4,1/2) \\ (0,-y,y) \left(1/4,y+3/4,y+1/2\right) & (3/4,-y+1/2,-y+1/4) & (1/2,y+1/4,-y+3/4) \\ (y,0,-y) & (y+1/2,1/4,y+3/4) & (-y+1/4,3/4,-y+1/2) & (-y+3/4,1/2,y+1/4) \\ (-y,y,0) & (y+3/4,y+1/2,1/4) & (-y+1/2,-y+1/4,3/4) & (y+1/4,-y+3/4,1/2) \end{array}$	
96	g	m	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
48	f	2.m m	(x,1/8,1/8) (-x+3/4,1/8,5/8) (1/8,x,1/8) (5/8,-x+3/4,1/8) (1/8,1/8,x) (1/8,5/8,-x+3/4) (7/8,x+1/4,3/8) (7/8,-x,7/8) (x+3/4,3/8,3/8) (-x+1/2,7/8,3/8) (7/8,3/8,-x+1/2) (3/8,3/8,x+3/4)	- F (x = 0.31)
32	e	.3m	(x,x,x) (-x+3/4,-x+1/4,x+1/2) (-x+1/4,x+1/2,-x+3/4) (x+1/2,-x+3/4,-x+1/4) (x+3/4,x+1/4,-x+1/2) (-x,-x,-x) (x+1/4,-x+1/2,x+3/4) (-x+1/2,x+3/4,x+1/4)	
16	d	3m	(1/2,1/2,1/2) (1/4,3/4,0) (3/4,0,1/4) (0,1/4,3/4)	_ /
16	с	3m	(0,0,0) (3/4,1/4,1/2) (1/4,1/2,3/4) (1/2,3/4,1/4)	← B/B'
8	b	-43m	(3/8,3/8,3/8) (1/8,5/8,1/8)	← A
8	а	-43m	(1/8,1/8,1/8) (7/8,3/8,3/8)	

Raman and Infrared Investigations (Ayala et. al, Phys. Rev. B66, 2002, 214105)

TABLE III. Wave numbers of the Raman bands observed in CsInMgF₆ single crystals, at room temperature in different scattering geometries.

	Wave number (cm^{-1})	
$z(xx)\overline{z}$	$z(xy)\overline{z}$	$z(x'y')\overline{z}$
27	27	27
42	43	40
80	80	
134	135	136
162	165	165
189	190	189
220	223	221
257	253	253
275	273	275
322	323	320
379	382	
435	432	
564	565	

IR and Raman Modes for F d -3 m (227) WP: 8b, 16c, 48f

WP	A _{1g}	A _{1u}	A _{2g}	A _{2u}	Eu	Eg	T _{2u}	T _{2g}	T _{1u}	T _{1g}
48f	•				•	•			3	
16c									2	
8b									1	

IR Active Modes

Raman Active Modes

WP	A _{1g}	A _{1u}	A _{2g}	A _{2u}	Eu	Eg	T _{2u}	T _{2g}	T _{1u}	T _{1g}
48f	1					1		3		
16c										
8b								1		

HKLCOND

Reflection Conditions Fd-3m:

- hkl:h+k=2n, h+l=2n, k+l=2nF0kl:k+l=4n, k, l=2ndhhl:h+l=2n4
- WP 8bhkl: h=2n+1 or h+k+l=4nWP 16chkl: h=2n+1 or h,k,l=4n+2 or h,k,l=4nWP 48fhkl: h=2n+1 or h+k+l=4n

CsMgInF₆: very weak reflections violating the reflection condition for the F-centered lattice: the correct space group is probably a subgroup of Fd-3m MAXSUB

Maximal Subgroups of Space Groups

Please, enter the sequential number of group as given in International Tables for Crystallography, Vol. A or	choose it 227
Show WP Splittings?	
NOTE : the program uses the default choice for the group setting.	

Show maximal subgroups

Maximal subgroups of group 227 (Fd-3m) [origin choice 2]

Note: The program uses the default choice for the group settings.

In the following table the list of maximal subgroups is given. Click over "setting..." to see the possible setting(s) for the given subgroup.

Ν	IT number	HM symbol	Index	Transformations
1	141	l4 ₁ /amd	3	show
2	166	R-3m	4	show
3	203	Fd-3	2	show
4	210	F4132	2	show
5	216	F-43m	2	show

[Click here to see the Series of Maximal Subgroups]

Maximal subgroup(s) of type 141 (I41/amd) [origin choice 2] of index 3

for Space Group 227 (Fd-3m) [origin choice 2]

Click over [ChBasis] to view the general positions of the subgroup in the basis of the supergroup.

Conjugacy class a						
Subgroup(s)	Transformation Matrix	More				
group No 1	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	ChBasis				
group No 2	$\left(\begin{array}{rrrrr} 0 & 0 & 1 & 0 \\ 1/2 & 1/2 & 0 & 1/4 \\ -1/2 & 1/2 & 0 & 1/4 \end{array}\right)$	ChBasis				
group No 3	$\left(\begin{array}{rrrrr} -1/2 & 1/2 & 0 & 1/4 \\ 0 & 0 & 1 & 0 \\ 1/2 & 1/2 & 0 & 1/4 \end{array}\right)$	ChBasis				

Reflection condition for I-centered lattice: h+k+l=2n

[Click here for the Maximal Subgroups of group 141]

Fd-3m Reflections u,u,u Reflections e,e,e Reflections u,u,e

I4₁/amd

u,e,u or e,u,u u,u,e u,e,e or e,u,e

```
h+k+l=2n

h+k+l=2n

h+k+l=2n+1

forbidden!
```

The maximal subgroups are no options, as the reflections violating the Fcentered lattice are forbidden also in all the maximal subgroups!

Subgroup indices

 $t = \frac{\text{number of the symmetry operation of the point group of H}}{\text{number of the symmetry operation of the point group of G}}$

 $k = \frac{\text{volume of H x number of centering operation of G}}{\text{volume of G x number of centering operations of H}}$

Observation: very weak reflections violating the reflection condition for the F-centered lattice

The k-subgroups are the important ones!

46 k-subgroups with index k=2 and variable t-index,

Choosing the ones with low t-index (t=2 or t=3)

CELLSUB

List of subgroups of space group Fd-3m(227) for a given k-index = 2_

NOTE: The program uses the default choice for the group settings.

In the following table a list of t-subgroups, k-subgroups and general subgroups is given for a given k-in Click over "show..." to obtain the classification in conjugate classes of subgroups.

k-index i_k = 2

N. of subgroups (for k-index 2) found: 46

General type subgroups of space group *Fd*-3*m* (227)

	Ν	HM Symbol	ITA	index	t-index	k-index	More info
	1	R-3c	167	8	4	2	show
	2	R-3m	166	8	4	2	show
	3	R3c	161	16	8	2	show
	4	R3m	160	16	8	2	show
	5	R32	155	16	8	2	show
	6	R-3	148	16	8	2	show
	-7	R3	146	32	16	2	show
\rightarrow	8	P-4n2	118	12	6	2	show
	9	P-4m2	115	12	6	2	show
	10	P43212	096	12	6	2	show
	11	P4322	095	12	6	2	show
	12	P41212	092	12	6	2	show
	13	P4122	091	12	6	2	show
	14	<i>P-</i> 4	081	24	12	2	show
	15	P43	078	24	12	2	show
	16	P41	076	24	12	2	show

2								
	17	Pnma	062	12	6	2	show	
	18	Pmna	053	12	6	2	show	
:-ir	19	Pnna	052	12	6	2	show	
	20	Pmma	051	12	6	2	show	
L	21	Pnn2	034	24	12	2	show	
	22	Pna2 ₁	033	24	12	2	show	
	23	Pmn2 ₁	031	24	12	2	show	
	24	Pnc2	030	24	12	2	show	
	25	Pma2	028	24	12	2	show	
	26	Pmc2 ₁	026	24	12	2	show	
	27	Pmm2	025	24	12	2	show	
	28	C222	021	24	12	2	show	
	29	C2221	020	24	12	2	show	
	30	P212121	019	24	12	2	show	
	31	P2221	017	24	12	2	show	
	32	C2/c	015	24	12	2	show	
	33	P21/c	014	24	12	2	show	
	34	P2/c	013	24	12	2	show	
	35	C2/m	012	24	12	2	show	
	36	P21/m	011	24	12	2	show	
	37	P2/m	010	24	12	2	show	
	38	Cc	009	48	24	2	show	
	39	Cm	800	48	24	2	show	
	40	Pc	007	48	24	2	show	
	41	Pm	006	48	24	2	show	
	42	C2	005	48	24	2	show	
	43	P21	004	48	24	2	show	
	44	P2	003	48	24	2	show	
	45	<i>P</i> -1	002	48	24	2	show	
	46	<i>P</i> 1	001	96	48	2	show	

Group-Subgroup Lattice and Chains of Maximal Subgroups

Please, enter the sequential numbers of the group and the subgroup as given in the International Tables for Crystallography, Vol. A:				
Enter the supergroup number (G) or choose it:	227			
Enter the subgroup number (H) or choose it:	118			
Enter the index [G:H]	12			

Construct the lattice

Chains of maximal subgroups from 227 (Fd-3m) [origin choice 2] to 118 (P-4n2) with index 12

И	Chain [indices]		Number of subgroup chains	More info
1	227 141 119 118 [3 2 2]	Fd-3m > I41/amd > I-4m2 > P-4n2	6	transformation
2	227 216 119 118 [2 3 2]	Fd-3m > F-43m > I-4m2 > P-4n2	6	transformation

Print this table.

Draw the lattice

Classify (with complete graph) Classify (with single graphs)

Classification of the subgroups of type P-4n2(118) of group Fd-3m(227) with index 12

SUBGROUPGRAPH

С	ass	1

Ν	Chain [indices]	Chain with HM symbols	Transformation	Transform with	Identical
1	227 141 119 118 [3 2 2]	Fd-3m > I41/amd > I-4m2 > P-4n2	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	matrix 1	to group 1
2	227 141 119 118 [3 2 2]	Fd-3m > I41/amd > I-4m2 > P-4n2	$\left(\begin{array}{rrrrr} 0 & 0 & 1 & 5/8 \\ 1/2 & 1/2 & 0 & 5/8 \\ -1/2 & 1/2 & 0 & 5/8 \end{array}\right)$	matrix 2	to group 2
3	227 141 119 118 [3 2 2]	Fd-3m > I41/amd > I-4m2 > P-4n2	$\left(\begin{array}{rrrrr} -1/2 & 1/2 & 0 & 5/8 \\ 0 & 0 & 1 & 5/8 \\ 1/2 & 1/2 & 0 & 5/8 \end{array}\right)$	matrix 3	to group 3
4	227 216 119 118 [2 3 2]	Fd-3m > F-43m > I-4m2 > P-4n2	$\left(\begin{array}{rrrrr} 0 & 0 & 1 & 3/8 \\ 1/2 & 1/2 & 0 & 3/8 \\ -1/2 & 1/2 & 0 & 3/8 \end{array}\right)$	matrix 4	to group 4
5	227 216 119 118 [2 3 2]	Fd-3m > F-43m > I-4m2 > P-4n2	$\left(\begin{array}{rrrrr} -1/2 & 1/2 & 0 & 3/8 \\ 0 & 0 & 1 & 3/8 \\ 1/2 & 1/2 & 0 & 3/8 \end{array}\right)$	matrix 5	to group 5
6	227 141 119 118 [3 2 2]	Fd-3m > I41/amd > I-4m2 > P-4n2	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	matrix 6	to group 6

To see the graph containing all classes, click on [Draw the lattice]

Draw the lattice

SUBGROUPGRAPH

Group-Subgroup Lattice

SUBGROUPGRAPH

Group-Subgroup Lattice

Group-Subgroup Lattice and Chains of Maximal Subgroups

Please, enter the sequential numbers of group and subgroup as given in International Tables for Crystallography, Vol. A:

Enter supergroup number (G) or choose it:	227
Enter subgroup number (H) or choose it:	62
Enter the index [G:H] (optional):	12

Construct the lattice

Chains of maximal subgroups from 227 (Fd-3m) [origin choice 2] to 62 (Pnma) with index 12

		Chain [indices]	Chain with HM symbols	Number of subgroup chains	
I	1	227 141 074 062 [3 2 2]	Fd-3m > I41/amd > Imma > Pnma	6	transformation

Print this table

Draw the lattice

Classify (with complete graph) Classify (with single graphs)

Classification of the subgroups of type *Pnma*(62) of group *Fd*-3*m*(227) with index 12

0		4
	ass	

Ν	Chain [indices]	Chain with HM symbols	Transformation	Transform with	Identical
1	227 141 074 062 [3 2 2]	Fd-3m > I4 ₁ /amd > Imma > Pnma	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	matrix 1	
2	227 141 074 062 [3 2 2]	Fd-3m > l4 ₁ /amd > Imma > Pnma	$\left(\begin{array}{rrrrr} -1/2 & 1/2 & 0 & 1/2 \\ -1/2 & -1/2 & 0 & 1/4 \\ 0 & 0 & 1 & 1/4 \end{array}\right)$	matrix 2	
3	227 141 074 062 [3 2 2]	Fd-3m > l4 ₁ /amd > Imma > Pnma	$\left(\begin{array}{rrrrr} 0 & 0 & 1 & 0 \\ 1/2 & 1/2 & 0 & 1/4 \\ -1/2 & 1/2 & 0 & 1/4 \end{array}\right)$	matrix 3	
4	227 141 074 062 [3 2 2]	Fd-3m > l4 ₁ /amd > Imma > Pnma	$\left(\begin{array}{rrrrr} 0 & 0 & 1 & 1/4 \\ -1/2 & 1/2 & 0 & 1/2 \\ -1/2 & -1/2 & 0 & 1/4 \end{array}\right)$	matrix 4	
5	227 141 074 062 [3 2 2]	Fd-3m > I4 ₁ /amd > Imma > Pnma	$\left(\begin{array}{rrrrr} -1/2 & 1/2 & 0 & 1/4 \\ 0 & 0 & 1 & 0 \\ 1/2 & 1/2 & 0 & 1/4 \end{array}\right)$	matrix 5	
6	227 141 074 062 [3 2 2]	Fd-3m > I4 ₁ /amd > Imma > Pnma	$\left(\begin{array}{rrrrr} -1/2 & -1/2 & 0 & 1/4 \\ 0 & 0 & 1 & 1/4 \\ -1/2 & 1/2 & 0 & 1/2 \end{array}\right)$	matrix 6	

To see the graph containing all classes, click on [Draw the lattice]

Draw the lattice

SUBGROUPGRAPH

Group-Subgroup Lattice

Subgroups of Fd-3m with t=6 and k=2 Six tetragonal subgroups:

P-4n2 P-4m2 P4₃212 P4₃22 P4₁212 P4₁22

Four orthorhombic subgroups:

Pmna Pnma Pnna Pmma

Lattice parameter: a = 7.5285(1),b = 7.5285(1),c = 10.6459(1) Å $\alpha = \beta = \gamma = 90^{\circ}$

For both tetragonal and orthorhombic system one has to take into account 6 twin domains

Classification of the subgroups of type *Pnma*(62) of group *Fd*-3*m*(227) with index 12

0		4
	ass	

Ν	Chain [indices]	Chain with HM symbols	Transformation	Transform with	Identical
1	227 141 074 062 [3 2 2]	Fd-3m > I4 ₁ /amd > Imma > Pnma	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	matrix 1	
2	227 141 074 062 [3 2 2]	Fd-3m > l4 ₁ /amd > Imma > Pnma	$\left(\begin{array}{rrrrr} -1/2 & 1/2 & 0 & 1/2 \\ -1/2 & -1/2 & 0 & 1/4 \\ 0 & 0 & 1 & 1/4 \end{array}\right)$	matrix 2	
3	227 141 074 062 [3 2 2]	Fd-3m > l4 ₁ /amd > Imma > Pnma	$\left(\begin{array}{rrrrr} 0 & 0 & 1 & 0 \\ 1/2 & 1/2 & 0 & 1/4 \\ -1/2 & 1/2 & 0 & 1/4 \end{array}\right)$	matrix 3	
4	227 141 074 062 [3 2 2]	Fd-3m > l4 ₁ /amd > Imma > Pnma	$\left(\begin{array}{rrrrr} 0 & 0 & 1 & 1/4 \\ -1/2 & 1/2 & 0 & 1/2 \\ -1/2 & -1/2 & 0 & 1/4 \end{array}\right)$	matrix 4	
5	227 141 074 062 [3 2 2]	Fd-3m > I4 ₁ /amd > Imma > Pnma	$\left(\begin{array}{rrrrr} -1/2 & 1/2 & 0 & 1/4 \\ 0 & 0 & 1 & 0 \\ 1/2 & 1/2 & 0 & 1/4 \end{array}\right)$	matrix 5	
6	227 141 074 062 [3 2 2]	Fd-3m > I4 ₁ /amd > Imma > Pnma	$\left(\begin{array}{rrrrr} -1/2 & -1/2 & 0 & 1/4 \\ 0 & 0 & 1 & 1/4 \\ -1/2 & 1/2 & 0 & 1/2 \end{array}\right)$	matrix 6	

To see the graph containing all classes, click on [Draw the lattice]

Draw the lattice

Transformation Matrices: Fd-3m ----Pnma

	Transformation	
Matrix I	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	→ Twin Matrix I = Identity Matrix
Matrix II	$\left(\begin{array}{rrrrr} -1/2 & 1/2 & 0 & 1/2 \\ -1/2 & -1/2 & 0 & 1/4 \\ 0 & 0 & 1 & 1/4 \end{array}\right)$	→ Matrix I x Twin Matrix II = Matrix II
Matrix III	$\left(\begin{array}{rrrrr} 0 & 0 & 1 & 0 \\ 1/2 & 1/2 & 0 & 1/4 \\ -1/2 & 1/2 & 0 & 1/4 \end{array}\right)$	→ Matrix I x Twin Matrix III = Matrix III
Matrix IV	$\left(\begin{array}{rrrrr} 0 & 0 & 1 & 1/4 \\ -1/2 & 1/2 & 0 & 1/2 \\ -1/2 & -1/2 & 0 & 1/4 \end{array}\right)$	→ Matrix I x Twin Matrix IV= Matrix IV
Matrix V	$\left(\begin{array}{rrrrr} -1/2 & 1/2 & 0 & 1/4 \\ 0 & 0 & 1 & 0 \\ 1/2 & 1/2 & 0 & 1/4 \end{array}\right)$	→ Matrix I x Twin Matrix V= Matrix V
Matrix VI	$\left(\begin{array}{cccc} -1/2 & -1/2 & 0 & 1/4 \\ 0 & 0 & 1 & 1/4 \\ -1/2 & 1/2 & 0 & 1/2 \end{array}\right)$	→ Matrix I x Twin Matrix VI= Matrix VI

Table 3. Details of the refinement of $CsMgInF_6$ in different space groups

Space group	Nu rejected	mber of reflect refinement	tions: obs/all h+k+l = 2n+1
$Fd3m$ Imma $P\overline{4}n2$ $P\overline{4}m2$ $P4_32_12$ $P4_322$ $P4_12_12$ $P4_122$ $Pnma$ $Pmma$ $Pmna$ $Pmna$ $Pmna$	806/5976 1466/1791 129/967 0/0 0/83 0/30 0/83 0/30 0/83 0/30 0/83 0/0 0/83	67/67 843/1003 816/1267 879/1549 858/1388 858/1388 858/1403 858/1403 1251/2013 1251/2056 1251/2041	- 344/720 407/1002 390/846 390/861 390/861 408/1010 408/1053 408/1038
Pnna	129/967	1183/1762	340/759

Reflections violating the I-centering (F-centering in the cubic setting)

Space group	Nu rejected	mber of reflect refinement	ions: obs/all h+k+l=2n+1	$\frac{R_{\text{int}}}{\text{obs}/\text{all}}$	Number of parameters	R_w (obs)	R (all)	$\begin{array}{l} R_w \ (\mathrm{obs}) \\ (h+k+l = \end{array}$	$\frac{R(\text{all})}{2n+1)}$
$Fd\overline{3}m$	806/5976	67/67	-	4.60/4.60	9	1.40	2.08	-	-
Imma	1466/1791	843/1003	-	3.69/3.71	36	1.72	2.85	-	-
$P\overline{4}n2$	129/967	816/1267	344/720	4.40/4.60	49	1.74	7.75	36.02	49.17
$P\overline{4}m2$	0/0	879/1549	407/1002	4.42/4.67	62	1.55	9.43	25.83	56.60
P43212	0/83	858/1388	390/846	4.44/4.68	46	1.65	5.83	21.80	30.30
P4322	0/30	858/1403	390/861	4.44/4.69	49	1.74	8.87	44.53	58.11
P41212	0/83	858/1388	390/846	4.44/4.68	49	1.63	7.00	28.93	42.88
P4122	0/30	858/1403	390/861	4.44/4.69	50	1.68	9.08	34.35	60.56
Pnma	0/83	1251/2013	408/1010	3.93/4.22	55	1.72	3.96	10.81	18.04
Pmma	0/0	1251/2056	408/1053	3.93/4.22	63	1.74	5.58	17.76	39.32
Pmna	0/30	1251/2041	408/1038	3.93/4.22	56	1.81	6.45	28.10	50.18
Pnna	129/967	1183/1762	340/759	3.90/4.15	51	1.82	5.54	34.76	47.81

Table 3. Details of the refinement of CsMgInF₆ in different space groups. Agreement factors are given in [%].

WYCKSPLIT

Wyckoff Positions Splitting

Conventional Settings

Non conventional Settings

Please, enter the sequential numbers of group and subgroup as given in International Tables for Crystallography, Vol. A:				
Enter supergroup or choose it 227				
Enter subgroup or choose it 62				
Please, define the transformation relating the group and the subgroup bases. (NOTE: If you don't know the transformation click here for possible workarounds)				
	0.5	0.5	0	
rotational matrix:	-0.5	0.5	0	
	0	0	1	
origin shift:		0.25 0.25	5 0	

Show group-subgroup data.

Wyckoff Positions Splitting

227 (Fd-3m) [origin choice 2] > 62 (Pnma)

Wyckoff posi	itions:
Group Data	Subgroup Data
All positions	
🗖 192i (x, y, z)	
🗖 96h (0, y, - y)	
🗖 96g (x, x, z)	8d (x, y, z)
🗹 48f (x, 1/8 , 1/8)	4c (x, 1/4 , z)
🗖 32e (x, x, x)	4b (0, 0, 1/2)
🗖 16d (1/2 , 1/2 , 1/2)	4a (0, 0, 0)
🗹 16c (0,0,0)	
🗹 8b (3/8, 3/8, 3/8)	
🗖 8a (1/8 , 1/8 , 1/8)	

Splitting

Result from splitting

No	Wyckoff position(s)						
	Group	Subgroup	More				
1	48f	8d 8d 4c 4c	Relations				
2	16c	4a 4c	Relations				
3	8b	4c	Relations				

Wyckoff Positions Splitting

227 (Fd-3m) [origin choice 2] > 62 (Pnma)

Splitting of Wyckoff position 48f

	Represe	entative	Subgr	Subgroup Wyckoff position		
No	group basis	subgroup basis	name[n]	representative		
1	(x+1, 1/8, 1/8)	(x+7/8, x+5/8, 1/8)		(x1, y1, z1)		
2	(-x+3/4, 1/8, 5/8)	(-x+5/8, -x+3/8, 5/8)		(-x ₁ +1/2, -y ₁ , z ₁ +1/2)		
3	(3/8, x+1/4, 7/8)	(-x+1/8, x+1/8, 7/8)		(-x ₁ , y ₁ +1/2, -z ₁)		
4	(7/8,-x+1/2,3/8)	(x+3/8, -x+7/8, 3/8)	8d1	(x1+1/2, -y1+1/2, -z1+1/2)		
5	(-x+1/2, 3/8, 7/8)	(-x+1/8, -x+3/8, 7/8)	ouj	(-X1, -Y1, -Z1)		
6	(x+3/4, 3/8, 3/8)	(x+3/8, x+5/8, 3/8)		(x ₁ +1/2, y ₁ , -z ₁ +1/2)		
7	(9/8,-x+1/4,1/8)	(x+7/8, -x+7/8, 1/8)		(x ₁ , -y ₁ +1/2, z ₁)		
8	(5/8, x, 5/8)	(-x+5/8, x+1/8, 5/8)		(-x1+1/2, y1+1/2, z1+1/2)		
9	(5/8, x+1/2, 1/8)	(-x+1/8, x+5/8, 1/8)		(X2, Y2, Z2)		
10	(5/8,-x+1/4,5/8)	(x+3/8, -x+3/8, 5/8)		(-x ₂ +1/2, -y ₂ , z ₂ +1/2)		
11	(x+3/4,-1/8,7/8)	(x+7/8, x+1/8, 7/8)		(-x ₂ , y ₂ +1/2, -z ₂)		
12	(-x+1, 3/8, 3/8)	(-x+5/8, -x+7/8, 3/8)	8d2	(x2+1/2, -y2+1/2, -z2+1/2)		
13	(7/8, -x, 7/8)	(x+7/8, -x+3/8, 7/8)	δuz	(-X2, -Y2, -Z2)		
14	(7/8, x+1/4, 3/8)	(-x+5/8, x+5/8, 3/8)		(x ₂ +1/2, y ₂ , -z ₂ +1/2)		
15	(-x+3/4, 5/8, 1/8)	(-x+1/8, -x+7/8, 1/8)		(x ₂ , -y ₂ +1/2, z ₂)		
16	(x+1/2, 1/8, 5/8)	(x+3/8, x+1/8, 5/8)		(-x ₂ +1/2, y ₂ +1/2, z ₂ +1/2)		
17	(5/8, 5/8, x)	(0, 3/4, x)		(-x3+1/2, 3/4, z3+1/2)		
18	(5/8, 1/8, x+1/2)	(1/2, 1/4, x+1/2)	4c1	(x3, 1/4, z3)		
19	(3/8, 3/8, -x)	(0, 1/4, -x)	401	(x3+1/2, 1/4, -z3+1/2)		
20	(7/8, 3/8, -x+1/2)	(1/2, 3/4, -x+1/2)		(-x3, 3/4, -z3)		
21	(5/8, 1/8, -x+3/4)	(1/2, 1/4, -x+3/4)		(x4, 1/4, z4)		
22	(5/8, 5/8, -x+1/4)	(0, 3/4, -x+1/4)	4c2	(-x4+1/2, 3/4, z4+1/2)		
23	(7/8, 3/8, x+1/4)	(1/2, 3/4, x+1/4)	402	(-x4, 3/4, -z4)		
24	(3/8, 3/8, x+3/4)	(0, 1/4, x+3/4)		(x4+1/2, 1/4, -z4+1/2)		

Wyckoff Positions Splitting

227 (Fd-3m) [origin choice 2] > 62 (Pnma)

Splitting of Wyckoff position 16c

	Represe	entative	Subgroup Wyckoff position		
N٥	group basis	subgroup basis	name[n] representative		
1	(1/2, 1/2, 0)	(0, 1/2, 0)		(0, 1/2, 0)	
2	(3/4, 1/4, 1/2)	(1/2, 1/2, 1/2)	4a1	(1/2, 1/2, 1/2)	
3	(1/4, 1/4, 0)	(0,0,0)	401	(0, 0, 0)	
4	(1/2, 0, 1/2)	(1/2, 0, 1/2)		(1/2, 0, 1/2)	
5	(3/4, 0, 3/4)	(3/4, 1/4, 3/4)		(x ₂ , 1/4, z ₂)	
6	(1, 1/4, 1/4)	(3/4, 3/4, 1/4)	10.	(-x ₂ +1/2, 3/4, z ₂ +1/2)	
7	(3/4, 1/2, 1/4)	(1/4, 3/4, 1/4)	4c1	(-x ₂ , 3/4, -z ₂)	
8	(1/2, 1/4, 3/4)	(1/4, 1/4, 3/4)		(x ₂ +1/2, 1/4, -z ₂ +1/2)	

Wyckoff Positions Splitting

227 (Fd-3m) [origin choice 2] > 62 (Pnma)

Splitting of Wyckoff position 8b

	Represe	entative	Subgroup Wyckoff position		
No	group basis	subgroup basis	name[n]	representative	
1	(3/8, 3/8, 3/8)	(0, 1/4, 3/8)		(x ₁ , 1/4, z ₁)	
2	(7/8, 3/8, 7/8)	(1/2, 3/4, 7/8)	4c1	(-x1+1/2, 3/4, z1+1/2)	
3	(5/8, 5/8, 5/8)	(0, 3/4, 5/8)	401	(-x ₁ , 3/4, -z ₁)	
4	(5/8, 1/8, 1/8)	(1/2, 1/4, 1/8)		(x1+1/2, 1/4, -z1+1/2)	

WYCKSPLIT

			WYCKSPLIT
Archtype structure	Transformed	Refined	
Fd-3m	Pnma	Pnma	
F1 (48f)	$\rightarrow 0.815, 0.065, 0.875$	$\rightarrow 0.313, 0.055, 0.868$	=F1
	$\rightarrow 0.685, 0.435, 0.625$	$\rightarrow 0.199, 0.440, 0.622$	=F2
0.31, 1/8, 1/8	$\rightarrow 0.0, 0.25, 0.006$	$\rightarrow 0.493. 0.250, 0.071$	=F3
	$\rightarrow 0.5, 0.25, 0.81$	$\rightarrow 0.008, 0.250, 0.813$	=F4
B/B'(16c)	$\rightarrow 0.5, 0.0, 0.5$	$\rightarrow 0.0, 0.0, 0.5$	=In1/Mg1
0,0,0	$\rightarrow 0.75, 0.25, 0.75$	$\rightarrow 0.255, 0.25, 0.75$	=In2/Mg2
A(8b)	$\rightarrow 0.0, 0.25, 3/8$	\rightarrow 0.498, 0.25, 0.378	=Cs
3/8, 3/8, 3/8			

Pnma (transformed) \rightarrow Pnma (refined)

Origin shift ½,0,0

Equivalent Descriptions of Crystal Structures

Structure Data					Examinar		
[in CIF format] HINT: [The option for a given filename is preferential]							
	62						
	7.5285 7	.5285 1	.0.6459 9	0 90 90			
	In 1	4b	0.0	0.0	0.5		
	In 2	4c	0.2552	0.250000			
	Cs 1 F 1	4c		0.2500	0.37811		
	F 1 F 2	8d 8d		0.0549 0.4399	0.8676 0.6220		
	F 3	4c	0.4931		0.0710		
	F 4	4c	0.0081	0.25	0.8134		
Structure							

Show

Equivalent Descriptions of Crystal Structures

Space Group: 62 (Pnma)

Euclidean Normalizer for General Metrics: (Pmmm) 1/2a,1/2b,1/2c

Additional coset representatives:

x,y,z x+1/2,y,z x,y+1/2,z x,y,z+1/2 x+1/2,y+1/2,z x+1/2,y,z+1/2 x,y+1/2,z+1/2 x+1/2,y+1/2,z+1/2

Number of crystallographic equivalent descriptions: 8

Permitted origins:

0,0,0 1/2,0,0 0,1/2,0 0,0,1/2 1/2,1/2,0 1/2,0,1/2 0,1/2,1/2 1/2,1/2,1/2

Structure number 2

Normalizer coset representative: x+1/2,y,z

Transformed unit cell:

7.5285 7.5285 10.6459 90.000 90.000 90.000

Transformed structure:

AT.	WP	ss	Representative	Atomic orbit				
ln1	4a (0,0,0)	-1	(0.500000,0.000000,0.500000)	(0.500000,0.000000,0.500000) (0.000000,0.000000,0.000000) (0.500000,0.500000,0.500000) (0.000000,0.500000,0.000000)				
In2	4c (x,1/4,z)	.m.	(0.755200,0.250000,0.747580)	(0.755200,0.250000,0.747580) (0.744800,0.750000,0.247580) (0.244800,0.750000,0.252420) (0.255200,0.250000,0.752420)				
Cs1	4c (x,1/4,z)	.m.	(0.997900,0.250000,0.378110)	(0.997900,0.250000,0.378110) (0.502100,0.750000,0.878110) (0.002100,0.750000,0.621890) (0.497900,0.250000,0.121890)				
F1	8d (x,y,z)	1	(0.812600,0.054900,0.867600)	(0.812600,0.054900,0.867600) (0.687400,0.945100,0.367600) (0.187400,0.554900,0.132400) (0.312600,0.445100,0.632400) (0.312600,0.945100,0.132400) (0.312600,0.054900,0.632400) (0.812600,0.445100,0.867600) (0.687400,0.554900,0.367600)	F2	F2 8d (x,y,z)	F2 8d (x,y,z) 1	F2 8d (x,y,z) 1 (0.699100,0.439900,0.622000)
					F3	F3 4c (x,1/4,z)	F3 4c (x,1/4,z) .m.	F3 4c (x,1/4,z) .m. (0.993100,0.250000,0.071000)
					F4	F4 4c (x,1/4,z)	F4 4c (x,1/4,z) .m.	F4 4c (x,1/4,z) .m. (0.508100,0.250000,0.813400)

Diffraction pattern

subgroup relations → possible space groups and corresponding twin domain structures

Trial refinements in different space groups

Final model

Pseudosymmetry analysis

Pseudosymmetry search

Formulae	CsMgInF6				
Structure data				Examinar	
[in CIF format]	HINT: [The option for	a given filer	name is preferential		
Initial Structure (LS)	F 1 8d F 2 8d F 3 4c	0.0 0.2552 0.4979 0.3126 0.1991 0.4931	0 90 90 0.0 0.5 0.250000 0.7 0.2500 0.37811 0.0549 .8676 0.4399 0.6220 0.25 0.0710 0.25 0.8134	4758	y search.
Siluciale (ES)				 Minimal supergroups Supergroups with k-index Specify supergroup transformation 	 [Show only indices in supergroups table] i_k: 1 × G: 221
				— Transf. Matrix — (in option 3 only)	Rotational part Origin Shift 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0
				4. Lattice Pseudosymmetry with minimal supergroups	○ Ang. Tol (in degrees) 5 [*]
				[*] Only for triclinics and monoclinics.	
				Enter the tolerance (maximum allowed distar	nce) for pseudosymmetry search.
				Maximum ∆: 1	

PSEUDO

Select minimal supergroups of space group *Pnma* (62)

The next step is to select the supergroups which the pseudosymmetry should be searched for. Each supergroup in the table can be selected I marking the corresponding checkbox.

No. #	Select	HM Symb.	IT Numb.	Index	Index i _k	Transformation (P,p)	Transformed Cell
1	>	Pbam	055	2	2	a,-2c,b ;0,0,0	7.5285 10.6459 3.7643 90.00 90.00 90.00
2	▼	Pbcm	057	2	2	b,c,2a ; 0,0,0	5.3229 7.5285 7.5285 90.00 90.00 90.00
3		Pmmn	059	2	2	2c,b,-a ;0,0,0	10.6459 7.5285 3.7643 90.00 90.00 90.00
4	✓	Pnma	062	3	3	3a,b,c ; 0,0,0	2.5095 7.5285 10.6459 90.00 90.00 90.00
5		Pnma	062	3	3	a,3b,c ; 0,0,0	7.5285 2.5095 10.6459 90.00 90.00 90.00
6		Pnma	062	3	3	a,b,3c ; 0,0,0	7.5285 7.5285 3.5486 90.00 90.00 90.00
7	~	Pnma	062	5	5	5a,b,c ; 0,0,0	1.5057 7.5285 10.6459 90.00 90.00 90.00
8		Pnma	062	5	5	a,5b,c ; 0,0,0	7.5285 1.5057 10.6459 90.00 90.00 90.00
9	~	Pnma	062	5	5	a,b,5c ; 0,0,0	7.5285 7.5285 2.1292 90.00 90.00 90.00
10		Pnma	062	7	7	7a,b,c ; 0,0,0	1.0755 7.5285 10.6459 90.00 90.00 90.00
11		Pnma	062	7	7	a,7b,c ; 0,0,0	7.5285 1.0755 10.6459 90.00 90.00 90.00
12		Pnma	062	7	7	a,b,7c ; 0,0,0	7.5285 7.5285 1.5208 90.00 90.00 90.00
13		Cmcm	063	2	2	b,c,a ; 0,0,0	10.6459 7.5285 7.5285 90.00 90.00 90.00
14	~	Cmcm	063	2	2	c,a,b ; 1/4,1/4,0	7.5285 10.6459 7.5285 90.00 90.00 90.00
15	~	Cmca	064	2	2	-b,a,c ; 1/4,1/4,0	7.5285 7.5285 10.6459 90.00 90.00 90.00
16		Imma	074	2	2	a,b,c ; 0,0,0	7.5285 7.5285 10.6459 90.00 90.00 90.00

Summary search results

PSEUDO

Pseudosymmetry search among minimal supergroups.

16	<i>lmma</i> (074)	2	2	a,b,c ; 0,0,0	[[[1 0 0	0 1 0	0] [0] [1] [0] 0] 0.1468 0.0734
----	-------------------	---	---	----------------------	-------------	-------------	-------------	-------------------------	------------------------

Idealized structures

16# Supergroup Imma (074): a,b,c ; 0,0,0 and index 2

Displacements:

Atom	Idealized Coordinates	u _x	uy	uz	u
ln1	(0.0000, 0.0000, 0.5000)	0.000000	0.000000	0.000000	0.0000
In2	(0.2500, 0.2500, 0.7500)	0.005200	0.000000	-0.002420	0.0469
Cs1	(0.5000, 0.2500, 0.3781)	-0.002100	0.000000	0.000000	0.0158
F1	(0.3067, 0.0575, 0.8728)	0.005850	-0.002600	-0.005200	0.0734
F2	(0.1933, 0.4425, 0.6272)	0.005850	-0.002600	-0.005200	0.0734
F3	(0.5000, 0.2500, 0.0710)	-0.006900	0.000000	0.000000	0.0519
F4	(0.0000, 0.2500, 0.8134)	0.008100	0.000000	0.000000	0.0610

NOTE: u_x , u_y and u_z are given in relative units. |u| is the absolute displacement given in Å

PSEUDO

Idealized structure (subgroup setting):

62					
7.5285	5 7.5	5285	5 10.6459	90.00	90.00 90.00
7					
In	1	_	0.0000	0.0000	0.5000
In	2	_	0.2500	0.2500	0.7500
Cs	1	_	0.5000	0.2500	0.3781
F	1	_	0.3067	0.0575	0.8728
F	2	_	0.1933	0.4425	0.6272
F	3	_	0.5000	0.2500	0.0710
F	4	_	0.0000	0.2500	0.8134

Idealized structure (supergroup setting):

074					
7.5285	5 7.5	5285	5 10.6459	9 90.00 9	90.00 90.00
6					
In	1	_	0.0000	0.0000	0.5000
In	2	_	0.2500	0.2500	0.7500
Cs	1	_	0.5000	0.2500	0.3781
F	1	_	0.3068	0.0575	0.8728
#F	2	_	0.1933	0.4425	0.6272
F	3	_	0.5000	0.2500	0.0710
F	4	_	0.0000	0.2500	0.8134

Notes:

- Idealized structure with space group 074 related with the given by the transformation a,b,c; 0,0,0 and index 2
- Cell parameters have not been symmetrized. They may include in general some symmetry breaking strain, to be removed by hand.
- A commented atom means a redundant atom, due to the merging of the Wyckoff orbit with another one in the supergroup

Pseudosymmetry search full report

PSEUDO

16# Supergroup Imma (074): a,b,c ; 0,0,0 and index 2

Transformation matrix: a,**b**,**c** : 0,0,0 (index = 2)

[1	0	0]	[0]
[0	1	0]	[0]
[0	0	1]	[0]

Coset representative: -x,-y+1/2,z

Maximum distance: 0.1468

Pairings and distances:

Atom in S	Coordinates in H	Atom in gS	Coordinates in gH
-----------	------------------	------------	-------------------

L	L		
F1[1]	(0.312600,0.054900,0.867600)	F2[6]	(-0.312600,0.445100,0.867600)
F1[2]	(0.187400,0.945100,0.367600)	F2[5]	(-0.187400,-0.445100,0.367600)
F1[3]	(0.687400,0.554900,0.132400)	F2[8]	(-0.687400,-0.054900,0.132400)
F1[4]	(0.812600,0.445100,0.632400)	F2[7]	(-0.812600,0.054900,0.632400)
F1[5]	(0.687400,0.945100,0.132400)	F2[2]	(-0.687400,-0.445100,0.132400)
F1[6]	(0.812600,0.054900,0.632400)	F2[1]	(-0.812600,0.445100,0.632400)
F1[7]	(0.312600,0.445100,0.867600)	F2[4]	(-0.312600,0.054900,0.867600)
F1[8]	(0.187400,0.554900,0.367600)	F2[3]	(-0.187400,-0.054900,0.367600)

Formulae	CsMgInF6								
Structure data					Examinar				
[in CIF format]	HINT: [The op	otion	for a given filer	name is prefe	ferential]				
	74								
	7.5285 7.5285 10.6459 90 90 90								
	In 1	_	0.0	0.0	0.5				
	In 2	-	0.25	0.25	0.75				
	Cs 1	-	0.50	0.25	0.3781				
	F 1 F 3	_	0.3068 0.50	0.0575 0.25	0.8728 0.0710				
	F 4	_	0.00	0.25	0.8134				
Initial									
Structure (LS)									

PSEUDO

Summary search results

Pseudosymmetry search among minimal supergroups.

Case #	Supergroup G	Index i	Index i _k	(P,p)			Tr. M	atrix		Δ_{max}	u _{max}
14	l4 ₁ /amd (141)	2	1	a,b,c ; 1/2,0,0	[[[1 0 0	0 1 0	0] [0] [1] [1/2] 0] 0]	0.0809	0.0405

PSEUDO

Formulae	CsMgInF6					
Structure data	HINT: [The c	ntion f	ior o givon filo	nama ia profe	prontial 1	Examinar
[in CIF format]	141 7.5285 7. 4 In 1 Cs 1	5285 _ _	10.6459 9 0.5 0.00 0.8072		0.5 0.3750 0.8750	
Initial Structure (LS)						

Case #	Supergroup G	Index i	Index i _k	(P,p)	Tr. Matrix	Δ_{max}	u _{max}
7	Fd-3m (227)	3	1	1/2a-1/2b,1/2a+1/2b,c ;1/4,1/4,0	$\begin{bmatrix} 1/2 & 1/2 & 0 \end{bmatrix} \begin{bmatrix} 1/4 \end{bmatrix}$ $\begin{bmatrix} -1/2 & 1/2 & 0 \end{bmatrix} \begin{bmatrix} 1/4 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$		0.0046

Idealized structure (subgroup setting):

```
141
7.5285 7.5285 10.6459 90.00 90.00 90.00
4
            0.5000
                   0.0000
                            0.5000
In
     1
         ----
     1 - 0.0000 0.2500
Cs
                           0.3750
F
     1
         - 0.8074 0.0573
                           0.8750
F
     3
            0.0000 0.2500
                           0.0676
         ____
```

Idealized structure (supergroup setting):

```
227
10.6469 10.6469 10.6459 90.00 90.00 90.00
3
         - 0.5000 0.0000 0.5000
In
     1
Cs
     1 –
            0.3750 0.3750 0.3750
            0.6824 0.8750 0.8750
F
     1
         —
#Ε
      3
             0.3750 0.3750 0.0676
          _
```

Crystal-chemical relationships

Table 1. Selected information on ternary and quarternary fluorides with pyrochlore related structures; ratio of ionic radius (r) calculated on the values given by [18].

NH ₄ CoAlF ₆	10.0487(3)			$Fd\overline{3}m$	1.17	[22]
RbMgNiF ₆	9.978			$Fd\overline{3}m$	1.23	[2]
RbNiCoF ₆	10.183			$Fd\overline{3}m$	1.21	[2]
RbCoCrF ₆	10.277(5)			$Fd\overline{3}m$	1.05	[23]
RbNiCrF ₆	10.21			$Fd\overline{3}m$	1.10	[24]
CsNiAlF ₆	10.06			$Fd\overline{3}m$	1.23	[25]
CsNiFeF ₆	10.35			$Fd\overline{3}m$	1.20	[25]
CsNiNiF ₆	7.122	7.350	10.025	Imma	1.19	[2]
RbNiNiF ₆	6.946	7.333	9.768	Imma	1.19	[2]
CsCuCuF ₆	7.067(1)	7.277(1)	10.322(1)	Imma	1.28	[3]
CsAgFeF ₆	7.338	7.564	10.554	Pnma	1.57	[19]
CsAgAlF ₆	7.38	7.241	10.352	Pnma	1.60	[19]
KCuAlF ₆	6.731(1)	7.040(1)	9.793(1)	Pnma	1.29	[3]
RbPdAIF ₆	7.2901(1)	7.111(1)	10.065(2)	Pnma	1.48	[20]
CsPdAlF ₆	7.523(1)	7.161(1)	10.258(1)	Pnma	1.48	[21]
NH ₄ CoAlF ₆	7.134(1)	7.052(2)	9.930(2)	Pnma	1.17	[22]

CsAgAlF₆, CsPdAlF₆, NH₄CoAlF₆

Exercise 1: KCuCrF₆

Space group $P2_1/c$

Lattice parameter: a = 7.256 Å, b = 9.933 Å, c = 6.750Å, β = 92.61°

	X	У	Ζ
Cu 1 4e	0.2534	0.2660	0.8172
Cr 1 2b	0.5	0	0
Cr 2 2a	0	0	0
K 1 4e	0.2429	0.8844	0.4956
F 1 4e	0.9811	0.1663	0.8726
F 2 4e	0.5068	0.8239	0.1041
F 3 4e	0.2475	0.3290	0.0783
F 4 4e	0.7531	0.0183	0.0799
F 5 4e	0.0732	0.0851	0.2412
F 6 4e	0.5560	0.5649	0.2499

Exercise 1:

Is the structure of KCuCrF₆ related to the pyrochlore structures?

If yes, what is the relationship?

How many twin domains would you expect to form in this compound?

Exercise 2:

Compare the pseudosymmetry of CsMgInF₆, CsPdAlF₆ and CsNiNiF₆ with respect to space group Fd-3m.

If you disregard the disorder on the B/B'-site, which of the three structures has the highest pseudosymmetry? Exercise 3: Group-subgroup relations in the Pyrochlore family

Looking at the group subgroup relationships in the fluoride pyrochlore family, it is striking that there are no compounds crystallizing in space group I4₁/amd.

Can you find an explanation?

Exercise 4: Twinning in Ag₄Mn₃O₈

 $Ag_4Mn_3O_8$ is a Ag ionic conductor. It crystallizes in space group P3121 with lattice parameter a=12.5919(1) and c=15.4978(1)Å.

The investigated crystal is a fourfold twin.

Can you find a relationship between the crystal structure and the formation of twins?