Phase transitions with no group-subgroup relations between the phases

Michele Catti

*Dipartimento di Scienza dei Materiali, Universita' di Milano
Bicocca, Milano, Italy*

International School on the Use and Applications of the Bilbao Crystallographic Server

Lekeitio, Spain, 21-27 June 2009
Buerger's classification of structural phase transitions

reconstructive: primary (first-coordination) chemical bonds are broken and reconstructed \rightarrow discontinuous enthalpy and volume changes \rightarrow first-order thermodynamic character (coexistence of phases at equilibrium, hysteresis and metastability)

displacive: secondary (second-coordination) chemical bonds are broken and reconstructed, primary bonds are not \rightarrow small or vanishing enthalpy and volume changes \rightarrow second-order or weak first-order thermodynamic character

order/disorder: the structural difference is related to different chemical occupation of the same crystallographic sites, leading to different sets of symmetry operators in the two phases \rightarrow vanishing enthalpy and volume changes \rightarrow second-order thermodynamic character
Symmetry aspects of Buerger’s phase transitions

♦ Displacive and second-order phase transitions:
 - the space group symmetries of the two phases show a group/subgroup relationship
 - the low-symmetry phase approaches the transition to higher symmetry continuously;
 - the order parameter η measures the 'distance' of the low-symmetry to the high-symmetry
 ($\eta=0$) structure

T-driven transition: usually the symmetry of the l.t. phase is a subgroup of that of the h.t. phase
p-driven transition: it is hard to predict which one of the two phases (l.p. and h.p.) is more
symmetric
Reconstructive phase transitions:
- the space group symmetries of the two phases are unrelated
- the transition is quite abrupt (no order parameter)

but:
- any kinetic mechanism of the transformation must be based on an intermediate structure whose space group is subgroup of both space groups of the two end phases
- the intermediate state transforms continuously from one to the other end phase, according to the change of the 'reaction coordinate', or kinetic order parameter

Examples of simple reconstructive phase transitions:

HCP to BCC, FCC to HCP and BCC to FCC in metals and alloys
rocksalt (Fm$\overline{3}$m) to CsCl-type (Pm$\overline{3}$m) structure in binary AB systems: C.N. changes from 6 to 8
zincblende (F$\overline{4}$3m) to rocksalt (Fm$\overline{3}$m) structure in binary AB systems: C.N. changes from 4 to 6
Mechanisms of reconstructive phase transitions and symmetry of the intermediate states

\[G_1 \text{ (S.G. of phase 1)} \rightarrow H \text{ (S.G. of intermediate state)} \rightarrow G_2 \text{ (S.G. pf phase 2)} \]

\[H \subset G_1, \; H \subset G_2, \; G_1 \not\subset G_2 \quad (1) \]

Let \(T_1, T_2 \) and \(T \) be the translation groups of \(G_1, G_2 \) and \(H \), respectively, and \(T_1 \subseteq T_2 \). Then:

\[T \subseteq T_1, \; T \subseteq T_2 \quad (2) \]

In the simplest case \(T_1=T_2 \), so that \(G_1 \) and \(G_2 \) have the same translation group (i.e., the primitive unit-cells of phases 1 and 2 have the same volume, except for a minor difference due to the \(\Delta V \) jump of first-order transitions).

The translation group of \(H \) may coincide with that of \(G_1 \) and \(G_2 \) \((T=T_1)\), but it may also be a subgroup of it \((T \subset T_1, \text{i.e., the volume of the primitive cell of the intermediate state is an integer multiple of that of the end phases, called the index } i_k \text{ of the superlattice})\).
The index of the superlattice T of T_1 is equal to the klassen-gleich index of the subgroup H of G_1. In the general case, we have then that:

\[
\frac{i_{k,1}}{i_{k,2}} = V_2/V_1.
\]

V, V_1 and V_2 are the volumes of the primitive unit-cells associated to subgroup H and groups G_1 and G_2, respectively.

As the volume per formula-unit should be the same in all cases, it turns out that:

\[
\frac{V}{Z(H)} = \frac{V_1}{Z(G_1)} = \frac{V_2}{Z(G_2)}; \quad \text{it follows that:} \quad i_{k,1} = \frac{Z(H)}{Z(G_1)}, \quad i_{k,2} = \frac{Z(H)}{Z(G_2)},
\]

\[
\frac{i_{k,1}}{i_{k,2}} = \frac{V_2}{V_1} = \frac{Z(G_2)}{Z(G_1)}.
\]

In other words, the ratio of the two k-indexes of the subgroup H is inversely proportional to the ratio of the corresponding numbers of f.u. in the primitive unit-cell volumes of G_1 and G_2.

\[\text{M. Catti - Lekeitio 2009}\]
If a conventional centred (non-primitive) unit-cell is used, then the relations $V^c = f^c V$, $Z^c = f^c Z$ should be used, where f^c is the number of lattice points contained in the conventional cell.

The relation (3) gives the first general constraint on the determination of the common subgroups H.

The second important constraint concerns the atomic displacements during the reconstructive phase transition:

Atoms must remain in the same types of Wyckoff positions of H along the entire path $G_1 \rightarrow G_2$.

If that were not true, then the H symmetry would be broken to allow atoms to change their Wyckoff positions.

As a consequence, the Wyckoff positions of corresponding atoms in G_1 and G_2 must transform into the same Wyckoff position of the common subgroup H.

M. Catti - Lekeitio 2009
Systematic search for the common subgroups H of the symmetry groups G_1 and G_2:

The first step of a systematic search of the possible intermediate states involves the search for all common superlattices of phases 1 and 2.

$$
\{a_1\} \xrightarrow{Q_1} \{a\}, \quad \{a_2\} \xrightarrow{Q_2} \{a\}, \quad \{a_1\} \xrightarrow{Q_1Q_2^{-1}} \{a_2\}
$$

Q_1 and Q_2 are the transformation matrices from the primitive unit-cells of phases 1 and 2 to the primitive cell of the intermediate structure. Their components must be integer numbers.

$\det(Q_1)$ and $\det(Q_2)$ are the indexes $i_{k,1}$ and $i_{k,2}$ of the intermediate superlattice with respect to the lattices of phase 1 and 2, respectively. $Q_1Q_2^{-1}$ is the transformation matrix relating the lattices of the two end phases, for the transition mechanism considered - Important for a comparison with the experimental relative crystallographic orientation of the end phases (if available)!

M. Catti – Lekeitio 2009
Search for common superlattices: all possible combinations of two sets of nine integers, corresponding to the components of the Q_1 and Q_2 matrices, are considered.

Two limiting conditions:
- a reasonable limit on the maximum length of the primitive lattice basis vectors of T
- a reasonable limit on the total strain involved in the $T_1 \rightarrow T_2$ transformation, which can be calculated from the $Q_1 Q_2^{-1}$ matrix.

Once the superlattice T is defined, its symmetry point group P has to be found; Let P_1 and P_2 be the point groups of T_1 and T_2, respectively: then $P = P_1 \cap P_2$.

P is found simply by selecting the point group operators of G_1 and G_2 which, in the reference frame of T, are represented by matrices with integer components.

The point group P' of H must be a subgroup of P: $P' \subseteq P$.

P' and H are found by selecting, within the symmetry operators of G_1 and G_2, only those which are compatible with P and T.

* M. Catti - Lekeitio 2009
2) Program TRANPATH of the Bilbao Crystallographic Package

- A separate search is performed for the subgroups of G_1 and G_2, and the common subgroup types shared by both symmetry groups are determined (COMMONSUBS module), within the constraint of a maximum value of the i_k index: $i_{k,1} \leq i_k \leq i_{k,2}$. For a given common subgroup type H, the lists of all subgroups H_1^p ($p=1,\ldots,m$) $\subset G_1$ of the first branch, and of all subgroups H_2^q ($q=1,\ldots,n$) $\subset G_2$ of the second branch are obtained. The indexes p and q label different classes of conjugated subgroups; conjugated subgroups of the same class are completely equivalent and then they are represented by a single member of the class.

- Every H_1^p or H_2^q subgroup is associated to a transformation matrix Q relating the basis vectors of G_1 to those of the subgroup, according to $(a,b,c)_H = (a,b,c)_G Q$. This matrix is by no means unique, of course, because different basis can be chosen to represent the same lattice.
• Each pair \((H_1^p, H_2^q)\) defines an independent possible transformation path relating \(G_1\) and \(G_2\) with common subgroup type \(H\). Every path is checked for compatibility of the Wyckoff position splittings in the two \(G_1 \to H_1^p\) and \(G_2 \to H_2^q\) branches (WYCKSPLIT module). The WP's occupied by a given atom in \(G_1\) and \(G_2\) must give rise to the same WP for that atom in \(H\).

• The lattice strain in the \(H\) reference frame is computed for the \(G_1 \to G_2\) transformation, and its value is compared to a threshold given in input to TRANPATH.

• The coordinates of all independent atoms are computed in the \(H\) reference frame for the two \(G_1\) and \(G_2\) end structures. The corresponding atomic shifts are compared to a threshold value given in input to TRANPATH.

zincblende ($G_1 = F\bar{4}3m$) to rocksalt ($G_2 = Fm\bar{3}m$) structure in ZnS and SiC under pressure

Two examples of maximal common subgroups, giving rise to well-studied transition mechanisms:

$H = R3m, \text{Imm}_2$

$F\bar{4}3m$ (B3) $Z=4$ $M \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$ (4c, $\bar{4}3m$); $X 0, 0, 0$ (4a, $\bar{4}3m$) a_I

$Fm\bar{3}m$ (B1) $Z=4$ $M \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ (4b, $m\bar{3}m$); $X 0, 0, 0$ (4a, $m\bar{3}m$) a_{II}

Intermediate states:

$I - H = R3m$ $Z=1$ $M x, x, x$ (3a, 3m); $X 0, 0, 0$ (3a, 3m)

order parameter: $x(M) (\frac{1}{4} \rightarrow \frac{1}{2})
\[
\begin{align*}
\mathbf{F}_{\bar{4}3m} \rightarrow \mathbf{R}_{3m} & \quad Q_1 = \begin{bmatrix}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 0
\end{bmatrix} \quad Q_1^{-1} = \begin{bmatrix}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{bmatrix} \\
\mathbf{Fm\bar{3}m} \rightarrow \mathbf{R}_{3m} & \quad Q_2 = Q_1 = \begin{bmatrix}
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 0
\end{bmatrix} \\
\mathbf{F}_{\bar{4}3m} \rightarrow \mathbf{Fm\bar{3}m} & \quad Q_1 Q_2^{-1} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\end{align*}
\]

\(\mathbf{R}_{3m} (B3): \quad a_R = a_l/\sqrt{2}, \quad \alpha_R = 60^\circ; \quad \mathbf{R}_{3m} (B1): \quad a_R = a_{II}/\sqrt{2}, \quad \alpha_R = 60^\circ\)

\(\mathbf{I} - \mathbf{H} = \mathbf{Imm2} \quad Z=2 \quad \mathbf{M} \quad 0, \frac{1}{2}, z \left(\frac{1}{4} \rightarrow \frac{1}{2}\right) \quad (2b, \text{mm2}); \quad \mathbf{X} \quad 0, 0, 0 \quad (2a, \text{mm2})\)

Order parameter: \(z(M)\)

\[
\begin{align*}
\mathbf{F}_{\bar{4}3m} \rightarrow \mathbf{Imm2} & \quad Q_1 = \begin{bmatrix}
\frac{1}{2} & -\frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{bmatrix} \quad Q_1^{-1} = \begin{bmatrix}
1 & 1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\end{align*}
\]
$$\begin{align*}
\text{Fm}\bar{3}m \rightarrow \text{Imm2} & \quad Q_2 = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \end{bmatrix} \\
\text{F}\bar{4}3m \rightarrow \text{Fm}\bar{3}m & \quad Q_1Q_2^{-1} = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 1 & 1 & 0 \end{bmatrix}
\end{align*}$$

\text{Imm2 (B3): } a = b = a_l/\sqrt{2}, \quad c = a_l; \quad \text{Imm2 (B1): } b = c = a_{II}/\sqrt{2}, \quad a = a_{II} \quad \text{M. Catti - Lekeitio 2009}
Imm2 and R3m mechanisms of the B3/B1 high-pressure phase transition
Imm2 pathway of the B3/B1 phase transition of ZnS and SiC

B3(\overline{F}43m) → Imm2 → B1(Fm\overline{3}m)
Enthalpy of the intermediate state of SiC along the B3-B1 transformation path vs. order parameter ξ at several p values for two different pathways: Imm2 (closed symbols) and R3m (dashed lines)
Example: rocksalt ($G_1 = Fm\bar{3}m$) to CsCl-type ($G_2 = Pm\bar{3}m$) structure in NaCl under pressure

$Fm\bar{3}m$ (B1) $Z = 4$ M $0, 0, 0$ (4a, $m\bar{3}m$); X $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ (4b, $m\bar{3}m$) a_I

$Pm\bar{3}m$ (B2) $Z = 1$ M $0, 0, 0$ (1a, $m\bar{3}m$); X $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ (1b, $m\bar{3}m$) a_{II}

Intermediate states:

$I - H = Pmnn$ $Z = 2$ M $\frac{1}{4}, \frac{1}{4}, z$ ($\frac{1}{4} \rightarrow \frac{1}{2}$) (2a, mm2); X $\frac{1}{4}, \frac{3}{4}, z + \frac{1}{2}$ ($\frac{3}{4} \rightarrow 0$) (2b, mm2)

\[Q_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}, \quad Q_1^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix} \]

\[Q_2 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}, \quad Q_2^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix} \]

\[Q_1 Q_2^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{bmatrix}, \quad (Q_1 Q_2^{-1})^{-1} = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \]

M. Catti - Lekeitio 2009
Pmmn (B1): \(a = a_I, \quad b = c = a_I/\sqrt{2}; \quad Pmmn (B2): \quad a = b = a_{II}/\sqrt{2}, \quad c = a_{II}\)

II1 - H = R\overline{3}m \(Z = 1 \) \(M \quad 0, 0, 0 \) (3a, \(\overline{3}m \)); \(X \quad \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \) (3b, \(\overline{3}m \))

\[
\text{Fm}\overline{3}m \rightarrow R\overline{3}m \quad Q_1 = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix} \quad Q_1^{-1} = \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}
\]

\[
\text{Pm}\overline{3}m \rightarrow R\overline{3}m \quad Q_2 = Q_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

\[
\text{Fm}\overline{3}m \rightarrow \text{Pm}\overline{3}m \quad Q_1 Q_2^{-1} = Q_1 = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix} \quad (Q_1 Q_2^{-1})^{-1} = Q_1^{-1} = \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}
\]

\(R\overline{3}m \) (B1): \(a_R = a_I/\sqrt{2}, \quad \alpha_R = 60^\circ; \quad R\overline{3}m \) (B2): \(a_R = a_{II}, \quad \alpha_R = 90^\circ \)

\[M. \ Catti - Lekeitio 2009\]
II2 - H = P2₁/m

Z=2

M \times 1(\frac{1}{4}), \frac{1}{4}, z₁(0) \quad (2e, m);

X \times 2(\frac{3}{4}), \frac{1}{4}, z₂(\frac{1}{2}) \quad (2e, m)

\[
Fm\bar{3}m \rightarrow P2₁/m
Q₁ = \begin{bmatrix}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
1 & 0 & 0
\end{bmatrix}
Q₁^{-1} = \begin{bmatrix}
0 & 0 & 1 \\
1 & -1 & 0 \\
1 & 1 & -1
\end{bmatrix}
\]

\[
Pm\bar{3}m \rightarrow P2₁/m
Q₂ = \begin{bmatrix}
1 & -1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
Q₂^{-1} = \begin{bmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
-\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
Fm\bar{3}m \rightarrow Pm\bar{3}m
Q₁Q₂^{-1} = \begin{bmatrix}
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 0
\end{bmatrix}
(Q₁Q₂^{-1})^{-1} = \begin{bmatrix}
1 & -1 & 1 \\
1 & 1 & -1
\end{bmatrix}
\]

P₂₁/m (B₁): \quad a = a₁\sqrt{3/2}, \quad b = c = a₁/\sqrt{2}, \quad \beta = \arccos(1/\sqrt{3}) = 54.74°;

P₂₁/m (B₂): \quad a = b = a₁\sqrt{2}, \quad c = a₁, \quad \beta = 90°;

P₂₁/m (R\bar{3}m): \quad a = a₁[2(1+\cos\alpha₉)]^{1/2}, \quad b = a₁[2(1-\cos\alpha₉)]^{1/2}, \quad c = a₁, \quad \beta = \arccos[\cos\alpha₉/\cos(\alpha₉/2)]
II3 - R3m
\(Z=4 \)
\(M_1 \) 0, 0, 0 (3m);
\(M_2 \) \(x_1(1/2), x_1(1/2), z_1(0) \) (3m)
\(X_1 \) \(x_2(1/2), x_2(1/2), x_2(1/2) \) (3m);
\(X_2 \) \(x_3(0), x_3(0), z_2(1/2) \) (3m)

\[
\text{Fm}\overline{3}\text{m} \rightarrow \text{R3m} \quad Q_1 = Q_1^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

\[
\text{Pm}\overline{3}\text{m} \rightarrow \text{R3m}, \text{ R}\overline{3}\text{m} \rightarrow \text{R3m} \quad Q_2 = \begin{bmatrix} -1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & -1 \end{bmatrix} \quad Q_2^{-1} = \begin{bmatrix} 1 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{bmatrix}
\]

\[
\text{Fm}\overline{3}\text{m} \rightarrow \text{Pm}\overline{3}\text{m} \quad Q_1Q_2^{-1} = \begin{bmatrix} 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{bmatrix} \quad (Q_1Q_2^{-1})^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \end{bmatrix}
\]

R3m (B1): \(a_{R'} = a_I, \ \alpha_R = 90^\circ; \)

R3m (B2): \(a_{R'} = a_{II}\sqrt{3}, \ \alpha_R = \arccos(-1/3)=109.47^\circ; \)

R3m (R\overline{3}m): \(a_{R'} = a_R(3-2\cos\alpha_R)^{1/2}, \ \alpha_R = \arccos[(2\cos\alpha_R-1)/(3-2\cos\alpha_R)] \)

\textit{M. Catti – Lekeitio 2009}
R$\bar{3}$m pathway of the B1/B2 phase transition
Pmmn pathway of the B1/B2 phase transition

B1(Fm$\bar{3}$m) → Pmmn → B2(Pm$\bar{3}$m)
P2₁/m pathway of the B1/B2 phase transition

M. Catti – Lekeitio 2009
Enthalpy of the intermediate state of NaCl along the B1-B2 transformation path vs. order parameter ξ for three different pathways: rhombohedral $R\bar{3}m$, monoclinic $P2_1/m$ orthorhombic $Pmnn$.

M. Catti – Lekeitio 2009
Intermediate metastable Cmcm phase along the P2₁/m pathway:

TII-like structure with both Na and Cl in seven-fold coordination
Na-Cl8 (full diamonds) and Na-Cl7 (full triangles) interatomic distances versus the order parameter ξ along the P2$_1$/m pathway; open diamonds indicate the corresponding Na-Cl distance along the Pmmn path.
Enthalpy of the intermediate state of NaCl along the B1-B2 transformation path vs. order parameter \(\xi \) at three \(p \) values for two different pathways: \(P2_1/m \) (closed symbols) and \(Pmmn \) (open symbols).

\[M. Catti - Lekeitio 2009 \]
Multiple reconstructive phase transition of AgI under pressure (cf. Catti, PRB 2005)

zincblende \((G_1 = F\bar{4}3m)\) to anti-litharge \((G_2 = P4/nmm)\) to rocksalt \((G_3 = Fm\bar{3}m)\) structure

\[
\begin{align*}
F\bar{4}3m & \quad Z=4 \quad Ag \ (4a) \ 0, 0, 0; \quad I \ (4c) \ \frac{1}{4}, \frac{1}{4}, \frac{1}{4}; \quad a_I \\
P4/nmm & \quad Z=2 \quad Ag \ (2a) \ 0,0,0; \quad I \ (2c) \ 0, \frac{1}{2}, z; \quad origin \ 1 \quad a_{III}, c_{III} \\
& \quad Ag \ (2a) \ \frac{1}{4}, -\frac{1}{4}, z; \quad I \ (2c) \ \frac{1}{4}, \frac{1}{4}, z; \quad origin \ 2 \\
Fm\bar{3}m & \quad Z=4 \quad Ag \ (4a) \ 0, 0, 0; \quad I \ (4b) \ \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \quad a_{II}
\end{align*}
\]

Transformation pathway within the non-maximal common subgroup \(Pm\) (derived from maximal common subgroup \(Pmm2\)):

Intermediate state:

\[
\begin{align*}
Pm & \quad Z=2 \quad Ag_1 \ (1a) \ 0,0,0; \quad Ag_2 \ (1b) \ x(Ag2), \frac{1}{2}, z(Ag2); \\
& \quad I_1 \ (1b) \ x(I1), \frac{1}{2}, z(I1); \quad I_2 \ (1a) \ x(I2), 0, z(I2)
\end{align*}
\]

Order parameter : \(z(Ag2) \ \left(\frac{1}{2} \rightarrow 0 \right)\)
\[
\begin{align*}
F\bar{4}3m \rightarrow Pm & \quad Q_1 = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} & \quad Q_1^{-1} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\
P4/nmm \rightarrow Pm & \quad Q_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\
F\bar{4}3m \rightarrow P4/nmm & \quad Q_1Q_2^{-1} = Q_1 = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \\
Fm\bar{3}m \rightarrow Pm & \quad Q_3 = \begin{bmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix} & \quad Q_3^{-1} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \\
P4/nmm \rightarrow Fm\bar{3}m & \quad Q_2Q_3^{-1} = Q_3^{-1} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}
\end{align*}
\]

Pm (zincblende): \(a = b = a_I/\sqrt{2}, \quad c = a_I \);

Pm (anti-litharge): \(a = b = a_{III}, \quad c = c_{III} \)

Pm (rocksalt): \(a = c = a_{II}/\sqrt{2}, \quad b = a_{II} \)

M. Catti - Lekeitio 2009
Pm monoclinic mechanisms for the zincblende (a) to anti-litharge (d), and anti-litharge (d) to rocksalt (f) phase transformations of AgI. The pseudo-orthorhombic Bmm2 intermediate state (c) is present in both pathways.
Theoretical enthalpy differences $H - H(\text{F}43\text{m})$ plotted vs. pressure for the AgI phases $\text{P}4/\text{nmm}$ (anti-litharge, circles), $\text{Fm}3\text{m}$ (rocksalt, squares), and $\text{Bmm}2$ (metastable phase, diamonds). Vertical lines bound the predicted pressure stability fields.
Theoretical enthalpy difference $H(z(\text{Ag2})) - H(\text{zincblende})$ for the monoclinic Pm intermediate state of AgI along the zincblende to anti-litharge (open circles), and anti-litharge to rocksalt (full triangles) phase transitions. Zincblende/anti-litharge (left) and anti-litharge/rocksalt (right) equilibrium pressures.
Theoretical molecular volume for the monoclinic Pm intermediate state of AgI along the zincblende to anti-litharge (open circles), and anti-litharge to rocksalt (full triangles) phase transitions at $p = 1.15$ GPa.
Cell constants and atomic fractional coordinates of the Pm monoclinic intermediate state of AgI along the $F\bar{4}3m$ (zinc-blende) to $P4/nmm$ (anti-litharge) phase transformation, optimized for fixed $z(\text{Ag2})$ order parameter at the equilibrium pressure 1.15 GPa. Coordinates constrained by symmetry: $x(\text{Ag1})=y(\text{Ag1})=z(\text{Ag1})=y(\text{I2})=0$; $y(\text{Ag2})=y(\text{I1})=1/2$. The enthalpy values per formula unit, referred to that of the $F\bar{4}3m$ phase, are also given.

<table>
<thead>
<tr>
<th>$z(\text{Ag2})$</th>
<th>a/Å</th>
<th>b/Å</th>
<th>c/Å</th>
<th>β/deg</th>
<th>x(\text{Ag2})</th>
<th>x(\text{I1})</th>
<th>z(\text{I1})</th>
<th>x(\text{I2})</th>
<th>z(\text{I2})</th>
<th>ΔH/eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>4.709</td>
<td>4.709</td>
<td>6.660</td>
<td>90</td>
<td>0.5</td>
<td>0</td>
<td>0.25</td>
<td>0.5</td>
<td>0.75</td>
<td>0</td>
</tr>
<tr>
<td>0.55</td>
<td>4.858</td>
<td>4.852</td>
<td>6.228</td>
<td>87.39</td>
<td>0.4171</td>
<td>0.9585</td>
<td>0.2706</td>
<td>0.5114</td>
<td>0.7673</td>
<td>0.0383</td>
</tr>
<tr>
<td>0.60</td>
<td>5.005</td>
<td>4.931</td>
<td>5.754</td>
<td>85.88</td>
<td>0.3049</td>
<td>0.9206</td>
<td>0.2631</td>
<td>0.5147</td>
<td>0.7523</td>
<td>0.0843</td>
</tr>
<tr>
<td>0.65</td>
<td>5.058</td>
<td>5.055</td>
<td>5.350</td>
<td>87.51</td>
<td>0.2325</td>
<td>0.9013</td>
<td>0.2367</td>
<td>0.4989</td>
<td>0.7163</td>
<td>0.0864</td>
</tr>
<tr>
<td>0.70</td>
<td>5.004</td>
<td>5.065</td>
<td>5.283</td>
<td>89.95</td>
<td>0.1892</td>
<td>0.8947</td>
<td>0.2355</td>
<td>0.4853</td>
<td>0.6991</td>
<td>0.0624</td>
</tr>
<tr>
<td>0.75</td>
<td>4.745</td>
<td>5.452</td>
<td>4.796</td>
<td>100.12</td>
<td>0.1934</td>
<td>0.8049</td>
<td>0.1634</td>
<td>0.3901</td>
<td>0.5891</td>
<td>0.0380</td>
</tr>
<tr>
<td>0.80</td>
<td>4.801</td>
<td>5.390</td>
<td>4.787</td>
<td>100.39</td>
<td>0.2207</td>
<td>0.8194</td>
<td>0.1931</td>
<td>0.4013</td>
<td>0.6074</td>
<td>0.0347</td>
</tr>
<tr>
<td>0.85</td>
<td>4.864</td>
<td>5.313</td>
<td>4.808</td>
<td>99.99</td>
<td>0.2536</td>
<td>0.8385</td>
<td>0.2213</td>
<td>0.4149</td>
<td>0.6286</td>
<td>0.0385</td>
</tr>
<tr>
<td>0.90</td>
<td>4.750</td>
<td>5.035</td>
<td>5.418</td>
<td>96.12</td>
<td>0.3120</td>
<td>0.8680</td>
<td>0.2399</td>
<td>0.4436</td>
<td>0.6603</td>
<td>0.0416</td>
</tr>
<tr>
<td>0.95</td>
<td>4.389</td>
<td>4.662</td>
<td>6.467</td>
<td>91.14</td>
<td>0.4614</td>
<td>0.9730</td>
<td>0.2643</td>
<td>0.4884</td>
<td>0.6856</td>
<td>0.0161</td>
</tr>
<tr>
<td>1.00</td>
<td>4.474</td>
<td>4.474</td>
<td>6.610</td>
<td>90</td>
<td>0.5</td>
<td>0</td>
<td>0.2885</td>
<td>0.5</td>
<td>0.7115</td>
<td>0</td>
</tr>
</tbody>
</table>

M. Catti – Lekeitio 2009
Cell constants and atomic fractional coordinates of the Pm monoclinic intermediate state of AgI along the P4/nmm (anti-litharge) to Fm$\bar{3}$m (rock-salt) phase transformation, optimized for fixed z(Ag2) order parameter at the equilibrium pressure 1.64 GPa. The enthalpy values per formula unit, referred to that of the P4/nmm phase, are also given.

<table>
<thead>
<tr>
<th>z(Ag2)</th>
<th>a/Å</th>
<th>b/Å</th>
<th>c/Å</th>
<th>β/deg</th>
<th>x(Ag2)</th>
<th>x(I1)</th>
<th>z(I1)</th>
<th>x(I2)</th>
<th>z(I2)</th>
<th>ΔH/eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>4.450</td>
<td>4.450</td>
<td>6.500</td>
<td>90</td>
<td>0.5</td>
<td>1</td>
<td>0.2938</td>
<td>0.5</td>
<td>0.7062</td>
<td>0</td>
</tr>
<tr>
<td>0.95</td>
<td>4.349</td>
<td>4.628</td>
<td>6.411</td>
<td>91.08</td>
<td>0.4631</td>
<td>0.9727</td>
<td>0.2684</td>
<td>0.4887</td>
<td>0.6816</td>
<td>0.0152</td>
</tr>
<tr>
<td>0.90</td>
<td>4.821</td>
<td>5.102</td>
<td>5.085</td>
<td>97.11</td>
<td>0.3087</td>
<td>0.8688</td>
<td>0.2467</td>
<td>0.4427</td>
<td>0.6534</td>
<td>0.0354</td>
</tr>
<tr>
<td>0.85</td>
<td>4.844</td>
<td>5.314</td>
<td>4.751</td>
<td>100.18</td>
<td>0.2536</td>
<td>0.8377</td>
<td>0.2233</td>
<td>0.4157</td>
<td>0.6266</td>
<td>0.0254</td>
</tr>
<tr>
<td>0.80</td>
<td>4.773</td>
<td>5.377</td>
<td>4.754</td>
<td>100.43</td>
<td>0.2209</td>
<td>0.8183</td>
<td>0.1945</td>
<td>0.4026</td>
<td>0.6058</td>
<td>0.0205</td>
</tr>
<tr>
<td>0.75</td>
<td>4.707</td>
<td>5.439</td>
<td>4.770</td>
<td>100.06</td>
<td>0.1945</td>
<td>0.8028</td>
<td>0.1641</td>
<td>0.3921</td>
<td>0.5876</td>
<td>0.0241</td>
</tr>
<tr>
<td>0.70</td>
<td>4.558</td>
<td>5.817</td>
<td>4.559</td>
<td>97.25</td>
<td>0.2994</td>
<td>0.8684</td>
<td>0.1315</td>
<td>0.4316</td>
<td>0.5684</td>
<td>0.0342</td>
</tr>
<tr>
<td>0.65</td>
<td>4.430</td>
<td>6.081</td>
<td>4.354</td>
<td>90.60</td>
<td>0.4776</td>
<td>0.9834</td>
<td>0.1121</td>
<td>0.4932</td>
<td>0.5380</td>
<td>0.0224</td>
</tr>
<tr>
<td>0.60</td>
<td>4.389</td>
<td>6.127</td>
<td>4.356</td>
<td>90.26</td>
<td>0.4856</td>
<td>0.9092</td>
<td>0.0749</td>
<td>0.4958</td>
<td>0.5262</td>
<td>0.0090</td>
</tr>
<tr>
<td>0.55</td>
<td>4.364</td>
<td>6.156</td>
<td>4.356</td>
<td>90.09</td>
<td>0.4890</td>
<td>0.9905</td>
<td>0.0407</td>
<td>0.4965</td>
<td>0.5145</td>
<td>0.0013</td>
</tr>
<tr>
<td>0.50</td>
<td>4.356</td>
<td>6.161</td>
<td>4.356</td>
<td>90</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>

M. Catti – Lekeitio 2009
References

Catti, M *Phys. Rev. Lett.* **87** 035504 (2001)

