Bilbao Crystallographic Server Representations

## Irreducible representations of the Point Group 62m (No. 26)

Table of characters

 (1) (2) (3) C1 C2 C3 C4 C5 C6 GM1 A1' GM1 1 1 1 1 1 1 GM2 A2' GM2 1 1 -1 -1 1 -1 GM4 A2'' GM3 1 -1 1 -1 1 -1 GM3 A1'' GM4 1 -1 -1 1 1 1 GM6 E' GM5 2 0 0 -1 -1 2 GM5 E'' GM6 2 0 0 1 -1 -2
 (1): Notation of the irreps according to Koster GF, Dimmok JO, Wheeler RG and Statz H, (1963) Properties of the thirty-two point groups, M.I.T. Press, Cambridge, Mass. (2): Notation of the irreps according to Mulliken RS (1933) Phys. Rev. 43, 279-302. (3): Notation of the irreps according to C. J. Bradley, A. P. Cracknell, The Mathematical Theory of Symmetry in Solids (Clarendon Press, Oxford, 1972) for the GM point.

Lists of symmetry operations in the conjugacy classes

 C1: 1 C2: 2010, 2110, 2100 C3: m210, m1-10, m120 C4: -6+001, -6-001 C5: 3-001, 3+001 C6: m001

Matrices of the representations of the group

The number in parentheses after the label of the irrep indicates the "reality" of the irrep: (1) for real, (-1) for pseudoreal and (0) for complex representations.

N
Matrix presentation
Seitz Symbol
GM1(1)
GM2(1)
GM3(1)
GM4(1)
GM5(1)
GM6(1)
1
 ` 1 0 0 0 1 0 0 0 1`
1
 1
 1
 1
 1
 ` 1 0 0 1`
 ` 1 0 0 1`
2
 ` 0 -1 0 1 -1 0 0 0 1`
3+001
 1
 1
 1
 1
 ` ei2π/3 0 0 e-i2π/3`
 ` ei2π/3 0 0 e-i2π/3`
3
 ` -1 1 0 -1 0 0 0 0 1`
3-001
 1
 1
 1
 1
 ` e-i2π/3 0 0 ei2π/3`
 ` e-i2π/3 0 0 ei2π/3`
4
 ` 1 0 0 0 1 0 0 0 -1`
m001
 1
 -1
 -1
 1
 ` 1 0 0 1`
 ` -1 0 0 -1`
5
 ` 0 -1 0 1 -1 0 0 0 -1`
6-001
 1
 -1
 -1
 1
 ` ei2π/3 0 0 e-i2π/3`
 ` e-iπ/3 0 0 eiπ/3`
6
 ` -1 1 0 -1 0 0 0 0 -1`
6+001
 1
 -1
 -1
 1
 ` e-i2π/3 0 0 ei2π/3`
 ` eiπ/3 0 0 e-iπ/3`
7
 ` 0 1 0 1 0 0 0 0 -1`
2110
 1
 1
 -1
 -1
 ` 0 1 1 0`
 ` 0 1 1 0`
8
 ` 1 -1 0 0 -1 0 0 0 -1`
2100
 1
 1
 -1
 -1
 ` 0 e-i2π/3 ei2π/3 0`
 ` 0 e-i2π/3 ei2π/3 0`
9
 ` -1 0 0 -1 1 0 0 0 -1`
2010
 1
 1
 -1
 -1
 ` 0 ei2π/3 e-i2π/3 0`
 ` 0 ei2π/3 e-i2π/3 0`
10
 ` 0 1 0 1 0 0 0 0 1`
m110
 1
 -1
 1
 -1
 ` 0 1 1 0`
 ` 0 -1 -1 0`
11
 ` 1 -1 0 0 -1 0 0 0 1`
m120
 1
 -1
 1
 -1
 ` 0 e-i2π/3 ei2π/3 0`
 ` 0 eiπ/3 e-iπ/3 0`
12
 ` -1 0 0 -1 1 0 0 0 1`
m210
 1
 -1
 1
 -1
 ` 0 ei2π/3 e-i2π/3 0`
 ` 0 e-iπ/3 eiπ/3 0`
k-Subgroupsmag