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Abstract. The Bilbao Crystallographic Server is a web
site with crystallographic databases and programs available
on-line at www.cryst.ehu.es. It has been operating for
about six years and new applications are being added reg-
ularly. The programs available on the server do not need a
local installation and can be used free of charge. The only
requirement is an Internet connection and a web browser.

The server is built on a core of databases, and contains
different shells. The innermost one is formed by simple
retrieval tools which serve as an interface to the databases
and permit to obtain the stored symmetry information for
space groups and layer groups. The k-vector database in-
cludes the Brillouin zones and the wave-vector types for
all space groups. As a part of the server one can find also
the database of incommensurate structures. The second
shell contains applications which are essential for prob-
lems involving group-subgroup relations between space
groups (e.g. subgroups and supergroups of space groups,
splittings of Wyckoff positions), while the third shell con-
tains more sophisticated programs for the computation of
space-group representations and their correlations for
group-subgroup related space groups. There are also pro-
grams for calculations focused on specific problems of so-
lid-state physics. The aim of the article is to report on the
current state of the server and to provide a brief descrip-
tion of the accessible databases and crystallographic com-
puting programs. The use of the programs is demonstrated
by illustrative examples.

1. Introduction

The Bilbao Crystallographic Server, URL http://www.cryst.
ehu.es, is a web site with crystallographic databases and
programs. It can be used free of charge from any compu-
ter with a web browser via Internet.

The server is built on a core of databases and contains
different shells. The set of databases includes data from
International Tables, Vol. A: Space-group symmetry, and
the data of maximal subgroups of space groups and plane
groups of index 2, 3 and 4 listed in the International Ta-
bles Vol. A1: Symmetry relations between Space Groups.
Recently, we have started with the development of data-
bases for the subperiodic groups: the crystallographic data
for the 80 layer groups including generators, general and
special positions (International Tables Vol. E: Subperiodic
Groups) and their maximal subgroups of indices 2, 3 and 4
are already accessible on the server. Under development is
a database on incommensurate structures incorporating
modulated structures and composites. A k-vector database
with Brillouin-zone figures and classification tables of the
wave vectors for space groups is also available.

The communication to the databases is provided by
simple retrieval tools. They form the second shell of the
server and allow the access to the information on space
groups or subperiodic groups in different types of formats:
HTML, text ASCII or XML. In this way the retrieval tools
serve not only for obtaining specific information but can
also be used as input data for other programs.

The programs related to group-subgroup relations of
space groups form the next shell of the server. These pro-
grams use the retrieval tools for accessing the necessary
space-group information and apply group-theoretical algo-
rithms in order to obtain specific results which are not avail-
able in the databases. Examples are the determination of
different subgroups of a space group and their distribution
into conjugacy classes, or the calculation of possible super-
groups of a given space-group type and a fixed index. There
one can find also a program for calculating the splitting
rules of the Wyckoff positions for a group-subgroup pair.

It follows a shell which includes programs on represen-
tation theory of space groups and point groups and further
useful symmetry information. Parallel to the crystallo-
graphic software we develop a shell with programs facili-
tating the study of specific problems related to solid-state
physics, structural chemistry and crystallography.

The server has been operating for almost six years, and
new programs and applications are being added (Kroumo-
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va et al. 1998b, 1999, 2003). The aim of the present con-
tribution is to report on the current state of the server and
to provide a description of the different databases and the
retrieval tools which allow the access of the stored sym-
metry information (Section 2). The discussion of the
accompanying applications is focused on the crystallo-
graphic computing programs which form the second shell
of the server (Section 3). Here the underlying group-theo-
retical background of the developed programs is briefly
explained and more details on the necessary input data
and the outcoming results are given. The use of the pro-
grams is demonstrated by illustrative examples. The rest
of the available programs is the subject of a forthcoming
article.

2. Databases and retrieval tools

The databases form the core of the Bilbao Crystallo-
graphic Server. The information contained in these data-
bases is used by all of the programs available on the ser-
ver.

2.1. Space-group data

The space-group databases include the following symme-
try information:
� The data on the 230 space groups as listed in the

International Tables for Crystallography, Vol. A
(1995, hereafter referred to as ITA) including genera-
tors and general positions, Wyckoff positions and
Wyckoff sets, affine and Euclidean normalizers, types
of maximal subgroups, and types of minimal super-
groups. The data from the databases can be accessed
using the simple retrieval tools GENPOS, WYCK-
POS, NORMALIZER and WYCKSETS. All of them
use as input the number of the space group as given
in the ITA (ITA-numbers), but there is always a possi-
bility to select the group from a table with ITA-num-
bers and Hermann-Mauguin symbols. The output of
GENPOS contains the list with the generators or the
general positions and provides the possibility to ob-
tain the same data in different settings either by spe-
cifying the transformation matrix to the new basis or
selecting one of the 530 settings listed in Ta-
ble 4.3.2.1 of ITA. The list with the Wyckoff posi-
tions for a given space group in different settings can
be obtained using the program WYCKPOS. The pro-
gram NORMALIZER is used to access the data on
affine and Euclidean normalizers of the space groups.
They are described by sets of additional symmetry
operations that generate the normalizers successively
from the space groups (cf. ITA, Table 15.2). In the
case of triclinic and monoclinic groups only the Eu-
clidean normalizers corresponding to general metric
conditions are available for the moment. The assign-
ments of the Wyckoff positions to Wyckoff sets (cf.
Koch and Fischer, 1975) are retrieved by the program
WYCKSETS. In addition, the output gives a list of
the coset representatives of the decompositions of the
normalizers with respect to the space groups and the

transformation of the Wyckoff positions under the ac-
tion of these coset representatives.

� The list with the maximal subgroups H of indices 2,
3 and 4 of the space groups G. This information
forms part of the Volume A1 of the International Ta-
bles for Crystallography (2004, referred to as ITA1).
There, each subgroup is listed individually and is
specified either by a set of general-position repre-
sentatives or by a set of generators. All maximal
non-isomorphic subgroups and maximal isomorphic
subgroups of index 2, 3 and 4 of each space group
can be retrieved from the database using the program
MAXSUB. Each subgroup H is specified by its ITA-
number, the index in the group G and the transforma-
tion matrix-column pair (P, p). The 3� 3 square ma-
trix P ¼ kPijk transforms the conventional basis
ða; b; cÞG of G to the conventional basis of H:

ða0; b0; c0ÞH ¼ ða; b; cÞG P : ð1Þ

The column p ¼ ðp1; p2; p3Þ of coordinates of the
origin OH of H is referred to the coordinate system
of G. Hereafter, the data on the matrix-column pair
(P, p) are often written in the following concise
form:

P11aþ P21bþ P31c ; P12aþ P22bþ P32c ;

P13aþ P23bþ P33c ; p1; p2; p3 :
ð2Þ

For certain applications it is necessary to represent
the subgroups H as subsets of the elements of G.
This is achieved by an option in MAXSUB which
transforms the general-position representatives of H
by the corresponding matrix-column pair (P, p) to
the coordinate system of G.
Here, as well as in all programs related to maximal
subgroups (or minimal supergroups), the following
ITA conventional settings are chosen as standard
(hereafter also referred to as default settings): unique
axis b setting for monoclinic groups, hexagonal axes
setting for rhombohedral groups, and origin choice 2
for the centrosymmetric groups listed with respect to
two origins in ITA.

Most of space-group data are stored in a provisional
CIF format. For the extension of the existing CIF-core
dictionary, a list of data names has been compiled for the
space groups and their subgroups (Wondratschek, Madar-
iaga and Aroyo, 1996).

2.2 Subperiodic groups

Recently, we have started with the development of a data-
base for the subperiodic groups with symmetry information
as listed in International Tables Vol. E: Subperiodic Groups
(hereafter referred to as ITE). For the moment the Bilbao
Crystallographic Server provides a free on-line access to a
database for the 80 layer groups including generators, gen-
eral and special positions. The structure of this database and
the retrieval programs are similar to the ITA database.

In addition, the complete information on maximal sub-
groups of layer groups (Aroyo Wondratschek, 2004) is
made available: Similar to the ITA1 database, all maximal

16 M. I. Aroyo, J. M. Perez-Mato, C. Capillas et al.
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non-isotypic subgroups as well as maximal isotypic sub-
groups of index 2, 3 and 4 are listed individually. The
conjugacy relations of the subgroups in the original group
are indicated. The transformation to the conventional coor-
dinate system of the subgroup is available as a 3� 3 ma-
trix for the change of basis and a column for the origin
shift. Each subgroup can be further specified by its gener-
al-position representatives referred to the basis of the
group. The symmetry information has been stored in a
provisional CIF-format. For the extension of the existing
CIF-core dictionary a list of data names has been devel-
oped which refer to the specific requirements of the sub-
group tables of the layer groups.

2.3 k-vectors and Brillouin zones

The determination, classification, labeling and tabulation
of irreducible representations (irreps) of space groups is
based on the use of wave vectors k. The k-vector database
available on the Bilbao Crystallographic Server contains
figures of the Brillouin zones and tables which form the
background of a classification of the irreps of all 230
space groups. In this compilation the symmetry properties
of the wave vectors are described by the so-called recipro-
cal-space groups which are isomorphic to symmorphic
space groups (Wintgen, 1941, see also Aroyo Wondratschek,
1995). This isomorphism allows the application of crystal-
lographic conventions in the classification of the wave
vectors (and henceforth in the irreps of the space groups).
For example, the different symmetry types of k-vectors
correspond to the different kinds of point orbits (Wyckoff
positions) in the symmorphic space groups; the unit cells
with the asymmetric units given in ITA can serve as Bril-
louin zones and representation domains, etc. The advan-
tages of the reciprocal-space group approach compared to
the traditional schemes of wave-vector classification can
be summarized as follows:
� The asymmetric units given in ITA serve as represen-

tation domains which are independent of the differ-
ent shapes of the Brillouin zones for different ratios
of the lattice parameters.

� For the non-holohedral groups the representation do-
main is obtained from that of the corresponding ho-
lohedral group by extending the parameter ranges,
not by introducing differently labeled special k-vec-
tor points, lines or planes of symmetry.

� A complete list of the special sites in the Brillouin
zone is provided by the Wyckoff positions of ITA.
The site symmetry of ITA corresponds to the little
co-group of the wave vector; the number of branches
of the star of k follows from the multiplicity of the
Wyckoff position.

� All k-vector stars giving rise to the same type of
irreps are related to the same Wyckoff position and
designated by the same Wyckoff letter.

The available figures and the wave-vector data based
on the reciprocal-space group symmetry are compared
with the representation domains and the k-vector tables of
the widespread tables of space-group representations by
Cracknell, Davies, Miller and Love (1979, hereafter re-
ferred to as CDML).

The retrieval tools of the k-vector database use as input
the ITA-number of the space group. The output contains
wave-vector tables and figures. There are several sets of
figures and tables for the same space group when its Bril-
louin-zone shape depends on the lattice parameters of the
reciprocal lattice. The k-vector data are the same for space
groups of the same arithmetic crystal class.

In the tables, the k-vector data as listed by CDML are
compared with the Wyckoff-position description as given
in ITA. Each k-vector type is specified by its label and
parameters. The corresponding Wyckoff positions are de-
scribed by their Wyckoff letters, multiplicities, and site
symmetry groups. Their parameter description contains
also the parameter ranges chosen in such a way that each
orbit of the Wyckoff position of ITA, i.e. also each k-or-
bit, is listed exactly once. No ranges for the parameters are
listed in CDML. Symmetry points, lines of symmetry or
planes of CDML which are related to the same Wyckoff
position are grouped together.

In the figures, the Brillouin zones of CDML and the
conventional unit cells of ITA are displayed. The asym-
metric units play the role of the representation domains of
the Brillouin zones and they are chosen often in analogy
to those of ITA. The names of k-vector points, lines, and
planes of CDML are retained in this listing. New names
have been given only to points and lines which are not
listed in CDML.

2.3.1 Example

The following example illustrates the relation between the
traditional and the reciprocal-space group descriptions of
the wave-vector types of space-group irreps.

Arithmetic crystal class 222F. This arithmetic crystal
class consists accidentally of only one space group:

Bilbao Crystallographic Server: I. Databases and crystallographic computing programs 17
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Fig. 1. Brillouin zone for the arithmetic crystal class 222F:
a�2 < b�2 þ c�2, b�2 < c�2 þ a�2 and c�2 < a�2 þ b�2. The repre-
sentation domain (RD) is given by the vertices A0, B0, Z1, G0, H0,
D0, C0 and the corresponding vertices with the negative kz coordi-
nates. The asymmetric unit (AU) is the rectangular prism with the
vertices G , T , Z, Y , Z1, Y1, G1 and T1. Black vertices are special
points of the RD (and AU); black (thick) and grey (thick) lines are
edges of the AU.
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F222 � D7
2, the reciprocal space group is isomorphic to

I222 � D8
2. Depending on the relations between the lattice

constants a, b and c, there are two topologically different
bodies of the Brillouin zone displayed in Fig. 1 and Fig. 2
by thin black lines; the first one has 24 vertices, 36 edges
and 14 faces, the other has 18 vertices, 28 edges and
12 faces. The shape of the unit cell of ITA is always a
parallelepipedon with 8 vertices, 12 edges and 6 faces.
Similarly, the representation domains (abbreviated RD) of
CDML are more complicated than the asymmetric units
(abbreviated AU) of ITA, see Fig. 1 and Fig. 2.

To save space we have included only part of the table
of k-vector relations for the arithmetic crystal class 222F
in Table 1, corresponding to Fig. 1. The k-vector para-
meters of CDML (second column) of Table 1 are different
from those of ITA (last column) because in CDML the
data are always referred to a primitive basis, whereas in
ITA they are referred to a centered basis if appropriate,
e.g. in F and I lattices. The parameter ranges (last col-

umn) are chosen such that each k-vector orbit is repre-
sented exactly once.

One takes from Table 1 that different k labels of
CDML (first column) may belong to the same type of k
vectors, i.e. they give rise to the same type of irreps. Due
to the special shape of the representation domain of
CDML the special wave-vector line corresponding to the
Wyckoff position 4 f ð2::Þ (third column) is split into two
parts, A and C. In the ITA description A [ C corresponds
to one line ½Z1Y1�, (x, 0, 1=2), with 0 < x < 1=2. The split-
ting of the 4 f line into two parts is a consequence of the
Brillouin-zone shape for the specific values of the lattice
parameters. This is confirmed from Fig. 2 where the corre-
sponding special line C is not split.

2.4 Incommensurate Crystal Structure Database

As a part of the Bilbao Crystallographic Server one can
also find a database of incommensurate structures
(ICSDB). The necessity of such a database is justified by
the specific description of these structures due to which
they cannot be included in the ‘conventional’ crystal-struc-
ture databases. ICSDB contains both single modulated
structures and composites. ICSDB is different from the
rest of the server databases in the sense that it is designed
so that the user cannot only access the data, but also has
the possibility to add new structures (on-line input).

The tools available for the access to the database per-
mit the search for a given structure specified by the
author(s) and/or chemical element(s). The result from a
specific search contains the list with the compounds that
satisfy the search conditions and a link to the full informa-
tion for each structure. Also, there is a possibility to ob-
tain the CIF file with the structure data.

New structures can be added either by using a specially
designed web-interface, or the data can be sent via e-mail
using the CIF format. Each structure is provided with a
unique ID and password which permits the author to edit
the data.

The structures resolved with the program JANA (Petriček
& Dušek, 1998) can be added to the database directly,
using the output of the program. It is only necessary to
provide some additional information as author(s) name(s),
the publication data, and the e-mail address for contact.
ICSDB is accessible at: http://www.cryst.ehu.es/icsdb/

18 M. I. Aroyo, J. M. Perez-Mato, C. Capillas et al.

k-vector label Wyckoff position Parameters, see Fig.1
CDML ITA ITA

G 0, 0, 0 2 a 222 0, 0, 0

T 0, 1=2, 1=2 2 b 222 1=2, 0, 0

Z1ð� ZÞ 1=2, 1=2, 0 2 c 222 0, 0, 1=2

Y 1=2, 0, 1=2 2 d 222 0, 1=2, 0

S 0;a;a 4 e 2.. x, 0, 0: 0 < x < 1=2

A 1=2, 1=2 þ a, a ex 4 f 2.. x, 0, 1=2: 0 < x � a0

C 1=2, a, 1=2 þ a ex 4 f 2.. x, 1=2, 0: 0 < x < c0

C � A1 ¼ ½A0Y1� x, 0, 1=2: a0 < x < 1=2

A [ A1 ¼ ½Z1Y1� 4 f 2.. x, 0, 1=2: 0 < x < 1=2

Table 1. Selection of the k-vector types for
the arithmetic crystal class 222F (Space
group F222� D7

2 ð22ÞÞ: a�2 < b�2 þ c�2,
b�2 < c�2 þ a�2 and c�2 < a�2 þ b�2. The
k-vector labels and parameters of CDML are
compared with the Wyckoff positions of ITA
for the symmorphic space group I222, iso-
morphic to the reciprocal-space group of
222F. The parameter ranges in the last col-
umn are chosen such that each star of k is
represented exactly once. The sign � means
symmetrically equivalent. The coordinates x,
y, z of ITA are related to the k-vector coeffi-
cients of CDML by x ¼ 1=2ð�k1 þ k2 þ k3Þ,
y ¼ 1=2ðk1 � k2 þ k3Þ, z ¼ 1=2ðk1 þ k2 � k3Þ.
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Fig. 2. Brillouin zone for the arithmetic crystal class 222F:
c�2 > a�2 þ b�2. The representation domain (RD) is the body with
the vertices L0, G0, Q0, H0 and the corresponding vertices with the
negative kz coordinates. The asymmetric unit (AU) is the rectangular
prism with the vertices G , T , Z, Y , Z1, Y1, G1 and T1. Black vertices
are special points of the RD (and AU); black (thick) and grey (thick)
lines are edges of the AU; the grey (dashed) lines H1 and Q1 are
special lines of the RD which are represented in the AU by the lines
G1 and L1.
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3. Crystallographic computing programs

The data from the databases, obtained using the retrieval
tools described above, are used in more sophisticated algo-
rithms to obtain information which is not directly accessi-
ble from the databases and which is necessary for the
solution of different crystallographic problems. These
programs form the second shell of the Bilbao Crystallo-
graphic Server.

3.1 Subgroups of space groups

The problem

If two space groups G and H form a group-subgroup
pair G > H, it is always possible to represent their rela-
tion by a chain of intermediate maximal subgroups Zk:
G > Z1 > . . . > Zn ¼ H. For a specified index of H in
G there are, in general, a number of possible chains relat-
ing both groups, and a number of different subgroups
Hj < G isomorphic to H.

The program SUBGROUPGRAPH (Ivantchev et al.,
2000), analyzes the group-subgroup relations between
space groups. Its results can be summarized as follows:
� Given the space groups G and H with unspecified

index, the program determines the G �H lattice of
maximal subgroups containing the space-group types
of all possible intermediate groups Zk.

� If the index of H in G is specified, the program de-
termines all possible chains of maximal subgroups
relating G and H, the different subgroups Hj of G
with the given index, and their distribution into
classes of conjugate subgroups with respect to G.

In addition, the group-subgroup lattice and the chains
of maximal subgroups relating G and H are represented as
graphs with vertices corresponding to the space groups in-
volved.

The method

The program is based on the data for the maximal sub-
groups of index 2, 3 and 4 of the space groups of ITA1.
These data are transformed into a graph with 230 vertices
corresponding to the 230 space-group types. If two ver-
tices in the graph are connected by an edge, the corre-
sponding space groups form a group –– maximal-subgroup
pair. Each one of these pairs is characterized by a group-
subgroup index. The different maximal subgroups of the
same space-group type are distinguished by corresponding
matrix-column pairs (P, p) which give the relations be-
tween the conventional coordinate systems of the group
and the subgroup. The index and the set of transformation
matrices are considered as attributes of the edge connect-
ing the group with the subgroup.

The specification of the group –– subgroup pair G > H
leads to a reduction of the total graph to a subgraph with
G as the top vertex and H as the bottom vertex. In addi-
tion, the G > H subgraph, referred to as the general
G > H graph, contains all possible groups Zk which ap-
pear as intermediate maximal subgroups between G and
H. It is important to note that in the general G > H
graphs the space-group symbols indicate space-group

types, i.e. all space groups belonging to the same space-
group type are represented by one node on the graph.
Such graphs are called contracted. The contracted graphs
should be distinguished from the complete graphs where
all space groups occurring in group-subgroup graphs are
indicated by different space-group nodes.

The number of the vertices in the general G > H graph
may be further reduced if the index of H in G is specified.
The obtained subgraph is again of contracted type.

Different chains of maximal subgroups for the group-
subgroup pair G > H are obtained following the possible
paths connecting the top of the graph (the group G) with
the bottom (the group H). Each group –– maximal sub-
group pair determines one step of this chain. The index of
H in G equals the product of the indices for each one of
the intermediate edges. The transformation matrices, relat-
ing the conventional bases of G and H, are obtained by
multiplying the matrices of each step of the chain. Thus,
for each pair of group-subgroup types with a given index,
there is a set of transformation matrices (P, p)j, where
each matrix corresponds to a subgroup Hj isomorphic to
H. Some of these subgroups could coincide. To find the
different Hj of G, the program transforms the elements of
the subgroup H in the basis of the group G using the dif-
ferent matrices (P, p)j, and compares the elements of the
subgroups Hj in the group basis. Two subgroups that are
characterized by different transformation matrices are con-
sidered identical if their elements, transformed to the basis
of the group G, coincide.

The different subgroups Hj are further distributed into
classes of conjugate subgroups with respect to G by check-
ing directly their conjugation relations with elements of G.

3.1.1 The program SUBGROUPGRAPH

Input information

� As an input the program needs the specification of
the space groups G and H. The groups G and H can
be defined either by their sequential ITA numbers or
by their Hermann-Mauguin symbols. The default set-
tings are used for the monoclinic and the rhombohe-
dral space groups as well as for the centrosymmetri-
cal groups listed with respect to two origins in ITA.

� If the index of H in G is specified, then the program
determines the chains of maximal subgroups relating
these groups and classifies the isomorphic subgroups
Hj into classes of conjugate subgroups. If the index
is not specified, then the result is the lattice of all
maximal subgroups Zk that relate G and H.

Output information

1. Lattice of maximal subgroups relating G and H with
non-specified index.
When the index of the subgroup H in G is not spe-
cified, the program returns as a result the list of the
possible intermediate space groups Zk relating G
and H. The list is given in the form of a table
whose rows correspond to the intermediate space
groups Zk, specified by their Hermann-Mauguin
symbols. In addition, the table contains the maximal

Bilbao Crystallographic Server: I. Databases and crystallographic computing programs 19
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subgroups of Zk, specified by their ITA-numbers
and the corresponding indices given in brackets.
This list is represented also as a contracted graph.
Each space group in the list corresponds to one ver-
tex in the graph, and its maximal subgroups are the
neighbors (successors) of this vertex. Group-sub-
group relations in both directions are represented by
vertices connected with two lines. Maximal iso-
morphic subgroups are shown by loop edges (ver-
tices connected to themselves), cf. Fig. 3.

2. Chains of maximal subgroups relating G and H with
a given index. As an example, cf. Table 2 and
Figs. 4 and 5.
If the index of the subgroup H in the group G is
specified, the program returns a list with all of the
possible chains of maximal subgroups relating G
and H with this index. (Please note, that for the mo-
ment the program has no access to the data on max-

imal isomorphic subgroups with indices higher than
four.) The number of different transformation ma-
trices as well as a link to the list with these matrices
are given for each of the possible chains.
The graphical representation contains the intermedi-
ate groups that connect G and H with the specified
index. This graph is a subgraph of the general graph
of maximal subgroups with unspecified index and is
also of contracted type.

3. Classification of the different subgroups Hj of G.
Once the index of H in G is given, and the chains
relating these groups with the corresponding index
are obtained, the different subgroups are calculated
and distributed into classes of conjugate subgroups.
The distribution of the subgroups Hj into classes of
conjugate subgroups can be compared with the cor-
responding results obtained by the application of the
normalizer procedure described by Koch (1984).
Each class of conjugate subgroups is represented in
a table which contains the chains and the transfor-
mation matrices used to obtain the subgroups in this
class. There is also a link to a list of the elements of
the subgroups transformed to the basis of the
group.
The graph in this case contains the same space-
group types Zk as the graph of the previous step but
the different isomorphic subgroups are represented
by different vertices, i.e. the graph is a complete
one. At the bottom of the graph are given all iso-
morphic subgroups Hj. Their labels are formed by

20 M. I. Aroyo, J. M. Perez-Mato, C. Capillas et al.
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P 2

P 21

C 2

P 2221

P 21212

C 2221

P 212121

P 43

P 43212

P 41212

P 41

Fig. 3. General contracted graph for P41212 > P21. The nodes of the
graph correspond to the types of space groups that can appear as
intermediate subgroups in the chains of the group-subgroup pair
P41212 > P21. Each edge of the graph corresponds to a group-max-
imal subgroup pair of the indicated index ½i�. The loops correspond to
isomorphic subgroups.

P 21

P 212121 P 41

P 41212

C 2221

Fig. 4. Contracted graph for the pair of space groups P41212 > P21,
index 4. The nodes correspond to space-group types. The directed
edges represent the possible group-maximal subgroup pairs.

Table 2. Group-subgroup relations for P41212 > P21, index 4. There
are three different subgroups Hj ¼ ðP21Þj of P41212 distributed into
2 classes of conjugate subgroups. The possible chains of maximal
subgroups and the corresponding matrices (P, p)k (written in concise
form) are also shown.

Hj Chains ðP, pÞj

Class 1 ðP21Þ1 P41212 > P212121 > P21 a;b; c; 1=4 0 5=8

ðP21Þ2 P41212 > P212121 > P21 c; a; b; 1=4
1=4

3=8

Class 2 ðP21Þ3 P41212 > P212121 > P21 b; c; a; 1=2 0 3=8

P41212 > P41 > P21 b; c; a; 0 1=2 0

P41212 > C2221 > P21 a; c;�b; 0 0 1=4

P 21(1) P 21(1)

P 212121C 2221 P 41

P 41212

P 21(2)

Fig. 5. Complete graph for P41212 > P21, index 4. The nodes repre-
sent space groups and not space-groups types. The three subgroups of
the type P21 are distributed into two classes of conjugate subgroups
which are indicated in the parentheses after the space-group symbol.
The two subgroups P21ð1Þ belonging to the same conjugacy class
have identical single graphs, which considerably differ from the graph
of P21ð2Þ.
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the symbol of the subgroup followed by a number
given in parenthesis which specifies the class of
conjugate subgroups to which the subgroup Hj be-
longs.
Note that for group-subgroup pairs with high in-
dices, where a lot of intermediate maximal sub-
groups occur, the resulting complete graph with all
subgroups Hj could be very complicated and diffi-
cult to overview. Alternatively, a more simple graph
associated to a single specific subgroup Hj (equal
for all subgroups within a conjugacy class) can also
be obtained.

URL of the program
http://www.cryst.ehu.es/cryst/subgroupgraph.html

Example

As an example we consider the group-subgroup relations
between the groups H ¼ P21 (ITA No. 4) and G ¼ P41212
(ITA No. 92). If no index is specified then the lattice of
maximal subgroups that relate P41212 and P21 is repre-
sented as a table indicating the space-group types of the
possible intermediate space groups Zk, and the corre-
sponding indices. The contracted general P41212 > P21

graph is shown in Fig. 3. The double directed edges be-
tween the groups correspond to group-subgroup relations
in both directions, e.g., the pair P41 and P43. When the
index ½i� of the subgroup in the group is specified, the
resultant graph is reduced to the chains of maximal sub-
groups that correspond to the value of ½i�. For example, in
Fig. 4 the contracted graph P41212 > P21 of index 4 is
shown. Based on the ITA1 data the program has found 5
possible chains P41212 > P21 each specified by different
transformations ðP; pÞj, with j ¼ 1; . . . ; 5. However,
further analysis of the group-subgroup relations (option
‘Classify subgroups’) shows that there are only 3 different
P21 subgroups of P41212 > P21 of index 4, distributed in
two classes of conjugate subgroups (Table 2). The com-
plete P41212 > P21 graph on Fig. 5 shows that three dif-
ferent maximal subgroup chains end to the same P21 sub-
group. The three different subgroups of space-group type
P21 obviously correspond to the three two-fold screw axes
in P41212: those, pointing along the x and y axes, give
rise to the two conjugated subgroups, and the third one
(forming a class of conjugate subgroups by itself) is along
the tetragonal axis. The corresponding transformations are
listed in the Table 2.

The comparison between the complete graph (Fig. 5)
and the contracted one (Fig. 4) shows that the use of con-
tracted graphs for the analysis of specific group-subgroup
relations G > Hj can be very misleading. Obviously, sub-
groups Hj belonging to the same conjugacy class with
respect to G have topologically the same complete graphs.

3.1.2 The program CELLSUB

The program CELLSUB has been designed as a comple-
mentary tool of the SUBGROUPGRAPH module. Accord-
ing to a theorem of Hermann (Hermann, 1929) for each
pair G > H, there exists a uniquely defined intermediate
subgroup M, G �M � H, such that M is a translatio-
nengleiche or t-subgroup in G, and H is a klassengleiche,

or k-subgroup in M. Hence, the index ½i� of H in G, can
be decomposed in two factors ½i� ¼ ½it� � ½ik�. The first one
is the so-called t-index ½it�, which is related to the reduc-
tion of the point-group symmetry operations in the sub-
group. The second one is known as the k-index ½ik�, and it
takes account of the loss of translations. (The k-index is
equal to the cell-multiplication factor of the primitive
cells.) The program CELLSUB calculates the different
subgroups of a space group G for a given maximum k-
index ½ik� in two steps:
� Determines all possible space-group types Hm which

form group-subgroup pairs with G, G > Hm of index
½i� ¼ ½it� � ½ik�, such that the k-factor ½ik� is smaller
than a given value ½ðikÞmax�.

� For each pair of space-group types G > Hm and their
index ½i� satisfying the above condition, CELLSUB
finds all possible subgroups Hm

j , specified by the
matrix-column pairs (P, p)m

j and classifies them into
classes of conjugate subgroups.

The method for obtaining the different subgroup types
and indices of a given space group G is somehow similar
to that used in the SUBGROUPGRAPH module and it is
also based on the data on maximal subgroups of the space
groups of ITA1.

Input information

� The space group G: The space group can be speci-
fied either by its sequential ITA number, or by its
Hermann-Mauguin symbol. Note that the program
uses the default settings for the monoclinic, rhombo-
hedral and centrosymmetrical groups listed with two
origins in ITA.

� The (maximum) k-index. By default (full-list option),
all subgroups with a k-index smaller than the given
½ðikÞmax� are shown. As an option, it is possible to
choose only the subgroups with the specified (max-
imum) k-index.

Output information

� The list of the space-group types of the subgroups
Hm with the corresponding index ½i�, the t-index ½it�
and the k-index ½ik�, ½ik� ¼ ½i�=½it�. The subgroups are
further classified into k-subgroups, t-subgroups (for
the special case of ½ik� ¼ 1) or general subgroups.

� The link to the SUBGROUPGRAPH module pro-
vides for every space-group type Hm of the list: the
chains of maximal subgroups relating G and Hm

with the given index, the classification of the differ-
ent subgroups Hm

j of G in classes of conjugate sub-
groups, the graphical representations and all the ben-
efits of the program SUBGROUPGRAPH.

URL of the program
http://www.cryst.ehu.es/cryst/cellsub.html

3.2 Supergroups of space groups

The problem

The problem of the determination of the supergroups of a
given space group is of rather general interest. For differ-
ent applications it is not sufficient to know only the space-
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group types of the supergroups of a given group; it is
rather necessary to have available all different supergroups
Gk > H which are isomorphic to G, and are of the same
index ½i�. In the literature, there are very few papers treat-
ing the supergroups of space groups in any detail (Koch,
1984; Wondratschek and Aroyo, 2001). In ITA one finds
only listings of minimal supergroups of space groups
which, in addition, are not explicit: they only provide for
each space group H the list of those space-group types in
which H occurs as a maximal subgroup. It is not trivial to
determine all supergroups Gk > H if only the types of the
minimal supergroups are known. The program SUPER-
GROUPS (Ivantchev et al., 2002) solves this problem for
a given finite index ½i�.

The method

Let G be a space group and H < G one of its maximal
subgroups of index ½i�. Then all subgroups Hj which are
maximal subgroups of G of the same index ½i� and are
isomorphic to H are listed in ITA1. The number of max-
imal subgroups with index ½i� is finite for any space group.
Therefore, such a list is always finite.

Let H < G be a member of this list for the space group
G and index ½i�. Then one wants to know for the space
group H all minimal supergroups Gk > H of index ½i�
which are isomorphic to G, Gk ffi G. According to the The-
orem of Bieberbach, for space groups isomorphism and
affine equivalence result in the same classification. There-
fore, one is looking for the set of all minimal supergroups
Gk of H of index ½i� which are affinely equivalent to G,
Gk � G. Then there must be a mapping ak 2 A such that
a�1

k G ak ¼ Gk, where A is the group of all reversible affine
mappings.

There are two cases to be distinguished.
1. The first candidates for the mapping ak are the ele-

ments of the affine normalizer ofH, i.e. ak 2 NAðHÞ.
If ak 2 NAðHÞ, H is mapped onto itself by the trans-
formation with ak and Gk ¼ a�1

k Gak is a minimal
supergroup of H. More exactly, because of
NAðHÞ � ðNAðHÞ \ NAðGÞÞ ¼ D � H, the trans-
formation with the mapping ak results in a new
supergroup if and only if ak 62 D, Koch (1984).
Otherwise, not only the group H, but also the group
G will be reproduced. Following Koch (1984), other
supergroups Gk will be obtained by the coset de-
composition NAðHÞ :D of the group NAðHÞ rela-
tive to the group D and the transformation of G with
the representatives of these cosets.

2. If there is a further minimal supergroup Gj 6¼ G of the
same index ½i�, then aj 62 NAðHÞ, i.e. aj is not an ele-
ment of the affine normalizer of the groupH. How can
such a mapping aj be found?
This mapping aj 2 A transforms the space group G
onto the space group Gj ¼ a�1

j Gaj. Let Hj ¼ ajHa�1
j

be obtained from H by the inverse of that transfor-
mation which transforms G to Gj. Then the group
Hj is a subgroup of G if and only if H is a sub-
group of Gj. Therefore, the transformation of H to
Hj indicates the transforming element for the deter-
mination of the additional supergroup Gj.

If there is no subgroup Hj < G, then there is no
other supergroup Gj. If a subgroup Hj < G exists,
then also Gj. Other minimal supergroups may be ob-
tained from Gj again by considering the coset
decomposition NAðHÞ : ðNAðHÞ \ NAðGjÞÞ of the
normalizer NAðHÞ relative to the intersection
ðNAðHÞ \ NAðGjÞÞ in the same way as above.
Summarizing: Any minimal supergroup of H may
be found by transforming the group H onto all
other subgroups Hj < G of the same index, applying
each time the inverse transformation to the group G
for obtaining the group Gj and testing if Gj is al-
ready listed as a minimal supergroup of H. If not,
Gj is a new minimal supergroup of H and further
minimal supergroups may be found by applying the
coset decomposition of NAðHÞ relative to
ðNAðHÞ \ NAðGjÞÞ, as above.

The method for the determination of minimal super-
groups can be generalized for the case of non-minimal
supergroups Gj of H. The main difference is that all dis-
tinct (non-maximal) subgroups Hj of G of a given index
are not retrieved directly from the subgroup data of ITA1
but are calculated by a dedicated module of the program
SUBGROUPGRAPH (cf. 3.1.1).

The programs

The Bilbao Crystallographic Server contains two programs
related with supergroup-group pairs:
� MINSUP which gives all minimal supergroups of in-

dex 2, 3, and 4 of a given space group;
� SUPERGROUPS, which calculates all different

supergroups of a given space-group type and a given
index.

Input information

The program MINSUP needs as input the ITA number (or
the Hermann-Mauguin symbol) of the group for which the
minimal supergroups have to be determined.

The program returns a list with the minimal super-
groups represented in a table which contains: the ITA
number of the minimal supergroup, its Hermann-Mauguin
symbol and the index of the group in the supergroup.
There is also a link to the list with the transformation ma-
trices that relate the basis of the supergroup with that of
the subgroup.

The table described above contains only the types of
the minimal supergroups. For the determination of all of
the supergroups of a given type, it is necessary to select
the type of the normalizers of the group and the super-
group. By default the Euclidean normalizers are used as
listed in Table 15.3.2. of ITA. The user can also apply the
affine normalizers listed in the same table. For a transla-
tion lattice with metrics of apparent higher symmetry the
user may provide himself the set of additional generators
for the specific Euclidean normalizer.

The program SUPERGROUPS takes as input the ITA-
numbers of the space groups G and H and the index of H
in G. The transformation matrices relating the bases of G
and H necessary for the determination of the supergroups
Gj are retrieved from the ITA1 database. In case of a non-
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minimal supergroup, the program SUBGROUPGRAPH
determines the transformation matrix(ces) for the corre-
sponding chains of maximal subgroups that relate G and
H. As in the case of MINSUP, the space-group normal-
izers used by default are the Euclidean normalizers. Also,
there is a possibility for the user to use affine normalizers
given in ITA, or to provide a specific one.

Output information

For the two supergroup programs, the result contains:
� The transformation matrix (P, p)j that relates the ba-

sis of the supergroup with that of the subgroup.
� One representative from each coset in the decompo-

sition of the supergroup Gj with respect to the group
H. The full cosets of the decomposition are also ac-
cessible. The coset decomposition is performed with
respect to the basis of the subgroup H.

URL of the program
http://www.cryst.ehu.es/cryst/supergroups.html

Remark 1. From the considerations given above it should
have become clear that the aim of the presented procedure
and the supergroup programs is to solve the following
‘pure’ group-theoretical problem: Given a group-subgroup
pair of space groups, G > H, determine all supergroups Gj

of H, isomorphic to G. The procedure does not include
any preliminary checks on the compatibility of the metric
of the studied space group, with that of a supergroup. De-
pending on the particular case some of the obtained super-
groups are not space groups but just affine analogues of
space groups (see Koch, 1984). As an example consider
the cubic supergroups of P212121: only if the three basis
vectors of P212121 have equal length one can speak of
supergroups of the cubic P213 space-group type. However,
for each group P212121 there exist affine analogues of
P213 as supergroups.

Remark 2. The number of supergroups of a space
group H of a finite index is not always finite. This is the
case of a space group H whose normalizer NðHÞ con-
tains continuous translations in one, two or three indepen-
dent directions (see ITA, Section 15). As typical examples
one can consider the infinitely many centrosymmetrical
supergroups of the polar groups: there are no restrictions
on the location of the additional inversion centre on the
polar axis. For such group-supergroup pairs there is a
parameter r, s or/and t in the transformation matrix and in
the translational part of the coset representatives. The para-
meters can have any value and each value corresponds to
a different supergroup of the same space-group type.

Remark 3. The affine normalizers of triclinic and mono-
clinic groups are not isomorphic to groups of motions and
they are not included in the normalizer database on the
Bilbao Crystallographic Server. However, in the cases of
groups with specialized metrics it is necessary to consider
Euclidean normalizers of higher symmetry than for the
general case (Koch & Müller, 1990).

3.2.1 Examples

� Case 1: Supergroups Gk ¼ a�1
k Gak of H with

ak 2 NAðHÞ.

As an example we consider the group-supergroup
pair H < G with H ¼ P222 (No. 16 in ITA) and the
supergroup G ¼ P422 (No. 89 in ITA) of index
½i� ¼ 2. Further, we suppose that the group P222 has
a specialized cell metrics specified as ða ¼ b ¼ cÞ.
In the subgroup data of P422 there is only one entry
for the subgroup P222 of index 2. We are interested
in all P422 supergroups of index 2 of the group
P222. The affine normalizer of P422 coincides with
its Euclidean normalizer and it has the translations
ðx þ 1=2, y þ 1=2, zÞ, ðx, y, z þ 1=2Þ and the inversion
as additional generators (cf. ITA, Table 15.2). The
Euclidean normalizer of P222 with a ¼ b ¼ c coin-
cides with its affine normalizer. It corresponds to the
cubic group Pm�33m with the additional translations
ðx þ 1=2, y, zÞ, ðx, y þ 1=2, zÞ and ðx, y, z þ 1=2Þ. The
decomposition of NðHÞ with respect to the intersec-
tion of the two normalizers contains 6 cosets, i.e.
there are 6 supergroups of P222 isomorphic to P422.
The different supergroups as calculated by MINSUP
are listed in Table 3. They are distinguished by their
transformation matrix-column pairs ðP, pÞj and the
coset representatives of the decomposition of Gj with
respect to H. The existence of the 6 different super-
groups becomes obvious if we consider the type and
location of the symmetry elements corresponding to
the listed coset representatives of the different super-
groups (Table 3). Due to the specialized metrics of
P222 the four-fold axis of P422 can be chosen along
any of the three orthorhombic axes. Accordingly, the
6 supergroups are distributed into three pairs. The

Bilbao Crystallographic Server: I. Databases and crystallographic computing programs 23

Table 3. P422 supergroups of P222 ða ¼ b ¼ cÞ, index 2, as deter-
mined by MINSUP. The different supergroups are distinguished by
the transformation matrices (P, p)j and the coset representatives of the
decomposition of (P422Þj with respect to H. (The unit element is
taken as coset representative in all cases and is not listed). The loca-
tion of the 4-fold axis is referred to the orthorhombic cell.

Supergroup (P, p)j Coset Rep. 4-fold location

ðP422Þ1 a; b; c; 0 0 0 (4z j0 0 0) 0 0 0

ðP422Þ2 a; b; c; 1=2 0 0 (4z j �11=2
1=2 0) �11=2 0 0

ðP422Þ3 b; c; a; 0 0 0 (4y j0 0 0) 0 0 0

ðP422Þ4 b; c; a; 0 1=2 0 ð4y j �11=2 0
�11=2)

�11=2 0 0

ðP422Þ5 c; a; b; 0 0 0 ð4x j0 0 0) 0 0 0

ðP422Þ6 c; a; b; 1=2 0 0 ð4x j0 �11=2
1=2) 0 �11=2 0

Fig. 6. Space-group diagrams for (a) P222 with specialized cell me-
trics (see the text), and (b) P422. For explanations, see ITA, Chapter
1.4.
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comparison of the space-group diagrams of P422
and P222 (Fig. 6) shows that the two supergroups
for each orientation of the four-fold axis correspond
exactly to the two possible locations of the four-fold
axis in the orthorhombic cell.

� Case 2: Supergroups Gk ¼ a�1
k G ak of H with

ak 62 NAðHÞ.
Consider the Cmcm minimal supergroups of Pnma
(No. 62) of index 2. The group Cmcm (No. 63) has two
maximal Pnma subgroups: ðPnmaÞ1 specified by
ðP, pÞ1 ¼ ðb, c, aÞ, and ðPnmaÞ2 with ðP, pÞ2 ¼
ðc, a, b; 1=4, 1=4, 0Þ. The Euclidean and affine normal-
izers of Cmcm and Pnma are identical and correspond
to the group Pmmm with the additional translations
ðx þ 1=2, y, zÞ, ðx, y þ 1=2, zÞ and ðx, y, z þ 1=2Þ. Ac-
cordingly, the application of the normalizer proce-
dure to any of the two group-subgroup pairs will not
generate further equivalent supergroups. The first
pair Cmcm > ðPnmaÞ1 gives rise to the minimal
supergroup BbmmðCmcmÞ. The second supergroup
AmmaðCmcmÞ can only be obtained considering the
second group-subgroup pair. Both supergroups are
related by a cyclic rotation of the three axes which is
not in the normalizer of H (or G).

3.3 Relations of Wyckoff positions
for a group-subgroup pair of space groups

The problem

Consider group-subgroup related space groups G > H.
Atoms which are symmetrically equivalent under G, i.e.
belong to the same orbit of G, may become non-equivalent
under H, (i.e. the orbit splits) and/or their site symmetries
may be reduced. The orbit relations induced by the sym-
metry reduction are the same for all orbits belonging to a
Wyckoff position, so one can speak of Wyckoff-position
relations or splitting of Wyckoff positions. Theoretical as-
pects of the relations of the Wyckoff positions for a
group-subgroup pair of space groups G > H have been
treated in detail by Wondratschek (1993). A complete
compilation of the Wyckoff-position splittings for all space
groups and all their maximal subgroups is published in
Part 3 of ITA1. A parameterized form of the relations de-
scribes the splittings for the infinite number of maximal
isomorphic subgroups. However, for certain applications the
published data are not sufficient: it is often necessary to
have the appropriate tools for the calculations of the Wyck-
off-position splittings for G > H when H is not a maximal
subgroup of G, or when the space groups do not refer to
conventional settings. The program WYCKSPLIT (Krou-
mova, Aroyo, Perez-Mato, 1998a) calculates the Wyckoff-
position splittings for any group-subgroup pair. The space
groups can be referred to conventional and non-conven-
tional settings. In addition, the program provides the rela-
tions between the representatives of the orbit of G and the
corresponding representatives of the suborbits of H.

The method

The problem to be solved is the following: Given the
group G and its subgroup H of index ½i�, determine the

splitting of a Wyckoff position WG of G into Wyckoff po-
sitions W j

H of the subgroup and the corresponding rela-
tions between the representatives. For simplifying the no-
tation, we assume in the following that the group G, its
Wyckoff-position representatives, and the points of the or-
bits are referred to the basis of the subgroup.

1. Splitting of the General position
Consider the group-subgroup chain of space groups
G > H. It is possible to decompose G into right co-
sets with respect to H:

G ¼ HþHg2 þ . . .þHgi : ð3Þ

The number of the H-cosets equals the index of H
in G, and gj, j ¼ 1; . . . ; i, are the chosen coset repre-
sentatives with g1 equals the identity.
The general-position orbits OGðX0Þ have unique
splitting schemes: they are split into ½i� suborbits
OHðX0; jÞ of the general position of the subgroup,
i.e. all are of the same multiplicity:

OGðX0Þ ¼ OHðX0; 1Þ [ . . . [ OHðX0; iÞ : ð4Þ

This property is a direct corollary of the following
lemma (Wondratschek, 1993):
Let G be a space group and H a subgroup of index
½i� of G. The site-symmetry groups of a point X un-
der the space group G, SGðXÞ and under its sub-
group H, SHðXÞ, define the so-called reduction fac-

tors of the site symmetry: R ¼ jSGðXÞjjSHðXÞj
. When the

space-group symmetry is reduced from G to H and
the orbit OGðXÞ of the point X in G splits into q
orbits OHðXjÞ of H, the following relation holds:

½i� ¼
Pq

j¼1
Rj : ð5Þ

The maximal splitting corresponds to Rj ¼ 1 for
each j ¼ 1; . . . ; q and this is always the case if
OGðXÞ is a general-position orbit.
The determination of the splitting of the general-po-
sition orbit OGðX0Þ is then reduced to the selection
of the ½i� points ðX0; jÞ belonging to the ½i� indepen-
dent suborbits OHðX0; jÞ of H, Eq. (4). Due to the
one-to-one mapping between the general-position
points of OGðX0Þ and the elements g of G, the right
cosets Hgk of the decomposition of G with respect
to H, Eq. (3), correspond to the suborbits OHðX0; jÞ.
In this way, the representatives of these cosets can
be chosen as the ½i� points X0; j in the decomposition
of OGðX0Þ.

2. Splitting of a special position
The calculation of the splitting of a special Wyckoff
position WG involves the following steps:
� the determination of the suborbits OHðXjÞ into

which the special Wyckoff position orbit OGðXÞ
has split;

� the assignment of the orbits OHðXjÞ to the Wyck-
off positions W l

H of H;
� the determination of the correspondence between

the points Xm
j of the suborbits OHðXjÞ and the

representatives of W l
H.
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The direct determination of the suborbits OHðXjÞ is
not an easy task. The restrictions on the site-symmetry
groups SHðXjÞ which follow from the reduction-factor
lemma, Eq. (5), are helpful but in many cases not suffi-
cient for the determination of the suborbits. The solu-
tion used in our approach is based on the general-posi-
tion decomposition, Eq. (4). It is important to note that
each of the suborbits of the general position gives ex-
actly one suborbit OHðXjÞ when the variable para-
meters of OHðX0; jÞ are substituted by the correspond-
ing parameters (fixed or variable) of the special
position. The assignment of the suborbits to the Wyck-
off positions ofH is done by comparing the multiplici-
ties of the orbits, the number of the variable parameters
ðthe number of the variable parameters ofW l

H is equal
or greater than that of OHðXjÞÞ and the values of the
fixed parameters. If there is more than one Wyckoff
position of H satisfying these conditions, then the as-
signment is done by a direct comparison of the points
of the suborbit OHðXjÞ with those of a special W l

H
orbit obtained by substitution of the variable para-
meters by arbitrary numbers. The determination of the
explicit correspondences between the points of
OHðXjÞ and the representatives ofW l

H is done by com-
paring the values of the fixed parameters and the
variable parameter relations in both sets.

3.3.1 The program

The program WYCKSPLIT calculates the splitting of the
Wyckoff positions for a group-subgroup pair G > H, given
the corresponding transformation relating the coordinate
systems of G and H.

Input information

The program needs as input the following information
� the sequential numbers of the space groups G and H

as given in ITA which can be chosen from the list
with the 230 space groups;

� the transformation matrix-column pair ðP, pÞ that re-
lates the basis of G to that of H. The user can input
a specific transformation or can be linked to the
ITA1 database for the maximal subgroups of G. In
the case of a non-maximal subgroup, the program
SUBGROUPGRAPH provides the transformation
matrix(ces) for a specified index of H in G. The
transformations are checked for consistency with the
conventional (default) settings of G and H used by
the program.

� The Wyckoff positions WG to be split can be se-
lected from a list. In addition, it is possible to calcu-
late the splitting of any orbit OGðXÞ specified by the
coordinate triplet of one of its points.

Output information

� Splittings of the selected Wyckoff positions WG into
Wyckoff positions W l

H of the subgroup, specified by
their multiplicities and Wyckoff letters.

� The correspondence between the representatives of
the Wyckoff position and the representatives of its
suborbits is presented in a table where the coordinate
triplets of the representatives of WG are referred to
the bases of the group and of the subgroup.

WYCKSPLIT can treat group or subgroup data in un-
conventional settings, if the transformation matrices to the
corresponding conventional settings are given.
URL of the program
http://www.cryst.ehu.es/cryst/wpsplit.html

3.3.2 Example

For illustrating the calculation of the Wyckoff-position
splitting we consider the group-subgroup pair P42=mnm >
Cmmm of index 2, cf. Fig. 7. The relation between the
conventional bases ða, b, cÞ of the group and of the sub-
group ða0, b0, c0Þ is retrieved by the program MAXSUB
and is given by: a0 ¼ a� b, b0 ¼ aþ b, c0 ¼ c.

Bilbao Crystallographic Server: I. Databases and crystallographic computing programs 25

Fig. 7. Splitting of the Wyckoff positions 2a m:mm (0, 0, 0) and 4d �44:: (1=2, 0, 3=4) of P42=mnm with respect to its subgroup Cmmm of index 2.
ðOGÞH are the orbits of P42=mnm in the basis of Cmmm.
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The general position of P42=mnm splits into two subor-
bits of the general position of Cmmm:

16k 1 ðx; y; zÞ ! 16r 1ðx; y; zÞ [ 16r 1ðx0; y0; z0Þ :
This splitting is directly related to the coset decomposi-

tion of P42=mnm with respect to Cmmm. As coset repre-
sentatives, i.e. as points which determine the splitting of
the general position one can chose X0; 1 ¼ ðx; y; zÞ and
X0; 2 ¼ ðx0, y0, z0Þ ¼ ðy, x þ 1=2, z þ 1=2Þ (referred to the
basis of the subgroup).

The splitting of any special Wyckoff position is ob-
tained from the splitting of the general position. The con-
secutive steps of the splittings of the special positions
4d �44 . . . (1=2, 0, 3=4) and 2a m:mm (0, 0, 0) are shown on
Fig. 7. First it is necessary to transform the representatives
of WG to the basis of H which gives the orbits ðOGÞH
(0, 0, 0) and ðOGÞH (1=4, 1=4, 3=4). The substitution of the
values x ¼ 0, y ¼ 0, z ¼ 0 in the coordinate triplets of the
decomposed general position of G (cf. the corresponding
output of WYCKSPLIT) gives two suborbits of multipli-

city 2 for the 2a position: O2a; 1
H (0, 0, 0) and O2a; 2

H
(0, 1=2, 1=2). The assignment of the suborbits O2a; j

H to the
Wyckoff positions of H (cf. Table 4) is straightforward.
Summarizing: the Wyckoff position 2a m:mm (0, 0, 0)
splits into two independent positions of Cmmm with no
site-symmetry reduction:

2a m:mm (0, 0, 0) ! 2a mmm (0, 0, 0) [ 2c mmm
(0, 1=2, 1=2) .

No splitting occurs for the case of the special 4d posi-
tion orbit: the result is one orbit of multiplicity 8, O4d; 1

H
(1=4, 1=4, 3=4). The assignment of O4d; 1

H (1=4, 1=4, 3=4) is also
obvious: there are 5 Wyckoff positions of Cmmm of multi-
plicity 8 but 4 of them are discarded as they have fixed
parameters 0 or 1=2 (Table 4). The orbit O4d; 1

H belongs to
the Wyckoff position 8m ::2 (1=4, 1=4, z).

As expected the sum of the site-symmetry reduction fac-
tors equals the index of Cmmm in P42=mnm, Eq. (5), for
both cases. The loss of the four-fold inversion axis results in
the appearance of an additional degree of freedom corre-
sponding to the variable parameter of 8m ::2 (1=4, 1=4, z).

4. Conclusions

The Bilbao Crystallographic Server is a web site with
crystallographic databases and programs available on-line.

It has been operating for almost six years and new appli-
cations are being added regularly. The databases and the
programs can be accessed through the main page of the
server (www.cryst.ehu.es) and can be used free of charge
with any web browser.

The server is built on a core of databases and the ac-
companying software is divided into several shells accord-
ing to different topics. In this article we have provided a
description of the set of databases available on the server
and the shell formed by crystallographic computing pro-
grams. The utility of the applications is demonstrated by
illustrative examples. The rest of the programs on the ser-
ver, related to representations of space groups and point
groups, and the applications facilitating the study of speci-
fic problems of solid-state physics and structural chemistry
are the subject of a forthcoming article.

The databases of the Bilbao Crystallographic server in-
clude different space-group data: generators and general
positions, Wyckoff positions, maximal subgroups of in-
dices 2, 3, and 4, k-vector types, etc. Recently, we have
started with the development of a database of subperiodic
groups. The data are accessed through simple retrieval
tools. In addition, as a part of the server one can find the
database on incommensurate crystal structures, which pro-
vides the users with a web-interface for the search of a
specific structure or the input of new structures.

The programs that combine the crystallographic data
with group-theoretical algorithms form the second main
shell of the server: ‘Crystallographic computing pro-
grams’. It contains applications which are essential for
problems related to group-subgroup relations between
space groups including subgroups and supergroups of
space groups, graphs of maximal subgroups for group-sub-
group pairs, Wyckoff-position splitting schemes during
symmetry reduction, etc.

The programs on the Bilbao Crystallographic server
have user-friendly interfaces with links to documentation
and on-line help for each of the consecutive steps in a cal-
culation. One of the important advantages of the server is
that the different programs can communicate with each
other, so that the output of some programs is used directly
as input data to others. In this way the Bilbao Crystallo-
graphic Server has turned into a working environment with
the appropriate tools for treating problems of theoretical
crystallography, solid-state physics and crystal chemistry.
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